INDRA Note No. 679 INDRA

24 July, 1978 Working
Ten g Paper

T G SRR

COMMENTS ON TCP CHECKSUM FUNCTION DESIGN: A RESPONSE TO
INTERNET EXPERIMENT NOTE 45.

by P.L. Higginson

ABSTRACT

This paper comments on the proposed 'ones complement sum'

and 'reduced product code' schemes outlined in IEN 45.

It is argued that the product code suggested offers no

real gains over the ones complement method and that both
methods are unsuitable for use with TCP. It is shown

that eyelic redundancy code checks take about twice as

long to compute as the reduced product code but offer
several advantages and furthermore that they can be designed
to allow easy updating in the gateways without recalculation.

Dept of Statistics & Computer-Science
University College, London

Comments on TCP Checksum Function Design

A Response to Internet Experiment Note 45

by P.L. Higginson

Abstract

This paper comments on the proposed 'ones complement sum' and 'reduced

product code' schemes outlined in IEN 45. It is argued that the
product code suggested offers no real gains over the ones complement
method and that both methods are unsmitable for use with TCP., It

is shown that cyeclic redundancy code checks take about twice as
long to compute as the reduced product code but offer several advan-
tages and furthermore that they can be designed to allow easy
updating in the gateways without recalculation.

Introduction

Internet Experiment Note 45 (IEN 45) discusses several checKking
schemes and finally seems to favour a 'reduced product code' scheme.
While I have no experience of product codes in general, the reduced
one proposed is described in sufficient detail in IEN 45 for the
purposes here. However, it is clear that the comments I have do
not apply to other product codes which might be used. The follow-
ing sections describe my major problems with the proposal scheme
and then go on to detail how a cyclic redundancy code check of

the systematic type (i.e. used for error detection only) might

be used and how it could be updated by gateways. Finally, some
minor comments on IEN 45 are made.

Objects of a TCP Checksum

The TCP checksum is a second level check done on an end-to-end
basis, It is assumed that error prone mediums such as Radio,
Telephone and Satellite channels will have low level CRC checks
implemented hop-by-hop. The object of the TCP checksum is to

detect such errors as memory failures, interface and software errors
in the network(s), and local interface errors as well as gross
distortions which slip through the hop-by-hop CRC's.

S

Given that the data is in many places passing in parallel through
registers and interfaces, property 1 (Seetion 2 of IEN 45) by
which a check is commutative is most undesirable since it means

that two errors in the same bit position can compensate each

other in the cheecksum. So P1 implies that only 1 error can be
detected whereas a normal CRC check will detect 1,2 or 3 errors in
a message.

Problems with the Reduced Product Code

Since the checking method for the reduced product code is

identical to the ones complement method it follows that 1t detects
and fails to deteet exactly the same cases. Thus it offers no
checking advantage over ones complement and in fact if two
compensating errors in words n and m do occur, the result when the
message is decoded will be to corrupt all words between and inecluding
n and m instead of only n and m.

Calculating a CRC Check

The standard table look up method for calculating any CRC check
requires both table space and calculation time and these can be
traded., One possible way on the PDP-11 is to use a 512 word table
and take 15 memory cycles per 16 bit word checked. In general, if
you decrease the table size you increase the time taken. Because
the CRC check is calculated bit serially it can be done in any
byte size (with suitable end correction if necessary); thus a
PDP-10 with 36 bit words could use 9 bit bytes and a 512 entry
table (the PDP-11 method above used 2 256 word tables - the PDP-10
could use 1,2 or 4 512 by 16 bit tables).

16 15

Some CRC polynomials, particularly the IBM one (X +X +XE+1) are
susceptible to fast coding methods and in (8) we gave a method
which on a PDP-9 takes 75% of the time of the standard table lookup
using two 256 entry tables. On a PDP-11 we can do this in 13

memory cycles per 16 bit byte.

Updating a CRC checksum

CRC checks have a property similar to the algebraic a(b+c)=ab+ac
in_that

r(a XOR b) = r(a) XOR r(b) -

Thus in prineiple the checksum can be updated by calculating the
XOR (exclusive or) of the old and new of the changed part and
working out what to XOR into the existing checksum (the length of
the message must be known but not its contents). This obeys the
requirement that the checksum is updated not recalculated but
would be tedious unless the data part was either of short or fixed
length (when the tables could be calculated in advance).

The best solution is to calculate the initial CRC check backwards
so that the header is added in last and thus can be changed easily.
If it was wished to have a forward check then the inverse polynomial

(X15+K14+K+1 for the IBM case) could be used to calculate the

initial backwards checksum and to do the updating. In fact, the
checksum could be fitted into the correct position in the header
by going both forwards and backwards and XORing the results.

I feel these extra sophistications are unnecessary and the

backwards check with the result put into the CRC field is sufficient.
The complexity of this is about the same as updating the product

case; the number of CRC steps is fixed and the data message unaltered.
If a word is inserted, the whole of the shifted data has to be
regarded as altered, but this is only the header in the case under
consideration (it is XOR'd in twice in its old and new positions).

Minor Comments on IEN 45

Section 1, paragraph 2: do you mean upper or lower bound - I
think 2**(-C) is a mean rather than a bound anyway.

paragraph 3: all zero messages are now defeated by
starting and finishing CRC checks with non-zero
values (see X25).

Section 2, P2 : I do not think is necessary because Pl is sufficient.
P4 : Pl gives this result not associativity (+ is
associative though).

Section 2, PDP-10 code : you seem to have only 32 bits in each
36 bit word which means you have preprocessed the data
(what about 36 bit FTP's?) unless I misunderstand the code.

Section 3, paragraph 6 : All checks we are considering will detect
bursts of 15 or fewer bits in error providing you define
a burst in the checking order (which if you move the
CRC is not strictly true).

paragraph 7 : 3% does not sound very good compared to

an expected 1 in 216.

References : (8) is a published paper - see below.

Coneclusions

I feel that the three-fold increase in errors detected by a CRC
check justifies the extra computation overhead.in calculating and
checking. The updating problem can be solved if the check is
designed well. The TCP check should be additional to any hop-by-hop
checks and should not be amalgamated otherwise the error checking
will be compromised. Hence a check polynomial other than one

likely to be used at line level should be chosen. The old IBM

check is suggested with modifications to have non-zero start and
finish values in order to minimise the zero fill problems,

References

(8) P.L. Higginson and P.T. Kirstein, 'On the computation of
cyclic redundancy checks by program'. Computer Journal,
16, 19-22 (1973).

