June 1978 DRAFT
IEN:40

Section: 2.4.2.1

Replaces: IENs 27, 21,5

Transmission Control Protocol

Version 4

1. INTRODUCTION

The Transmission Control Protocol (TCP) is intended for use as a highly reliable host-to-host
protocol between hosts in packet-swilched computer communication networks, and especially in
intecrconnected systems of such netwaorks.

This document describes the functions to be performed by the internetwork Transmission
Conlrol Protocol (TCP), the program that implemenis il, and its interface to programs or users
thal require its services. ;

1.1. History

There have been four grevious TCP specifications: The first [CDS74] defined version 1 of
TCP. A s=ocond [PGR76a] was written for the Defense Communications Agency in
conneclion with its AUTODIN Il project. The third [Cerf 77] defined version 2, for use in
the ARPA internetwork research projects. The fourth [CP78] defined version 3, a

reflinement of version 2.
The AUTOJIN Il version differed from the original version in the following ways:

Specificalion of & resynchronization mechanism was included, and fields for security and
priorily, which were known requirements of AUTODIN Il, were added.

The internet version 2 differed from the original version in the following ways:

A different resynchronizalion procedure was introduced; an "option" field was defined
ior the TCP header lo accommodate not only security and priority but other special
fealures concerned wilh, for example, packet speech services, diagnostic timestamping,
and so on.

This wversion eliminated all error messages but for RESET and thus simplified the header
formal. There are still many local errors which can be reported to the user, but none of
these need cross the network(s) between TCP's,

Connection closing was slightly more elaborate in Version 2 than in version 1 because the

Postel [Page 1]

DRAFT June 1978
TCP-4 Specification

Introduction

FIN signals had lo be acknowledged. Furlhermore, the INT and FIN facilities no longer
caused flushing of the data stream. (A separate “flush” facility was tested, but
eliminated, in the end.) Dealing with flow-control windows that have gone to zero was a
new feature of version 2, and, finally, the reassembly of fragments into segments was
more carefully specified.

In version 3 TCP further evolved. The primary changes from version 2 were:

The resynchronization mechanism was eliminated in favor of a quiet period on
initialization of the TCP,

Buffer managemenl and lellers were more tightly coupled by the coupling of the end of
letler flag to a receive buffer size.

The interrupt signal was eliminated in favor of an urgent pointer.

A further separation of the internet and TCP specific information in the packet format
was achieved, with provision for variable length addresses in the Internet header.

Version 4 TCP specified here has the following changes:

All addressing information (including port identification) has been eliminated and is
expected to be carried in the internet protocol.

Frigmentation and reassembly has been-eliminated from TCP and made the responsibility
of the internet protocol module, . :

1.2. Scope

The TCP is Intended to provide a reliable process-to-process interprocess communication
service in a mullinelwork environment. The TCP is intended to be a host-to-host protocol in

common use in multiple networks,
1.3. Other Documentation

For other documentalion see the items cited in the History Section (1.1}, and the items
lisled in the Bibliography.

[Page 2] Postel

June 1978 DRAFT
TCP-4 Specification

Introduction

1.4. Interfaces

The TCP interfaces on one side to applicalion processes, and on the other side to a
transmission protocol such as Internetwork Protocol.

The interface belween an application process and the TCP is illustrated in reasonable detail.
This interface connsists of a set of calls much like the calls an operating system provides to
applicalion process for manipulating files. For eaxmple there are calls toe open and close
connections, and to send and receive letters on established connections. It is also expected
that the TCP can asynchronously communicate with application programs via events.

The interface between TCP and a transmission protocol is essentially unspecified except that
it is assumed there is @ mechanism where by the two can pass information to each other
such as events,

1.5. Operation

Several basic assumplions are made about process-to-process communication and these are
listed here without further justification. The interested reader is referred to [CK74,
Tomlinson74, Belsnes74, Dalal784, Dalal75, Sunshine76a, CEHKKS77] for further
discussion.

HOS5Ts are computers atlached fo a network, and from the communication network’s point
of view are the sources and destinalions of messages. PROCESSES are viewed as the active
elemenls of 8l host computers in a network (in accordance with the fairly common
definition of a process as a program in execution). Even terminals and files or other 1/0
media are viewed es communicating through the use of processes. Thus, all network
communicaetion Is viewed as inter-process communication.

Since a process may need to distinguish among several communication streams between
itsell and wmnother process [or processes], we imagine that each process may have a
number of PORTs through which it communicates with the ports of other processes.

Since port names are selected independently by each operating system, TCP, or user, they
may nol be unique. To provide for unique names at each TCP, we concatenate an internet
ADDRESS specific to the TCP level with a port name to create a SOCKET name which will be
unigque throughout all networks connected together.

For example
Network = ARPANET (number 12},
Host = ISI-TENEXA (imp 22, host 1),
Port = FTP-Server (port 3}

or
PPPA1P10-BER10]1168-PBBRRBBARBGBBRAAL
PRPRRRBARRBBABEARRABERBBBRREE]L] .

Postel [Page 3]

. DRAFT June 1978
TCP-4 Specification

Intreduction

‘A pair of sockets form a CONNECTION which can be used to carry data in either direction
{(i.e. "ull duplex”). The connection is uniquely identified by the <local socket, foreign
sockel> address pair, and the same local socket name can perticipate in multiple
connections to different foreign sockets.

- Processes exchange finite length LETTERS as a way of communicating; thus, letter
boundaries might be significanl in some process-to-process communications. However, the
length of a letter may be such that it must be broken into SEGMENTS before it can be
transmitted to its destination. We assume that the segments will normally be reassembled
info a letler before being passed to the receiving process. A segment may contain all or a
part of a letter, but that a segment never contains parts of more than one letter.

Furthermore, there is no restriction on the length of a letter. A connection might be formed
lo send a single long letter {a stream of byltes, in effect). In fact, processes can
communicate via TCP without ever marking the end of a letter, but we think this is atypical
of most anticipated use.

There is, however, a coupling between letters as transmitted and the use of buffers of data
that cross the TCPfuser interface. Each time an end of letter (EOL) signal is associated
with data placed into the receiving user’s buffer, the buffer is returned to the user for
processing even if the buffer is not filled.

We specifically assume that segments are transmitted from Host to Host through means of
a PACKET SWITCHING NETWORK (PSN) [RW?0, Pouzin73] This assumption is probably
unnecesséry, since a circuit swilched network, or a hybrid combination of the two, could
also be used, but for concreteness, we explicilly assume that the hosts are connected to one

or more PACKET SWITCHES [PS] of a PSN [HKOCW70, Pouzin74, SW711

Processes make use of the TCP by handing it letters (or buffers filled with parts of a letter).
The TCP breaks these into segments, if necessary, and then embeds each segment in an
INTERNETWORK PACKET. Each internetwork packet is in turn embedded in a LOCAL
PACKET suitable for transmission from the host to one of its serving PSs. The packet
switches may perform further formatting, fragmentation, or other operations to achieve the
delivery of the local packet to the destination Host.

The fterm LOCAL PACKET is used generically here to mean the formatted bit string
exchanged belween a host and a packet switch. The format of bit strings exchanged
between the packet swilches in @ PSN will generally not be of concern to us. If an
internetwork packel is deslined for a TCP in a foreign PSN, the packet is routed to a
paleway which connecls the originating PSN with an intermediate PSN or with the
destination PSN. Routing of internetwork packets to the gateway may be the responsibility of
the source TCP or the local PSN, depending upon the PSN services available.

The model of TCP operation is that there is a basic gateway (or internet protocol module)
associated with each TCP which provides an interface to the local network. This basic
gateway performs routing and packet reformatting or embedding, and may also implement

[Page 4] Postel

June 1978 DRAFT
TCP-4 Specification

Introduction

conpestion and error control between the TCP and gateways at or intermediate to the
destination TCP.

Al a gateway belween networks, the internetwork packet is “"unwrapped” from its local
packel formal and examined to determine through which network the Internetwork packet
should iravel next. The internetwork packet is then "wrapped" in a local packet format
suitable to the next nelwork and passed on to a new packet switch.

A paleway is permitled to break up a segment carried by an internetwork packet into
smaller FRAGMENTS if this is necessary for transmission through the next network. To do
this, the galeway produces a sel of internetwork packets, each carrying a fragment.
Fragments may be broken into smaller ones at intermediale gateways. The packet format is
desipned so thal the destination gateway can reassemble fregments into segments.
Segments, of course, can be reassembled into letters by the destination TCP.

The TCP is responsible for regulaling the flow of internetwork packets to and from the
processes it serves, as a way of preventing its host from becoming saturated or overloaded
with traffic. The TCP is also responsible for retransmitling unacknowledged packets, and
for delecting duplicates. A consequence of this error detection and retransmission scheme is
that the order of letlers received on a given connection can alsc be maintained
[CK74,Sunshine75] To perform these funclions, the TCP opens and closes connections
between ports.

Poslel [Page 5]

DRAFT June 1978

TCP-4 Specification
Philosophy

[Page 6] Postel

June 1978 DRAFT
TCP-4 Specification
Philosophy

2. PHILOSOPHY

2.1. Lessons Learned

e

2.2. Relaled Work

7?

2.3. Mechanisms Explained

The key idea of TCP is thal processes exchange letters via connections. TCP ulilizes many
mechanisms to provide this service.

Processes are supporled by the host operating system.

Letters are supporled by the reliable transmission of TCP segments containing beginning
and end of letler flags. Transmission is made reliable via the use of sequence numbers
and acknowledgements,

Connections are supported via procedures to establish and clear connection. These
procedures utilize the synchronize (SYN) and finis (FIN) control flags, and involve a
three-way hand shake. Conneclions are identified by pairs of addresses that include port
identifiers. Such-address are, called sockels to stress that fact.

Letiers

A letler is 8 sequence of one or more successive oclets (8-bit bytes) on a TCP
conneclion. The beginning of a letter is marked by a BOL control flag in a packet. The
end of a letler is marked by the appearance of an EQL control flag in a packel. A letter
is the minimum unit of information which must be passed from a receiving TCP to a
receiving process. A TCP may pass less information to the receiving program, but when
a TCP has a complete letter it must not wait for more data from the remote process
before passing the lelter to the receiving process if the receiving process is ready to
accept it.

The TCP as a Post Qffice

The TCP acts in many ways like a postal service since it provides a way for processes to
exchange letters with each other.

It sometimes happens that a process may offer some service, but not know in advance
what ils correspondents’ addresses are. The analogy can be drawn with a mail order
house which opens a post office box which can accept mail from any source. Unlike the
post box, however, once a letter from a particular correspondent arrives, the resulting
connection becomes specific fo the correspondents until the correspondents declare

Postel [Page 7]

DRAFT June 1978

TCP-4 Specification
Philosophy

olherwise--thus making the TCP more like a telephone service, Without this
parlicularization, the TCP could not perform its flow control, sequencing, duplicate
deteclion, end-to-end acknowledgement, and error control services.

Well Known Sockets

Well known sockets are a convenient mechanism for a priori associating a socket name
wilh a standard service. For instance, the "telnet-server” process might be permanently
assipned to a parficular socket, and other sockets might be reserved for File Transfer,
Remote Job Entry, text generalor, echoer, and sink (the last three being for test
purposes). A sockel name might be reserved for access to a "look-up" service which
would return the specific socket at which a newly created service would be provided.

For compatibility with ARPANET socket naming conventions, we refer to the list of
assigned sockels in RFC 739 [Postel77]

TCP implementors should note, however, that the gender and directionality of NCP
sockels do nol apply to TCP sockets, so that even numbered as well as odd ones can
serve as well known sockels.

Sockels and Addressing

We have borrowed the term SOCKET from the ARPANET terminology [CCC70, DCA7E].
In grneral, a socket is an internetwork ADDRESS including a PORT identifier. A
CONMECTION is fully specified by the pair of SOCKETS at each end since the same local
socket name may participate in many conneclions to different foreign sockets.

Once the connection is specified in the OPEN command the TCP supplies a (short} local
connection name by which the user refers to the connection in subsequent commands.
As will be seen, this facilitates using connections with initially unspecified foreign sockets.

TCP's are free to associale ports wilh processes however they choose. However, several
basic concepts seem necessary in any implementation. There must be well known
sockels which the TCP associales only with the “"appropriate” processes by some means.
We envision thal processes may "own" sockets, and that processes can only initiate
connections on the sockets they own. (Means for implementing ownership is a local
issue, but we envision a Request Port user command, or a method of uniquely allocating
a group of ports to a given process, e.g. by associating the high order bits of a port name
wilh a given process.)

Once iniliated, a conneclion may be passed to another process that does not own the
local socket (eg. from “lopger” to service process). Strictly speaking this is a
reconnection issue which might be more elegantly handled by a general reconnection
protocol as discussed below. To simplify passing a connection within a single TCP
"invisible” swilches are be allowed.

Of course, each connection is associated with exaclly one process, and any attempt to

[Page 8] Postel

June

Poslel

DRAFT

TCP-4 Specification
Philosophy

1978

reference that connection by another process should be treated as an error by the TCP.
This prevents anolher process from stealing data from or inserting data into another
process’ dala stream, and also prevents masquerading, spoofing, or other forms of
malicious mischief {(given a correct implementation of TCP in a protective operating

syslem environment}.

A conncction is "inilialed” by the rendezvous of an arriving internetwork packet and a
wailing Transmission Control Block (TCB) created by a user OPEN, SEND, URGENT, or
RECEIVE command. The malching of local and foreign socket identifiers determines
when a successful connection has been initiated. The connection becomes "established”
when sequence numbers have been synchronized in both directions.

It is possible to specify a socket only parlially by setting the PORT identifier to zero or
sctting bolth the TCP and PORT identifiers to zero. A socket of all zero is called
UNSPECIFIED. The purpose behind unspecified sockets is to provide a sort of "general
delivery” facility (useful for processes offering services on "well known" sockets).

There are bounds on the depree of unspecificity of socket identifiers. TCB's must have
fully specified local sockets, although the foreign socket may be fully or partly
unspecified. Arriving packels must have fully specified sockets.

We employ the following notation:
w.y.z = fully specified sockel with x=net, y=TCP, z=port
x.y.u = as above, but unspecified port .
¥.u.u = as above, but unspecified TCP and port
uv.u.u = completely unspecified
wilh respect to implementation, u = 0 [zero]

We illustrate the principles of malching by giving all cases of incoming packets which
malch with existing TCB's. Generally, both the local socket field of the TCB and the
destination socket field of the arriving packet must match, and the foreign field of the
TCB and the source sockel field of the arriving packet must match.

TCB-local TCB-foreign Packet-source
Facket-destination
{al a.b.c e.f.og e.f.q a.b.c
{b) a.b.c e.f.u e.f.q a.b.c
{c) a.b.c e.u.U e.f.g a.b.c
{d) a.b.c u,u,u e.f.q a.b.c

There are no other legal combinations of socket identifiers which match. Case (d) is

[Page 9]

DRAFT June 1978

TCP-4 Specification
Philosophy

typical of the ARPANET well known socket idea in which the well known socket (ab.c)
LISTENS for a connection from any {(uu.u) socket. Cases (b) and (c) can be used to
restrict matching to a parlicular TCP or net. More elaborate masking facilities could be
implemented withoul adverse effects, so this malching facility could be considered the
minimum acceplable for TCP operation.

Reconnection Prolocol

Port identifiers fall into two calegories: permanent and transient. For example, a
Telnet-server process is generally assigned a port identifier that is fixed and well known.
Transient processes will in general have port identifier’s which are dynamically assigned.

In a distributed processing environment, two processes that don't have well known port
identifiers may often wish to communicate. This can be achieved with the help of a well
known process using a reconneclion prolecol. Such a protocol is briefly outlined using the
communication facilities provided by the TCP. It essentially provides a mechanism by
which porl idenlifiers are exchanged in order o establish a connection between a pair of
sockels,

Such a protocol can be used to achieve the dynamic establishment of new connections in
order fo have multiple processes solving a problem co-operatively, or to provide a user
process access to a server-applicalion process via a server-exec process, when the
sorver-exec’s end of the conneclion can not be invisibly passed to the server-application
process,

A rpapz-'r on this subject by R. Schanlz [Schantz74] discusses some of the issues
ansociated with reconneclion, and some of the ideas tontained therein went into the
design of the protocol ocutlined below.

In the ARPANET, a protocol (called the Initial Connection Protocol [Postel72]) was
implemenled which would allow a process to connect to a well known socket, thus making
an implicit request for service, and then be swilched to another socket so that the well
known sockel could be freed for use by others. Since sockets in our TCP are permitted to
participale in more than one conneclion name, this facility may not be explicitly needed
(i.c. conneclions <A,B> and <A,C> are dislinguishable).

However, the well known sockel may be in one network and the actual service socket(s)
may be in another network (or at least in another TCP). Thus, the invisible switching of a
conneclion from one port to another within a TCP may not be sufficient as an "Initial
Conneclion Prolocol”., Let Nx be a network identifier, and Tx be & TCP identifier. We
imagine that 8 process wishes to use socket N1.TLQ to access well known socket
N?2.72.P. However, the process associated with socket N2.T2P will actually start up a
now process somewhere which will use N3.T3.5 as its server socket. The N(i) and T(i)
may be distinel or the same. The user will send to N2.T2.P the relevant user information
such as user name, password, and account. This intermediate server will start up the
aclual server process and send to NI.TLQ the actual service socket identifier: N3.T3.5.

[Page 10] Postel

June 1978 DRAFT
TCP-4 Specification
Philosophy

The connection (N1.TL.QN2.T2.P) can then be closed, and the user can do a RECEIVE
on (N1.T1.QN3.T3.5). The serving process can SEND on- (N3.T3.5NL.T1.Q). There are
many wvariations on this scheme, some involving the user process doing a RECEIVE on a
different socket {eg. (NLTLXUULU)) with the server doing SEND on
{N3.T3.5,NL.TL1X).

Without showing all the detail of synchronization of sequence numbers and the like, we
can illustrale the exchange as shown below.

USER SERYER
1. RECEIVE(N2.T72.P,U.U.U)

1. SEND(N1.T1.Q,N2.T2.P)==>
<w= 2. SEND(NZ.T2.P,N1.T1.0Q)

with "N3.73.5" as data

2. RECEIVE(N1.71.0,N2.72.P)
3. CLOSE(N1.71.Q,N2.72.P)e=>
<== 3. CLOSE(NZ.T2.P,N1.T1.0)

4. RECEIVE(N1.71.0,N3.73.5)
<== 4, SEND(N3.T3.5,N1.T71.0)
Reconnection Protocol Example
Figure 1.

At this point, a connection is open between NI1.T1.Q and N3.T3.5. A variation might be
lo have the user do an extra RECEIVE on (NLTLX,UUU) and have the data "N1.TL.X"
be sent in the firs! user SEND. Then, the server can start up the real serving process and
do a SEND on (N3.T3.SNLT1X) wilhout having to send the "N3.T3.5" data to the
vser. Or perhaps both server and receiver exchange this data, to assure security of the
ullimate connection (i.e. some wild process might try to connect to NLTLX if it is merely
RECEIVING on foreign socket UUU.).

We do nol propose any specific reconnection protocol here, but leave this to further
deliberation, since it is really a user level protocol issue.

Furlher work on reconnection is in progress and version 4 of TCP may include provisions
for reconnection via TCP control exchanges.

Postel [Page 11]

DRAFT June 1978
TCP-4 Specification

2.4, Functional Specification of Interfaces

The folliowing diagram illustrates the place of the TCP in the protocol hierarchy.

P R PO R — + e +
ITalnet! ! FTP ! IVaice! ... | !
S $ hmm——— + + fmm e
1 ' |
O + e + fmm——t
I TCP 1 I RTP | ! !
e + e + = +
! I 1
e =0 +
! Internet Protocol !
e +
!
e +
! Local Netuork Protocol !
S e +

Protocel Relationships

Figure 2.

Il is expecled that the TCP will be able to support higher level protocols efficiently. It should
be easy lo inlerface existing ARPANET prolocols like TELNET [DCA76] and FTP [DCA76]

fo the TCP.
25. Problems Remaining
Major Points
A real formal specification is needed.
The protocol must be verified.
Technical lssues
2.6, Fulure Direclions

277

[Page 12] Postel

June 1978 DRAFT
TCP-4 Specification

2.7. Examples & Scenarios

m?

Postel [Page 13]

DRAFT - June 1978

TCP-4 Specification
Specification

[Page 14] Postel

- June 1978 DRAFT
TCP-4 Specification
Specification

3. SPECIFICATION

3.1. Formalisms Explained

The malterial in the following section by no means qualifies as a formal specification, but it is
a close as we have on hand. First is a stale diagram of the connection opening and closing
sequences, followed by a description of the action to be taken when is state x and event y

occurs for the expected combinations of x and y.
3.2. Formal Specificalion

The opening and closing of a connection progresses through a series of states as shown in
the following diagram.

Poslel [Page 15]

DRAFT
TCP-4 Specification

Specification

June 1978

CLOSED
ClL OSE
' Delete TCB
OPEN CLOSE
Create TCB Delete TCB
[
OPEN
Bcy SYN —SENO oe LRG
Snd SYN, ACK nd 5YN
Hoy SYN
SYN Snd ACK SYN
RCVD - SENT
//:/M
_ClnseE ESTAB Snd ACK
Snd FIN
__CIOSE _Bov FIN
L i . Snd FIN Snd ACK
FIN CLOSE
WAIT LAIT
_Bey FIN —_CIOSE
Snd ACK CLOSING Snd FIN
Boy ACK of FIN _timeout
Delete TCB ABORT

TCP Conneclion State Diagram

: [Page 16]

Figure 3

Postel

- June

1978 DRAFT
TCP-4 Specification

Specification

TCP Connection Stale Transilions

Fostel

The state diagram above only illustrates state changes {and actions which occur as a
resull), but addresses neither error conditions nor actions which are not connected with
stale changes. In this section, more detail is offered with respect to the reaction of the
1CP to various events (user command, packet arrivals). The characterization of TCP
processing of control packels and reaclion to user commands is relatively terse. Certain
implementation choices can make the realization of the specified processing fairly
compact. For the sake of compactness, this section deliberately avoids much explanatory
malerial which can be found in the implementation sections. Thus, this section is
intended more as a reference than as a tutorial.

Furthermore, it should be kept in mind that some control information occuples sequence
number space along with dala. This latler point means that there is a natural order in
which to process the data and control portions of an incoming packet and that certain
conlrols will change the connection slate BEFORE later control or data (i.e, those
assipned higher sequence numbers) are processed. An implementation could take
advantage of this sequencing to keep track of which portions of a packet (data and
conlrol) had elready been processed. MNote that by assigning sequence numbers to some
conlrol bits, it is possible to use the normal acknowledgment mechanisms to acknowledge
receipl of control information and to filter oul duplicates.

A nalural way to think about incoming packet processing is to imagine that they are first
tested for proper sequence number (ie., that their contents lie in the range of the
expected "receive window" in the sequence number space) and then that they are
queued and processed in sequence number order. We are, in this view, ignoring for the
moment the problem of reassembling segments that overlap other, already received,
packets,

We have chosen to organize the description according to the connection state, to key the
descriplion to figure 3. In the following specifications the user events are mutually
exclusive, while the incomming packet may call for some or all of the steps described to
be carried out. When a packel causes a state change, but carries more data or control
which should be processed, it is appropriate to continue processing in the new state, but
processing of the packel’'s acknowledgment field or sequence number field should not be
repeated (lest a packet which looked valid before appear to be an old duplicate or have a
bad acknowledgment field as an artifact of the state change).

A TGP must typically maintain certain state information about each connection in order to
sequence packels. For reference, we present a list of terms In the Glossary which are
used in the action summaries for each state.

[Page 17]

DRAFT June 1978
TCP-4 Specification

Specification

|,_ SEND WINDOM

saede sent, but un-ACKed L (hSEh ; Ee
///.f/f//
T' LEFT-SEQUENCE SEND-SEQUENCE

e HMAXIMUM-WINDOW

be— RECEIVE-WINDOW et

i

RECE1YE-SEQUENCE

Sequence Number Management

Fipure 4,

Certain error responses shown below are generic. Error Information is reported in
1CP-to-user messapes. User commands referencing connections that do not exist receive
"tonnection nol open” (EP3) and references to connections not accessible to the caller
receive "connection illegal for this process” (EPl). We have not repeated these generic
responses in each description of aclion performed for each connection state. Overt
atllempts to SEND or signal URGENT on a connection with unspecified foreign socket
results in a "foreign socket unspecified” (ES) response.

[Page 18] Postel

June 1978

DRAFT

TCP-4 Specification
Specification

CLOSED STATE (i.e. connection does not exist)

User Commands

1. OPEN

Create a new transmission control block TCB to hold connection state
information. Fill in local socket identifier, foreign socket if present (the
conneclion is passively "listening” if the foreign socket is unspecified), and user
timeoul information. Some implementations may issue SYN packels if the
foreign socket is fully specified. In this case, an initial sequence number (ISN) is
celecled and a SYN packet formed and senl. The LEFT-SEQUENCE Is set to
ISN, the SEND-SEQUENCE to ISN + 1, and SYN-SENT state is entered.

If the caller does nol have access to the local socket specified, refurn
“connection illegal for this process.” (EP1). If there is no room to create a new
connection, return "insufficient resources™ (4).

2. SEND, URGENT, CLOSE, ABORT, RECEIVE, STATUS
Error relurn "Connection not open” (EP3).

If the user should no have access to such a connection, "connection illegal for
this process” (EP1) may be returned.

Incoming Packels,

OPEN

All incoming packets are discarded. For an incoming packet containing an ACK,
excepl for incoming RST packets which should be ignored, a RST is created with a
sequence number (PKT-SEQUENCE) equal to the acknowledgment field
(PKT-ACKNOWLEDGMENT) of the incoming packet (if it has one; otherwise
PKT-SEQUENCE is set to zero or, ISNL The acknowledgment field of the RST
chould be set to the sum of the incoming PKT-SEQUENCE and PKT-LENGTH. The
RST and ACK control bits for the outbound packet should be set (see figure 12).

STATE

User Commands

Postel

1. OPEN
Return "already OPEN" (EP6)

2. SEND or URGENT

Selecl an ISN, send a SYN packet, set LEFT-SEQUENCE to ISN and
SEND-SEQUENCE to ISN + 1. Enter SYN-SENT state, Data associated with

[Page 193]

DRAFT

June 1978

TCP-4 Specification

Specification

SEND may be sent with SYN packet or queued for transmission after entering
ESTABLISHED state. URGENT can be sent as a combination SYN, URG packet.
If there is no room to queue the request, respond with "insufficient resources”
(4).

RECEIVE
Queue request if there is space, or respond with "insufficient resources" (4}
CLOSE

Delete TCB, return "ok" (D). Any outstanding RECEIVES should be returned
with "closing” responses (P12).

ABORT

Delete TCB, return "ok™ (0) any oulstanding RECEIVES should be returned with
"conneclion reset” (P14) responses.

STATUS

Relurn state = QPEN .

Incoming Packels

[Page 20]

1.

ACK

Any acknowledgement is bad if it arrives on a connection still in the OPEN state.
A reset (RST) packet should be formed for any arriving ACK-bearing Packet,
except another RST. The RST should be formatted as follows:

<SEQ PKT-ACKNOWLEDGMENT><RST><ACK PKT-SEQUENCE + PKT-LENGTH=
Thus the RST will acknowledge any tex! or control in the offending packet.
SYN

RECEIVE-SEQUENCE should be set to PKT-SEQUENCE + 1 and any other control
or lext should be queued for processing later. ISN should be selected and a
SYN packel sent of the form:

<SED ISN*<S5YN><ACK RECEIVE-SEQUENCE>

SEND-SEQUENCE should be set to ISN + 1 and LEFT-SEQUEMCE to ISN. The
connection stale should be changed to SYN-RECEIVED. Note that any other
incoming control {combined with SYN) will be processed in the SYN-RECEIVED
state. Processing of SYN and ACK should not be repeated.

Postel

June 1978

3.

DRAFT
TCP-4 Specification

Specification

Other text or control

Any other conlrol or text-bearing packet (not containing SYN) will have an ACK
and thus will be discarded by the ACK processing. An incoming RST packet
could not be valid, since it could not have been sent in response to anything
sent by this incarnation of the connection.

SYN-SENT STATE

Postel

User Commands

QOPEN
Return "already OPEN" (EP6)

SEND or URGENT

Queue for processing after the connection is ESTABLISHED or packetize,
starting with the current SEND-SEQUENCE number. Typically, nothing can be
sent yel, anyway, because the send window has not yet been set by the other

side. If no space, return "insufficient resources” (4).

RECEIVE

Queue : for . later processing unless there is no room, in which case return
"insufficient resources” (4).

CLOSE

Delete the TCB and relurn "closing” (P12) responses to any queued SENDs,
RECEIVES, or URGENTSs,

ABORT

Delete the TCB and return “reset™ (P14) responses to any queued SENDS,
RECEIVES, or URGENTSs.

STATUS
Return state = SYN-SENT; SEND-SEQUENCE, RECEIVE-WINDOW

Incoming packets

1.

ACK

If LEFT-SEQUENCE < PKT-ACKNOWLEDGMENT <= SEND-SEQUENCE then
the ACK is ecceplable. LEFT-SEQUENCE should be advanced to equal

[Page 21]

DRAFT

June 1978

TCP-4 Specification

Specification

[Page 22]

PKT-ACKNOWLEDGMENT, and any packel(s}) on the retransmission queue which
are thereby acknowledged should be removed.

If the packet acknowledgment is not acceptable, 8 RST packet should be formed
(except when the offending packet is also a RST) which carries the
PKT-ACKNOWLEDGMENT as a sequence number, and acknowledges all text and
control of the offending packet.

. 5YN

RECEIVE-SEQUENCE should be set to PKT-SEQUENCE + 1 and any packet text
or control queued for later processing. If the packet has an ACK, change the

connection state to ESTABLISHED, olherwise enter SYN-RECEIVED. In any case,
form an ACK packel:

<SEQ SEND-SEQUENCE><ACK RECEIVE-SEQUENCE>

and send it.

. RST

Delete TCB, enler CLOSED state.

4, Olher text or control.

Incoming packets with other .control or text combined with SYMN will be
processed in SYN-RECEIVED or ESTABLISHED state. Arriving packets which do
not contain SYN are either old duplicates or out-of-order arrivals. Since these
must contain ACK fields, they will have been discarded by earlier ACK

processing.

b. User Timeout.

If the user timeoul expires on a packet in the retransmission queue, abort the
connection, notifying the user ‘“retransmission timeout, connection aborted”
(EP9), and flushing all queues, returning RECEIVES, SENDS or URGENTs with
the same error (EP9). Delete the TCB.

Postel

June 1978

DRAFT
TCP-4 Specification

Specification

SYN-RECEIVED STATE

User Commands

OFEN
Return "already OPEN" (EP&)
SEMND or URGENT

Queue for later processing after entering ESTABLISHED state, or packetize and
queve for output. If no space to queue, respond with “insufficient resources”™

(4)
RECEIVE

Queue for processing after entering ESTABLISHED state. If there is no room to
queue this requesl, respond with "insufficient resources” (4).

CLOSE

Queue for processing after enlering ESTABLISHED state or packetize and send
FIN packel. If the latter, enter FIN-WAIT state.

ABORT
Delete TCB, send a RST of the form;
<SEQ SEND-SEQUENCE><RST><ACK RECEIVE-SEQUENCE>

and return any unprocessed SENDs, URGENTs, or RECEIVEs with "reset” code
(P14).

STATUS

Return slale = SYN-RECEIVED, LEFT-SEQUENCE, SEND-SEQUEMCE,
SEND-WINDOW, RECEIVE-SEQUENCE, RECEIVE-WINDOW, and other desired
statistics number of (SEND, RECEIVE buffers queued), packets queued for
reassembly, for retransmission, elc.

Incoming Packels

L.

Postel

Check PKT-SEQUENCE

If RECEIVE-SEQUENCE < PKT-SEQUENCE +MAX {0,PKT-LENGTH-1)
< RECEIVE-SEQUENCE + RECEIVE-WINDOW then the packet sequence
number is acceptable. If not, form a reset (RST) packet:

[Page 23]

DRAFT

June 1978

TCP-4 Specification

. Specification

[Page 24]

<5EQ PKT-ACKNOWLEDGMENT=> <RST>
<ACK PKT-SEQUEMNCE + TEXT-LENGTH=

If the incoming packet is RST or has no ACK, discard it, and do not send RST
formed above. MNote that the lest above guarantees that the last sequence
number used by the packel lies in the receive-window. The special "MAX"
operation makes ceriain that empty ACK packels, whose length are 0, will be
accepled. If the RECEIVE-WINDOW is zero, no packets will be acceptable, but
special allowance should be made to accept valid ACKs.

Insisting that PKT-SEQUENCE (i.e., the first sequence number cccupied by the
packel} lie in the RECEWWE-WINDOW could lead to deadlock in the case of
alternate gateway rouling and different fragmentation.

A Scenario:
Assume the receivers RECEIVE-SEQUENCE is 1.
The sender transmils a packet (pl) containing data octets 1 through 8.

Gateway A fragments pl into two new packets, the first {p2) carries data
ocltets 1 through 4, and the second {p3) carries data octets 5 through 3.

Packel p? arrives at the receiver and is found acceptible. The receiver sets
the RECEIVE-SEQUENCE to 5.

Gatoway A breaks,
The sender timesoul and retransmile pl as pd.
The receiver finds p3 aflicted with errors and discards it.

Gateway B fragments pd into lhree new packets, the first (p5) carries data
oclets 1 through 3, the second (pB) carries data octets 4 through 6, the
third (p7) carries data octets 7 and 8.

Whon pb arrives at the receiver it is acknowledged then discarded since it is
completely below the RECEIVE-SEQUENCE.

When p6 arrives al the receiver it is acknowledged then if the special MAX
function were not used it would be discarded since It's PKT-SEQUENCE is

below the RECEIVE-SEQUENCE.

A deadlock would develop if p6 were discarded, and if when the sender
retransmitted it always sent the complete contents of the original packet pl.

Fostel

mig

June

Postel

1978

DRAFT

TCP-4 Specification
Specification

2. ACK

If LEFT-SEQUENCE < PKT-ACKNOWLEDGMENT <= SEND-SEQUENCE then
set LEFT-SEQUENCE = PKT-ACKNOWLEDGMENT, remove any acknowledged
packels from the retransmission queue, and enter ESTABLISHED state.

If the packet acknowledgment is not acceptable, form a reset packet, as for the
bad sequence case above, and send it, unless the incoming packet is an RST, in
which case, il should be discarded.

RST

If the packet has passed sequence and acknowledgment tests, it is valid. Return
this connection to OPEN state. The user need not be informed. All packets on
the retransmission queue should be removed. All packetized buffers must be
assigned new sequence numbers, so they should be requeued for re-packetizing.

Other text or control

If there is other control or text in the packet, it can be processed when the
conneclion enlers the ESTABLISHED state.

User Timeout

It the wser fimeoul expires on any packet in the retransmission queue, flush all
queues, relurn outstanding SENDs, URGENTs or RECEIVEs with “user timeout,
conneclion aborted" (EP2), and delete the TCB.

ESTABLISHED STATE

User Commands

1.

OFPEN
Respond with "already OPEN" (EPB)
SEND or URGENT

Packetize the buffer, send or queue it for output. If there is insufficient space
fo remember this buffer, simply respond with"insufficient resources™ (4).

RECEIVE

Reassemble queued incoming segments into receive buffer, and return to user.
Mark "end of letter” (EOL) if this is the case. If buffer size is not one octet
then do end-of-letter/buffer-size adjustment processing. If insufficient incoming
segments are queued to satisfy the request, queue the request. If there is no

[Page 25]

DRAFT

June 1978

. TCP-4 Specification

Specification

queue space to remember the RECEIVE, respond with “insufficient resources”
(4)

CLOSE

Queue this until all preceding SENDs or URGENTs have been packetized, then
form a FIN packet and send it. In any case, enter FIN-WAIT state.

ABORT
Delete TCB and send a reset packel:
<SEQ SEND-SEQUENCE=><RS5T><ACK RECEIVE-SEQUENCE>

All queued SENDs, URGENTs, and RECEIVEs should be given "reset” responses
(P14); all packets queued for transmission {except for the RST formed above) or
retransmission should be flushed.

S5TATUS

Relurn state = ESTABLISHED; SEND-SEQUENCE, LEFT-SEQUENCE,
SEND-WINDOW, RECEIVE-SEQUENCE, RECEIVE-WINDOW, and other statistics,
as desired.

Incoming Packets

1. Check PKT-SEQUENCE

[Pape 26]

All packels are ge:‘rﬁ:ral'l';‘-r processed in sequence. Initial tests on arrival are used
lo discard old duplicates, but further processing is done in PKT-SEQUENCE
order. I a packels contents siraddle the boundary between old and new, only
the new parls should be processed.

I RECEIVE-SEQUENCE <= PKT-SEQUENCE + Hﬂx{F"KT-LENGTH—l,ﬂ}
< RECEIVE-SEQUENCE + RECEIVE-WINDOW then packet is acceptable.
Otherwise if PKT-LENGTH is non-zero, an empty acknowledgment packet should
be sent:

<SEQ SEND-SEQUENCE><ACK RECEIVE-SEQUENCE>
In any case, unacceplable packets should be discarded.
ACK

It LEFT-SEQUENCE < PKT-ACKNOWLEDGMENT <= SEND-SEQUENCE then
set LEFT-SEQUENCE = PKT-ACKNOWLEDGMENT. Any packets on the
relransmission queue which are thereby entirely acknowledged are removed.
Users should receive positive acknowledgments for buffers which have been

Postel

June 1978

Postel

" DRAFT
TCP-4 Specification

Specification

SENT and fully acknowledged (i.e., SEND buffer should be returned with "OK"
(0) response). If the ACK is a duplicale, it can be ignored.

. RST

All pending RECEIVEs, SENDs, and URGENTs receive "reset” (Pl4) responses.
All packet queues are flushed. The TCB is deleted. User also receives an
unsoliciled general "reset” signal (P14).

. 5¥N

lgnore the SYN. A packel carrying a SYN could not have passed through the
sequence check unless it had control or text lying beyond the SYN which was
acceptable. To prevent repeat processing of controls or text, such packets could
be "marked” so that all duplicate control or text is removed before they exit
scquence-number check, Other marking strategies could be employed to
achieve the same effect.

. URG"

Signal user that remote side has urgent data (PL1) if the urgent pointer is in
advance of the data consumed. If the user has already been signalled (or is still
in the "urgenl mode") for this continuous sequence of urgent data, do not
signal the user again,

. Packe! text

Once in the ESTABLISHED slate, it is possible to deliver packet text to user
RECEIVE buffers. Some preliminary packet reassembly may be required to form
valid segments from fragments created at a galeway. Text from segments can
be moved into buffers until either the buffer is full or the segment is empty. If
the segment emplies and carries an EOL flag, then the user is informed, when
the buffer is returned, that an EOL has been received. If the buffer size is not
one octel then the end-of-lelter /buffer-size adjustment processing must be done.

. FIN

An ACK packel should be sent, acknowledging the FIN. The user should be
signalled "connection closing” (P12) and similar responses should be returned
for any outstanding RECEIVEs which cannot be satisfied. Connection state
should be changed to CLOSE-WAIT.

. User Timeout

If the user timeout expires on a packet in the retransmission queue, flush all
queues, return "user timeoul, connection aborted” (EP9) for all outstanding

[Page 27]

DRAFT

June 1978

TCP-4 Specification

Specilicalion

SENDs, URGENTs, and RECEIVEs, and delete the TCB. The user should receive
an unsolicited message of the same form {(EPS).

FIN-WAIT STATE

User-Commands

1§

OPEN

Return "already OPEN" (EP6)

SEND or URGENT

Return "connection closing™ (EP12) and do not service request.
RECEIVE

Reassemble and return a letter, or as much as will fit, in the user buffer. Queue
the request if it cannot be serviced immediately.

CLOSE

Strictly speaking, this is an error and should receive a “"connection closing”
{(EP12) response. An “ok" (0) response would be acceplable, too, as long as a
second FIN is not emitted.

ABORT
A resel packet (RST) should be formed and sent:
<SEQ SEND-SEQUENCE><RST><ACK RECEIVE-SEQUENCE>

Outstanding SENDs, URGENTs, RECEIVEs, CLOSEs, andfor packets queued for
retransmission, or packetizing, should be flushed, with appropriate "eonnection
reset” (P]12).

STATUS

Respond wilh state = FIN-WAIT, SEND-SEQUENCE, LEFT-SEQUENCE,
SEND-WINDOW, RECEIVE-SEQUENCE, RECEIVE-WINDOW, and other statistical
information, rs desired,

Incoming packets

[Page 28]

Check PKT-SEQUENCE

If RECEIVE-SEQUENCE <m PKT-SEQUENCE + MAX({PKT-LENGTH-1,0}
< RECEIVE-SEQUENCE + RECEIVE-WINDOW then packel sequence s

Postel

June 1978

Poslel

DRAFT
TCP-4 Specification

Specification

acceplable. Otherwise, if PKT-LENGTH is non-zero, an ACK packet should be
sent:

<SEQ SEND-SEQUENCE><ACK RECEIVE-SEQUENCE>

In any case, an unacceptable packet should be discarded.

. ACK

I LEFT-SEQUENCE < PKT-ACKNOWLEDGMENT <= SEND-SEQUENCE, then
LEFT-SEQUENCE should be advanced appropriately and any acknowledged
packels deleted from the retransmission queue. SENDs or URGENTs which are
thereby completed can also be acknowledged to the user. ACK's outside of the
SEND-WINDOW can be ignored. If the retransmission queue is empty, the user’s
CLOSE can be acknowledged ("OK" (0)) and the TCB deleted.

. RST

All RECEIVEs, SENDs, and URGENTs still outstanding should receive "reset”
(P14) responses. All packet queues should be flushed and the connection TCB
doleted. User should also receive an unsolicited general "connection reset”
(P14) signal.

. SYN

This case should not occur, since a duplicate of the SYN which started the
current incarnation will have been filtered in the PKT-SEQUENCE processing.
Other SYN's could not have passed the PKT-SEQUENCE check at all (see SYN

processing for ESTABLISHED state).

. URG

Sipnal the user that the remole side has urgent data (P11} if the urgent pointer
is in advance of the data consumed. If the user has already been signalled (or is
still in the "urgen! mode") for this continuous sequence of urgent data, do not
signal the user again.

. Packet Texl

If there are outstanding RECEIVEs, they should be satisfied, if possible, with the
text of this packet, remaining text should be queued for further processing. If a
RECEIVE is salisfied, the user should be notified, with “"end-of-letter” (EOL)

signal, if appropriate.

[Page 29]

DRAFT

June 1978

TCP-4 Specification

Spocification

7.

FIN

The FIN should be acknowledged. Return any remaining RECEIVEs with
"tonneclion closing™ (P12) and advise user that connection is closing with a
general sipnal (P12). If the retransmission queue is not empty, then enter
CLOSING stale, otherwise, delete the TCB.

User Timeout

f the user timeout expires on a packet in the retransmission queue, flush all
queues, retlurn "user timeoul, connection aborted” messages for all outstanding
SENDs, RECEIVEs, CLOSES or URGEMTs, send an unsolicited general message
of the same form to the user, and delete the TCB.

CLOSE-WAIT STATE

User Commands

[Page 30]

OPEN
Return “already OPEN" error (EP6)
SEND or URGENT

Packelize any text to be sent and queue for output. If there is insufficient space
to remember the SEND or URGENT, return "insufficient resouces” (4}

RECEIVE

Since the remote side has already sent FIN, RECEIVEs must be satisfied by text
already reassembled, bul nol yet delivered to the user. If no reassembled
packet text is awailing delivery, the RECEIVE should get a "connection closing”
{P12) response. Otherwise, any remaining text can be used to satisfy the
RECEIVE. In implementations which do not acknowledge packets until they have
becen delivered into user buffers, the FIN packet which led to the CLOSE-WAIT
state will not be processed until all preceding packet text has been delivered into
user buffers. Consequently, for such an implementation, all RECEIVEs in
CLOSE-WAIT state will receive the "connection closing” (P12) response.

CLOSE

Queue this request until all preceding SENDs or URGENTs have been packetized;
then send a FIN packet, enter CLOSING state.

Postel

June 1978 DRAFT
TCP-4 Specification
Specification
5. ABORT
Flush any pending SENDs, RECEIVEs and URGENTs, returning “connection
resel”™ {P14) responses for them, Form and send a RST packet:
<SEQ SEND-SEQUENCE><RST><ACK RECEIVE-SEQUENCE>
Flush all packel queues and delele the TCB.
6. STATUS

Postel

Return state = CLOSE-WAIT, all other TCB values as for ESTABLISHED case.

Incoming Packets

1.

Check PKT-SEQUENCE

If RECEIVE-SEQUENCE <= PKT-SEQUENCE + MAX(PKT-LENGTH-1,0)
< RECEIVE-SEQUENCE + RECEIVE-WINDOW then the packet seguence is
acceplable. Otherwise, if PKT-LENGTH is non-zero, an ACK should be sent:

<SEQ SEND-SEQUENCE=><ACK RECEIVE-SEQUENCE>

Unacceplable packets should be discarded. Others should be processed in
sequence number order.

ACK

If LEFT-SEQUENCE < PKT-ACKNOWLEDGMENT <= SEND-SEQUENCE, then
LEFT-SEQUENCE should be advanced appropriately and any acknowledged
packets removed from the retransmission queue. Completed SENDs or
URGENTs should be acknowledged to the user ("OK" (0) returns). ACK’s which
are oultside the receive window can be ignored.

RST

All RECEIVEs, SENDs, and URGENTs still outstanding should receive “reset”
(P14) responses. Packel queues should be flushed and the TCB deleted. The
user should also received an unsolicited general “"connection reset” signal
(P14).

SYN

This case should nol occur, since a duplicate of the SYN which started the
curren! connection incarnation will have been filtered in the PKT-SEQUENCE
processing. Other SYN's will have been rejected by this test as well {see SYN
processing for ESTABLISHED state).

[Page 31]

DRAFT

June 1978

TCP-4 Specification
Specificalion

B.

URG

This should not occur, since 2 FIN has been received from the remote side.
lgnore the URG.

Packel text

This should nol occur, since a FIN has been received from the remote side.
lgnore the packel text.

FIN

This should not occur, since a FIN has already been received from the remote
side. Ignore the FIN.

User Timeout

If the user limeout expires on a packet in the retransmission queue, flush all
queues, return "user timeout, connection aborted" (EP9) for any outstanding
SENDs, RECEIVEs or URGENTs, send an unsoliciled general message of the
same form to the user and delete the TCE.

CLOSING STATE

User Commands

[Page 32]

1.

OPEN

Respond with "already OPEN" (EP6)
SEND, URGENT

Respond with "connection closing™ (EP12)
RECEIVE

Respond with "connection closing™ (EP12)
CLOSE

Respond with "conneclion closing™ (EP12)
ABORT

Respond with "OK" (0) and delete the TCB; flush any remaining packet gueues.
If a CLOSE command is slill pending, respond "connection reset™ (P14).

Postel

June 1978

Postel

DRAFT

TCP-4 Specification
Specification

b. STATUS

Return Stale = CLOSING along with other TCP parameters.

Incoming packels

Check PKT-SEQUENCE

If RECEIVE-SEQUENCE <= PKT-SEQUENCE + MAX{PKT-LENGTH-1,0)
< RECEIVE-SEQUENCE + RECEIVE-WINDOW then packet sequence s
acceplable. Otherwise, if PKT-LENGTH is non-zero, an ACK packet should be
formed and sent:

<SEQ SEND-SEQUENCE><ACK RECEIVE-SEQUENCE~

In any case, an unacceplable packet should be discarded.

. ACK

If LEFT-SEQUENCE < PKT-ACKNOWLEDGMENT <= SEND-SEQUENCE, then
LEFT-SEQUENCE should be advanced and any acknowledged packets deleted
from the retransmission queue. SENDs or URGENTs which are thereby
completed can also be acknowledged to the user. ACK's outside of the
SEND-WINDOW can be ignored.

. RST

Any oulstanding RECEIVEs, SEND, and URGENTs should receive “reset”
responses (P14). All packel queues should be flushed and the TCB deleted.
Users should also receive an unsolicited general “connection reset” (F14)

signal.

. Packe!l text or control

No other control or fext should be sent by the remote side, so packets
containing non-zero PKT-LENGTH should be ignored.

. User Timeout

If the user timeout expires on a packel in the retransmission gqueue, flush all
queues, return “user timeout, conneclion aborted” (EP9) responses for all
outstanding SENDs, URGENTs, RECEIVEs, or CLOSEs, send an unsolicited
message of the same form (EP3) to the user and delete the TCB.

[Page 33]

DRAFT June 1978
TCP-4 Specification

Specificalion

3.3. Header Format

All inlernetwork packets (TCP and otherwise) have a basic internet header consisting of
cource and destination addresses, and header and total length fields, among others. A TCP
header follows the internel header, supplying information specific to the TCP protocel. This
division allows for the existence of internet protocols other than TCP, and for
experimentalion with TCP varialions.

TCP Header Format

B 1 2 3
P1234567890123456789B812345678381
et et T e e e B S T T e ot ot St St St St St St At st
! Sequence Number !
et o s e o e O e e s et et ol St St et Sl it ik
! Ackrnowuledgement Number !
S S S S S T S S S B S B B (e et e o 4
| Data !x x x x!0IUIAIBIEIRIS!IF! !
| Dffset!lx x x x!PIRICIOIDISIYVIT! Window !
! In x x x!TIGIKILILITININ! !
e o T T B e e e L e e e e e g
! Checksum ! Urgent Pointer !
ISR IP U I S T S T S S S SRR BRSSO
e e % TCP Options ! Padding !
ISP W S T A S S S S T W e W A e R L RS B
! tlata !
USRI N A DA WA B ST U S ST ST I S W S B S SR R R R

*

Example TCP Header
Nole that one tick mark represents one bit position.
Figure 5.
Sequence Number: 32 bils
The sequence number of the first data octet in this packet.
Ackrowledgement Number: 32 bils

If the ACK control bit is set this field contains the value of the next sequence number the
sender of the packet is expecting to receive.

[Page 34] : Postel

June 1978 : DRAFT
TCP-4 Specification

Specification

Dala Offset: 4 bits

The number of 32 bit words in the TCP Header. This indicates where the data begins.
Reserved: 4 bils

Reserved for future use.
Control Bils: 8 bits (from left o right):

0FT: Option Field({s) present

URG: Urgent Pointer field significant
ACK: Acknouledgment field significant
BOL: Begin of Letter

E(L: End of Letter

Fi5T: Reset the connection

S5YN: Suynchronize sequence numbers
FIN: No more data from sender

Window: 16 bils

The number of dala oclets beyond the one indicated in the acknowledgment field which
the sender of this packet is willing to accept.

Checksum: 16 bils

The checksum field is the 16 bit one's complement of the one’s complement sum of all
16 bit words in the header and text, except that unchecksummed option fields are
replaced with zeros in the computation, If a packet contains an odd number of header
and text oclets to be checksummed, the last octet is padded with zeros to form a 16 bit
word for checksum purposes. The pad is not transmitted as part of the packet.

Urgent Pointer: 16 bils

This field communicates the current value of the urgent pointer as a positive offset from
the sequence number in this packel. This field should only be interpreted in packets with
the URG control bit sel.

TCP Oplions: variable

Options may occupy space at the end of the TCP header, and are a multiple of 8 bits in
length. All options have the same basic format:

Option length: 8 bits

Length in octets {including the two octets of length and kind information)

Postel [Page 35]

DRAFT June 1978
TCP-4 Specification

Specificalion

Option kind: B bits

If the high order bit is sel this option is nol included in the checksum calculation.
Options are ordinarily included in the checksum,

There are two special cases for oplions.

The first is the option whose length field is zero. This marks the end of the option
list. Only one octel is associated wilh this option, the length octet itself.

The second is the oplion whose length field is one. This option serves as padding
and is also one oclet long. This option does not terminate the option list.

Nole thal the list of oplions may be shorler than the header length field might
imply. The content of the header beyond the end-of-option mark should be header
padding (i.e. zero). The two special options are included in the checksum of the
packetf,

[Page 36] Postel

June 1978 DRAFT
TCP-4 Specification

Specification

Currently defined options include (kind indicated in octal):

Kind Length Heaning

EﬁB 1 End of option |list (checksummed].

aal 1 Padding (checksummed).

168 - Reserved.

181 4 Packet Label-sequence number for
debugaing purposes.

182 4 Secure DOpen - used by TCP's
communicating with BCR security
system.

1R3 f Secure Close-used by TCP's
communicating with BCR security
system.

185 & Buffer size, in octets. ;

384 [TCP timestamp for diagnostics (not

checksummed) .

Buffer Size Oplion Data: 16 bils

If this option is present then it communicates the receive buffer size for process at
the TCP which sends this packel. This field should only be sent in packets with both
the OPT and SYN control bits set.

Padding:

Pacding fields are used o ensure thal the protocol specific (e.g. TCP) header and the
dala begin on 32 bit word boundaries.

3.4. Discussion
The main jobs of the TCP are:
a. Conneclion management, that is establishing and closing connections.
b. Packaging of outpoing user letlers into segments for internet transmission.
¢. Reassembly of incoming segmenls into letters for deliver to users.
d. Flow control, sequencing, duplicate detection, and retransmission for each connection.
e. Processing user requesls for service.
" Sequence Numbers

A fundamental notion in the design is that every octet of data in an TCP segment has a
scquonce number. Since every oclet is sequenced, each of them can be acknowledged

Poslel [Page 37]

DRAFT June 1978
TCP-4 Specification

Specification

individually or collectively. In parlicular, the acknowledgment mechanism employed is
cumulative so that an acknowledgment of sequence number X indicates that all octets up
fo bul not including X have been received. This mechanism allows for straight-forward
duplicate deleclion in the presence of retransmission.

Il is essential 1o remember that the actual sequence number space is finite, though very
large. In the currenl desipn, this space ranges from O to 2#4¢32 - 1. Since the space is
finite, all arithmetic dealing with sequence numbers must be performed modulo 2*32.
This unsigned arithmelic preserves the relationship of sequence numbers as they cycle
from 2¢¢32 - | lo 0 apain. The typical kinds of sequence number comparisons which
the TCP must perform include:

{(a) Determining thal an acknowledgement refers to some sequence number sent but
not yet acknowledged.

{b) Determining that all sequence numbers occupied by a packet have been
acknowledged (e.g. to remove the packet from a retransmission queue).

{c) Determining that an incoming packet contains sequence numbers which are
expecled (i.e. that the packet "overlaps” the receive window).

The TCP typically maintains status information about each connection, as is illustrated in
fipure 6, below.

[Page 38] Postel

June 1978 DRAFT
TCP-4 Specification

Specification

older sequence numbers newer sequence numbers
‘] L A 5 .0
HL T1 H2 T2 H3 T3
Commmm seguence space ----=»

TCP State Informalion for Sending Sequence Space
Figure E

L. = oldesl, unacknowledged sequence number

S = nexl sequence number to be sent

A = acknowledgement (next sequence number expecled by the acknowledging TCP}

Hi} -= first sequence number of the i-th prathet

T(i} = lasl sequence number of the i-th packet
An acceplable acknowledgement, A, is one for which the inequality below holds:

O0<(A-L)=<=(5-1) (1)
We will often write inequality (1) in the form below:

L<hA<=§ (2)

Nole that all arithmelic is modulo 2##32 and that comparisons are unsigned. "<="
means "less than or equal.” '

Similarly, the determination that a parficular packet has been fully acknowledged tan be
macle if the equalion below holds:

0 < (T() - L)<(A-L) Q)

Paostel [Page 39]

DRAFT June 1978
TCP-4 Specification

Specificalion

In this instance, H(i) and T(i} are relaled by the eguation:
T(i) = Hii) + nti) - 1 (4)

where nli) = the number of oclets occupied by the data in the packet. It is important
to note that nii) must be non-zero; packets which do not occupy any sequence space
{e.g. emply acknowledgement packels) are never placed on the retransmission queus,
so would nol go through this particular test.

Finally, a packetl is judged to occupy a porlion of valid receive sequence space if
0<-(T-N)<(R-N) (5)

Where T is the lasl sequence number occupied by the packet, N is the next sequence
number expected on an incoming packet, and R is the right edge of the receive
window, as shown in figure 7.

older sequence numbers newer sequence numbers
] * L A ‘ R
H1 1 Hz T2 H3 T3

Receive Sequence State Information
Figure 7.

N = next sequence number expected on incoming packels

R = last sequence number expected on incoming packels, plus one

H(i) = first sequence number occupied by the i-th incoming packet

T(i) = last sequence number occupied by the i-th incoming packet
R and N in figure 7 are related by the equation:

R=N+W : {6)

Where W = the receive window size

[Pape 40] Postel

June 1978 DRAFT
TCP-4 Specification

Specification

Mole that the acceptance test for a packet, since it requires the end of a packet to lie in
lhe window, is somcwhal more restriclive than is absolutely necessary. |If at least the
firs! sequence number of the packet lies in the receive window, or if some part of the
packet lies in the receive window, then the packel might be judged acceptable. Thus, in
fipure 7, at least packets 1 (H{1)-T{1}) and 2 (H{2)-T(2)} are acceptable by the strict
rule and packel 3 (H(3)-T(3)}) may or may nol be, depending on the strictness of
inlerpretation of the rule.

MNole that when R = N, the receive window is zero and no packets should be acceptable
cxcepl ACK packels. Thus, it should be possible for a TCP to maintain &8 zero receive
window while transmitling dala and receiving ACKs on a non-zero send window.

We have taken advantape of the numbering scheme {o prolect certain control information
as well. This is achieved by implicitly including some conirol flags in the sequence space
so they can be retransmitted and acknowledged without confusion (i.e. one and only one
copy of the control will be acled upon). Control information is not physically carried in
the packel dala space. Consequently, we must adopt rules for implicitly assigning
scquence numbers to control. The SYN and FIN are the only controls requiring this
proteclion, and these controls are used only at conneclion opening and closing. For
scquence number purposes, the SYN is considered to occur before the first actual data
oclet of the packet in which it occurs, while the FIN is considered to occur after the last
aclual data oclet In a packel in which it occurs. The packet length includes both data
and sequence-space-occupying controls,

Initial Sequence Number Selection

The protocol places no restriction on a particular connection being used over and over
ApAin, New instances of a connection will be referred to as incarnations of the
connection. The problem that arises owing to this is, "how does the TCP identify
duplicale packets from previous incarnations of the connection?”. This problem becomes
harmfully apparent if the conneclion is being opened and closed in quick succession, or if
the connection breaks with loss of memory and is then reestablished.

The essence of the solution [Tomlinson74] is that the initial sequence number (ISN)
must be chosen so that a particular sequence number can never refer to an "old" octet.
Once the connection is established the sequencing mechanism provided by the TCP
filters oul duplicates.

For a conneclion to be established or initialized, the two TCP's must synchronize on each
other’s initial sequence numbers. This is done in an exchange of connection establishing
messapges carrying a control bit called "SYN" (for synchronize) and the initial sequence
numbers, as a shorthand messapes carrying the SYN bit are also called "SYNs". Hence
the solution requires a suitable mechanism for picking an initial sequence number, and a
slighlly involved handshake to exchange the ISN's. A "three way handshake” is
necessary because sequence numbers are not tied to a global clock in the network, and
TCP's may heve different mechanisms for picking the ISN's. The receiver of the first

Postel [Page 41]

DRAFT June 1978
TCP-4 Specification

Specification

SYN has no way of knowing whether the packel was an old delayed one or not, unless it
remembers the lasl sequence number used on the connection (which is not always
possible), and so it must ask the sender to verify this SYN.

The "three way handshake” and the advantages of a "clock-driven” scheme are
discussed in [Tomlinson74] More on the subject, and algorithms for implementing the
clock-driven scheme can be found in [Dalal74, Dalal75, Cerf76b].

Knowing When to Keep Quiet

A basic goal of the TCP design is fo prevent packets from being emitted with sequence
numbers which duplicate those which are still in the network. We want to assure this
even if a TCP crashes and loses all knowledge of the sequence numbers it has been
using. When new connections are created, an initial sequence number (ISN) generator is
employed which sclecls a new 32 bit ISN. The generator is bound to a (possibly
ficlitious) 32 bit clock whose low order bit is incremented roughly every 4 microseconds.
The ISN thus cycles every 455 hours, approximately. Since we assume that packets will
slay in the network no more than tens of seconds or minutes, at worst, we can
reasonably assume that ISN's will be unigque.

To be sure that a TCP does not create a packet that carries a sequence number which
may be duplicated by an old packet remaining in the network the TCP must keep quiet
for & maximum packel lifetime (MPL) before assigning any sequence numbers upon
slarting up or recovering from a crash in which memory of sequence numbers in use was
losl. For this specification the MPL is taken 16 be 2 minutes. This value may be
changed if expericnce indicates it is desirable to do so. Note that if a TCP is reinitalized
in some sense yel retains its memory of sequence numbers in use, then it need not wait
at all; it must only be sure to use sequence numbers larger than those recently used.

It should be noled that this strategy does not protect against spoofing, or other replay
{ype duplicate message problems.

E«lablishing a connection

The “three-way handshake” is essentially a unidirectional attempt to establish a
conneclion, ie. there is an initialor and a responder. The TCP can also establish a
connection when a simultaneous initialion occuis. A simultaneous attempt occurs when
one TCP receives a "SYN" packet which carries no acknowledgement after having sent a
"SYN" earlier. Of course, the arrival of an old duplicate "SYN" packet can potentially
make il appear, to the recipient, that a simultaneous connection initiation is"in progress.
Proper use of “resel” packels can disambiguate these cases. Several examples of
connection initialion are offered below, using a notation due to Tomlinson. Although
these examples do not show connection synchronization using data-carrying packets, this
is perfectly legitimate, so Inn'g as the receiving TCP doesn’t deliver the data to the user
until it is clear lhe data is valid (i.e. the data must be buffered at the receiver until the
connection reaches the ESTABLISHED state {see figure 3)).

[Page 42] Postel

June 1978 DRAFT
TCP-4 Specification

Specification

The simplest three-way handshake is shown in figure & below. The figures should be
inlerpreted in the following way. Each line is numbered for reference purposes. Right
arrows (--») indicale departure of a TCP packel from TCP A to TCP B, or. arrival of a
packel at B from A. Lefl arrows (<--), indicate the reverse. Ellipsis (..) indicates a packet
which is shill in the network (delayed). An "XXX" indicates a packet which is lost or
rejected. Comments appear in parentheses. TCP stales are keyed to those in figure 3,
and represent the state AFTER the departure or arrival of the packet {whose contents are
<hown in the center of each line). Packel contents are shown in abbreviated form, with
sequence number, control flags, and ACK field. Other fields such as window, addresses,
lengths, and text have been left out, generally, in the interest of clarity.

e A TCP B
1. OPEN OPEN
2. SYN-SENT --> <SEQ 188><SYN> —-> SYN-RECEIVED

3. FESTABLISHED <-- <SEO0 3BB><SYN><ACK 1Bl> <-- SYN-RECEIYED
4, ESTABLISHED --» <SEQ 1B1><ACK 3Bl> --> ESTABLISHED
5. ESTABLISHED --> <S5EQ 181><ACK 3B1><DATA> --> ESTABLISHED
Bagi;& 3-Way Handshake Ih:br Connection Synchronization
Figure 8.

In line 2 of figure 8 TCP A begins by sending a SYN packet indicaling that it will use
sequence numbers starting with sequence number 100. In line 3, TCP B sends a SYN
and acknowledges the SYN it received from TCP A. Note that the acknowledgement field
indicates TCP B is now expecling to hear sequence 101, implicitly acknowledging the
SYN which occupied sequence 100.

At line 4, TCP A responds with an empty packet containing an ACK for TCP B's SYN, and
in line 5, TCP A sends some data. Nole that the sequence number of the packet in line
& ic the same as in line 4 because the ACK does not occupy sequence number space (if
it did, we would wind up ACKing ACK's!).

Simullancous initialion is only slightly more complex, as is shown in figurle 9. Each TCP
cycles from OPEN lo SYN-SENT to SYN-RECEIVED to ESTABLISHED.

The principle reason for the:three-way handshake is to prevent old duplicate connection
initiations from causing confusion. To deal with this, 2 special control message, RESET,
has been devised. A TCP which receives a RESET message first verifies that the ACK
ficld of the RESET acknowledges something the TCP sent (otherwise, the message is

Poslel [Page 43]

DRAFT June 1978
TCP-4 Specification

Specification

ipnored). If the receiving TCP is in a non-synchronized state (ie. SYN-SENT,
SYN-RECEIVED), it returns to OPEN on receiving an acceptable RESET. If the TCP is in
one of the synchronized states (ESTABLISHED, FIN-WAIT, CLOSE-WAIT, CLOSING) it
aborts the connection and informs its user. We discuss this latter case under

"half-open” connections below.

TCP A TCP B
1. OPEN OPEN
2. SYN-SENT --> <SEQ 188><5YN>

3. GSYN-RECEIVED <=-- <5E0 3B8=<SY¥N=> <—-- SYN-SENT
4. .o« =5EQ0 180><S5YN> --» SYN-RECEIYED

5. SYN-RECEIYED --»> <SEO0 181><ACK 3Bl> ...
6. ESTABLISHED <-- <SEQ 381><ACK 181> <-- SYN-RECEIVED

7. ... <5EQ 1Bl><ACK 381> --> ESTABLISHED
Simultaneous Connection Synchronization

Figure 9.

[Pape 44] Postel

June 1978 DRAFT
TCP-4 Specification
Specification

CP A TCP B

1. DPLN OPEN
2. GSYN-SENT --» <5EQ 18@-><5YN> e 3
3. Aduplicate) ... <SEQ0 188B8-<SYN- --> S5YN-RECEIYED

4. SYN-SENT <-- <SEQ 388><5YN><ACK 188l> <-- SYN-RECEIVED

. 5. SYN-SENT --» <SEQ 1BB1><AST><ACK 381> --> OPEN
; {ACK is ok)
E. ++» <5EQ 108><5YN> --» SYN-RECEIVED

7. SYN-SENT <-- <5EQ0 4BB><SYN><ACK 1Bl> <-- SYN-RECEIVED
8. ESTABLISHED --> <SEQ 1B1><ACK 4B1> --> ESTABLISHED
Recavery from Old Duplicate SYN
Figure 10.

An a simple example of recovery from old duplicates, ‘consider figure 10. At line 3, and
old duplicale SYN arrives at TCP B. TCP B cannot tell that this is an old duplicate, so it
responds normally (line 4). TCP A delects that the ACK field is incorrect and returns a
RST (reset) with its SEQ and ACK fields selecled to make the packet believable. TCP B,
on receiving the RST, returns to the OPEN state. When the original SYN (pun intended)
finally arrives at line 6, the synchronization proceeds normally. If the SYN at line 6 had

arrived before the RST, 8 more complex exchange might have occurred with RST's sent
in both directions.

Half-Open Connections and Other Anomalies

An established connection is said to be “half-open" if one of the TCP’s has closed or
aborled the conneclion at its end without the knowledge of the other, or if the two ends
of the connection have become desynchronized owing to a crash that resulted in loss of
memory. Such connections will aulomatically become reset if an attempt is made to send
dala in either direclion. However, half-open connections are expected to be unusual, and
the recovery procedure is mildly involved,

If at site A the connection no longer exists, then an attempt by the user at site B to send
any data on it will result in the site B TCP receiving a RESET control message. Such a
message should indicate to the site B TCP that something is wrong and it is expected to
ABORT the connection.

Poslel [Page 45]

DRAFT June 1978
TCP-4 Specification

Specification

Assume that two user processes A and B are communicating with one another when a
crash occurs causing loss of memory to A’s TCP. Depending on the operating system
supporling A's TCP, it is likely thal some error recovery mechanism exists. When the
TCP is up again A is likely to star! again from the beginning or from a recovery point. As
a resull A will probably try to OPEN the connection again or try to SEND on the
connection it believes open. In the latler case it receives the error message "connection
not open” from the local TCP. In an altempt to establish the connection A's TCP will
send 8 packet containing SYN. This scenario leads to the example shown in figure 11
After TCP A crashes, the user attempls to re-open the connection. TCP B, in the
meanlime, thinks the connectlion is open.

TCP A TCP B
1. (CRASH) (send 388,receive 188)
2. DPEN ESTABLISHED
3. SYN-SENT --» <SE0 4BB><SYN=> ——= (27}
4. (11) <-- <SE0 388><ACK 188> <-- ESTABLISHED

L. SYN-SENT --» <SEQ 188><AST=<ACK 388> —-> (Abort!l)
Half-Open Connection Discovery
Figure 11.

When the SYN arrives at line 3, TCP B, being in a synchronized state, responds with an
acknowledgment indicating what sequence it next expects to hear (ACK 100). TCP A
sees that this packel does not acknowledge anything it sent and, being unsynchronized,
sends a reset (RST) because it has detecled a half-open connection. TCP B aborts at line
5. 1CP A will continue to retransmit its SYN and if the user at TCP B re-opens the
connection, eventually everything will work oul.

An interesting alternalive case occurs when TCP A crashes and TCP B tries to send data
on what il thinks is a synchronized connection. This is illustrated in figure 12. In this
case, the data arriving at TCP A from TCP B (line 2) is unacceptable because no such
conneclion exists, so TCP A sends a RST. The RST is acceptable so TCP B processes it
and aborls the conncclion,

In figure 13, we find the two TCP's A and B with passive connections waiting for SYN.
An old duplicale arriving at TCP B (line 2) slirs B into action. A SYN-ACK is returned
(line 3) and causes TCP A to generate a RST (the ACK in line 3 is not acceptable). TCP
B accepls the reset and returns to its passive OPEN state.

[Page 46) Postel

June 1978 DRAFT

Postel

TCP-4 Specification
Specification

TCP A TCF B
(CRASH) (send 388,receive 188)
(?7) <=- <5E0 300><ACK 1P@><DATA 18> <-- ESTABLISHED

--> «<5E0 188><RST><ACK 318> --> (ABORT!!)

Aclive Side Causes Half-Open Connection Discovery

Figure 12,
TCP A TCP B
OPEN OFEN
sss =5E0Q Z><SYN= --» SYN-RECEIYED

(??) <-- <SEQ K><SYN><ACK Z+l> <-- SYN-RECEIVED
--> <GF0 Z41><RST><ACK X+l»> --> (return to OPEN!)
OPEN ' OPEN
Old Duplicate SYN Initiates a Reset on {two Passive Sockets

Figure 13.

A variely of other cases are possible, all of which are accounted for by the following rules
for RST generation and processing.

Renel Goneration

A= a general rule, resel (RST) should be sent whenever a packet arrives which
apparently is nol intended for the current or a future incarnation of the connection. A
reset should not be sent if it is not clear that this is the case. Thus, if any packet
arrives for a nonexistant connection, a reset should be sent. If a packet ACKs
somelhing which has never been senl on the current connection, send reset.

il If the connection is in any non-synchronized state (OPEN, SYN-SENT,
SYN-RECEIVED) or if the conneclion does nol exist, a reset (RST) should be formed

and sent for any packet that does not acknowledge something the receiver sent
earlier. The RST should take its SEQ field from the ACK field of the offending packet

[Page 47]

DRAFT June 1978

TCP-4 Specification
Spectication

(if the ACK conlrol bit was set) and its ACK field should acknowledge all data and
contral in the offending packet.

2. If the connection is in a synchronized state (ESTABLISHED, FIN-WAIT,
CLOSE-WAIT, CLOSING), any unacceptable packet should elicit only an empty
acknowledgment packet containing the current send-sequence number and an
acknowledgment indicaling the next sequence number expected to be received.

Hesel Processing

All RST (resel) packels are validated by checking their ACK-fields and SEQ fields (if
appropriale). If the RST acknowledges something the receiver sent (but has not yet
received acknowledgment for), the RST must be valid. RST packefs will have ACK
ficlds which acknowledge any data and control in the offending packet to assure
acceplabilily of the RST.

The receiver of a RST first validates it, then changes state. If the receiver was in a
non-synchronized state (OPEN, SYN-SENT, SYN-RECEIVED) it returns to the OPEN
slate (possibly modifying the foreign socket specification in the process). |If the
receiver was in a synchronized state (ESTABLISHED, FIN-WAIT, CLOSE-WAIT,

CLOSING), it aborts the connection and advises the user.
Closing a Connection

CLOSE is an operalion meaning "I have no mdre data to send” The notion of closing a
full-duplex conneclion is subject to ambiguous interpretation, of course, since it may not
be obvious how fo treal the receiving side of the connection. We have chosen to treat
CLOSE in a simplex fashion. The user who CLOSES may continue to RECEIVE until he is
lold that the other side has CLOSED also. Thus, a program could initiate several SENDs
followed by a CLOSE, and then continue to RECEIVE until signalled that a RECEIVE failed
because the other side has CLOSED. We assume that the TCP will unilaterally inform a
user, even if no RICEIVEs are outstanding, that the other side has closed, so the user
can lerminate his side gracefully. A TCP will reliably deliver all buffers SENT before the
conneclion was CLOSED so a user who expects no data in return need only wait to hear
Ihe conneclion was CLOSED successfully to know that all his data was received at the

deslinalion TCP,

There are essentially three cases:
1) The user initiates by telling the TCP to CLOSE the connection
2) The remote TCP initiates by sending a FIN control signal

3) Both users CLOSE simultaneously

[Papge 48] Postel

June 1978 DRAFT
TCP-4 Specification

Specification

Cane 1: Local user iniliates the close

In this case, a FIN packel can be constructed and placed on the outgoing packet
quoue. No further SENDs from the user will be accepted by the TCP, and it enters the
FIN-WAIT slale. RECEIVES are allowed in this state. All packets preceding and
including FIN will be retransmitted until acknowledged. When the other TCP has both
acknowledged the FIN and sent a FIN of its own, the first TCP can ACK this FIN and
delele the connection (see figure 3). It should be noted that a TCP receiving a FIN
will ACK but not send its own FIN until the user has CLOSED the connection also.

Case 2: TCP receives a FIN from the network

If an unsolicited FIN arrives fram the network, the receiving TCP can ACK it and tell
the user that the connection is closing. The user should respond with a CLOSE, upon
which the TCP can send a FIN to the other TCP. The TCP then waits until its own FIN
is acknowledped whereupon it deletes the connection. If an ACK is not forthcoming,
aller a timeout the connection is aborted and the user is told.

Case 3: bolh users close simultaneously

A simultaneous CLOSE by users at both ends of a cgnnection causes FIN packets to
be exchanged. When all packels preceding the FIN have been processed and
acknowledged, each TCP can ACK the FIN it has received. Both will, upon receiving
these ACKs, delete the connection.

End of Letter Sequence Number Adjustments

The difference between the sequence numbers of the first octets of data in any pair of
lellers on a given connection is always equal zero modulo the receive buffer size. That
is, wherever an EOL is transmilled, the sender advances his cend sequence number by
an amount (in the range O to buffersize-1) sufficient to consume all the unused space in
the receiver’s buffer. The amount of space consumed in this fashion is deducted from
the send window just as is the space consumed by actual data.

An EOL signals the consumption of the rest of the space in the buffer and that the data
sequence numbers reflect that. The exchange of buffer size and sequencing information
is done in units of oclets. If no buffer size is stated, then the buffer size is assumed to

be | octet.

The receiver lells the sender the size of the buffer in a SYN packet that contains the 16
bit buffer size data in an option field in the TCP header, the presence of the field being

sipnaled by the OPT control bit.

If a letler starts at sequence number x and is n octets long and the buffer size is m
oclels, then the next letter starls at x+im, where i is a positive integer such that
im>n>(i-1)m

Postel [Page 49]

DRAFT June 1978
TCP-4 Specification

Specification

If a buffer size is specified and then all receive buffers provided by the user must be
exaclly thal size, otherwise the TCP should return an error indication.

The Communication of Urgenl Infermation

The urpent mechanism is used to indicale the need for special processing of the data
traversing the connection. This mechanism permits a point in the data stream to be
designated as the end of "urgent” information. Whenever this point is beyond the left
window edge al the receiving TCP, that TCP so informs the application program, so the
program can switch into a mode of operation intended to scan through the data up to the
urgent pointer in an attempt to exiract the urgent information. The exact nature of this
scan depends on the higher level protocol being employed, but would typically involve
discarding informalion,

As soon as an urgent pointer is in advance of the left edge the TCP should tell the user
to go into "read fasl” mode, when left edge catches up to urgent pointer the TCP should
tell user lo go into "read normal” mode. If the urgent pointer is updaled while the user
is in "read fast” mode, the update will be invisible to the user.

The melhod employs a urgent field which is carried in all packets transmitted. A control
bit (URG) indicates that the 16-bit field is meaningful and should be added to the packet
sequence number to yield the urgent pointer. The absence of this bit indicates that the
urgent pointer has not changed.

It should be mentioned that coordinating the trgent pointer with a letter boundary acts to
insure timely delivery of the urgent information to the destination process.

3.5, Examples
Examples are needed.
3.6. Interfaces

Thke functional deseriplion of user commands to the TCP is, at best, fictional, since every
operaling system will have different facilities. Consequently, we must warn readers that
various TCP implementations may have different user interfaces. These will all be TCP's, as
long s conirol messapes are properly interpreled or emitied, as required. In spite of this
caveal, it appears useful to have al least one concrete view of a user interface to aid in
thinking about TCP-derived services,

[Pape 50] Postel

June

1978 DRAFT
TCP-4 Specification

Specification

TCP User Commands

Postel

The following sections funclionally characlerize a USER/TCP interface. The notation used
is similar o most procedure or function calls in high level languages, but this usage is
not meant to rule out trap type service calls (e.g. SVC's, UUO's, EMT’s,...).

The user commands described below specify the basic functions the TCP will perform to
support interprocess communication. Individual implementations should define their own
exact format, and may provide combinalions or subsets of the basic functions in single
calls. In particular, some implementalions may wish to automatically OPEN a connection
on the first SEND, RECEIVE, or URGENT issued by the user for a given connection.

In providing interprocess communication facilities, the TCP must not only accept
commands, but must also return information to the processes it serves. The latter
consists of:

(a) general information about a connection [e.g, interrupts, remote close, binding of
unspecified foreign socket]

(b) replies to specific user commands indicating succcess or various types of failure.

Although the means for signalling user processes and the exact format of replies will vary
from one implementation to another, it would promote common understanding and
testing if a common set of codes were adopled. Such a sel of event codes is described

brlow.
Open
Formal: OPEN (local port, foreign sockel [, buffer size] [, timeout])

We a:sume that the local TCP is aware of the identity of the processes it serves and
will check the authority of the process to use the connection specified. Depending
upon lhe implementation of the TCP, the source network and TCP identifiers will either
be supplied by the TCP or by the processes that serve it [e.g. the program which
inlerfaces the TCP to its packet switch or the packet switch itself]. These
considerations are the resull of concern about security, to the extent that no TCP be
ahle to masquerade as anolher one, and so on. Similarly, no process can masquerade
as another without the collusion of the TCP,

If no foreign socket is specified (ie. the foreign socket parameter is 0), then this
constititutes a LISTENING local sockel which can accept communication from any
foreign socket. Provision is also made for parlial specification of foreign sockets.

If the specified connection is already OPEN, an error is returned, otherwise a
full-duplex transmission control block (TCB) is created and partially filled in with data
from the OPEN command parameters. The TCB format is described in more detail in

seclion 5.4,

[FPage 51]

DRAFT June 1978

TCP-4 Specification
" Specificalion

No nelwork tralfic need be generated by the OPEN command. The first SEND or
URGENT by the local user or the foreign user will typically cause the TCP to
synchronize (ie. establish) the connection, although synchronization could be
immediately initialed on non-listening opens.

The buffer size, if present, indicates that the caller will always receive data from the
connection in that size of bufiers,

The timeout, if presenl, permils the caller 1o set up a timeout for all buffers
transmitted on the connection. If a buffer is nol successfully delivered to the
destination within the timeout period, the TCP will abort the connection. The present
global defaull is 30 seconds. The bufler retransmission rate may vary, and is the
responsibility of the TCP and not the user. Most likely, it will be related to the
measured time for responses from the remole TCP.

Depending on the TCP implementation, eilher a local connection name will be returned
to the user by the TCF, or the user will specify this local connection name (in which
case anolher parameter is needed in the call). The local connection name can then be
uscd as a shorl hand lerm for the conneclion defined by the <local socket, foreign
sorket> pair,

Send

Formal: SENDX{lpcal conneclion name, buffer address, byte count, EOL flag [,
limeoulJh : i s

This call causes the dala contained in the indicated user buffer to be sent on the
indicaled connection. If the conneclion has not been opened, the SEND is considered
an error. Some implementations may allow users to SEND first, in which case an
aulomatic OPEN would be done. If the calling process is not authorized to use this
conncclion, an error is returned.

If the EOL flag is sel, the data is the End Of a Letter, and the EOL bit will be set in
lhe lasl intermetwork packet created from the buffer. If the EQL flag is nol set,

subsequent SENDs will appear to be part of the same letter.

If no foreign sockel was specified in the OPEN, but the connection is established (e.g.
brcause a LISTEMing connection has become specific due to a foreign packet arriving
for the local socket]) then the designaled buffer is sent to the implied foreign socket.
In general, users who make use of OPEN with an unspecified foreign socket can make
use of SEND without ever explicitly knowing the foreign socket address.

Howewver, if a SEND is allempied before the foreign socket becomes specified, an
error will be returned. Users can use the STATUS call to determine the status of the
conneclion. In some implementations the TCP may notify the user when an unspecified
sochkel is bound. :

[Page 52) Postel

June 1978 DRAFT

Postel

TCP-4 Specification

Specification

if a timeout is specified, then the current timeout for this connection is changed to the
new one.

In the simplest implementation, SEND would not return control lo the sending process
unlil either the transmission was complele or the timeout had been exceeded.
However, this simple method is both highly subject to deadlocks (for example, both
sides of the connection might try to do SENDs before doing any RECEIVEs) and offers
poor performance, so it is nol recommended. A more sophisticated implementation
would return immedialely to allow the process to run concurrently with network 10,
and, furthermore, to allow multiple SENDs to be in progress. Multiple SENDs are
served in first come, first served order, so the TCP will queue those it cannot service

immediately.

We have implicitly assumed an asynchronous user interface in which a SEND later
elicits some kind of SIGNAL or pseudo-interrupt from the serving TCP. An alternative
i~ 1o relurn a response immedialely. For instance, SENDs might return immediate
local acknowledgment, even if the packel sent had not been acknowledged by the
distan! TCP. We could optimistically assume eventual success. |f we are wrong, the
conneclion will close, anyway, due to the timeout. In implementations of this kind
(«ynchronous), there will still be some asynchronous signals, but these will deal with
{he conneclion itself, and not with specific packets or letters.

NOTA BENE: In order for the process to distinguish among error or success
indications for different SENDs, it might be appropriate for the buffer address to be
returned along with the coded response to the SEND request. We will offer an example
evenl code format below, showing the information which should be returned to the
calling process.

Receive

Format: RECEIVE (local connection name, bulfer address, byte count)

Thiz command allocates a receiving buffer associated with the specified connection. If
no OPEN precedes this command or the calling process is not authorized to use this .
conneclion, an error is returned.

In the simplesl implementation, control would not return to the calling program until
either the bufler was filled, or some error occured, but this scheme is highly subject to
deadlocks. A more sophislicated implementation would permit several RECEIVEs to be
oulstanding al once. These would be filled as letlers, segments or fragments arrive.
This stralegy permits increased throughput, at the cost of a more elaborate scheme
(possibly asynchronous) to nolify the calling program that a letter has been received
or a buffer filled.

If insufficient buffer space is given to reassemble a complete letter, the EOL flag will

[Page 53]

DRAFT June 1978
TCP-4 Specification

Spccification

not be set in the response to the RECEIVE. The buffer will be filled with as much data
as it can hold.

The remaining parls of a parlly delivered letler will be placed in buffers as they are
made available via successive RECEIVES. If a number of RECEIVES are outstanding,
they may be filled with parts of a single long letter or with at most one letter each.
The event codes associated with each RECEIVE will indicate what is contained in the
buffer.

I a buffer size was given in the OPEN call, then all buffers presented in RECEIVE calls
must be of exactly that size, or an error indication will be returned.

To distinguish among several outstanding RECEIVES, and to take care of the case that
a letter is smaller than the buffer supplied, the event code is accompanied by both a
bulfer pointer and a byte count indicating the actual length of the letter received.

Alternative implementations of RECEIVE might have the TCP allocate buffer storage,
or the TCP might share a ring buffer with the user. Variations of this kind will
produce obvious variation in user interface to the TCP.

Close
Formal: CLOSE{local conneclion name}

This command tauses thé conneclion specified to be clesed. If the connection is not
open or the calling process is nol authorized fo use this conneclion, an error is
returned. Closing connections is intended to be a graceful operation in the sense that
oulstanding SENDs will be transmitted (and retransmitted), as flow control permits,
unlil all have been serviced. Thus, it should be acceptable to make several SEND
calls, followed by a CLOSE, and expecl all the data to be sent to the destination. It
should also be clear that users should continue fo RECEIVE on CLOSING connections,
cince lhe olher side may be trying to transmit the last of its data. Thus, CLOSE
means *| have no more to send” bul does nol mean "I will not receive any more.” |t
may happen (if the user level protocol is not well thought out) that the closing side is
unable to get rid of all its data before timing out. In this event, CLOSE turns into

ABORT, and the closing TCP gives up.

The user may CLOSE the connection al any time on his own initiative, or in response
lo various prompts from the TCP (e.p., remote close executed, transmission timeout

exceeded, deslinalion inaccessible]).

HBecause closing 8 connection requires communication with the foreign TCP,
connections may remain in the closing state for a short time. Attempts to reopen the
conncction before the TCP replies to the CLOSE command will result in error

respOnses.

[Pape 54] Postel

June 1978 DRAFT
TCP-4 Specification

Specification

Urgent
Format: URGENT{local connection name}

Spocial control informalion is senl to the destination indicating that urgent processing
i= appropriale. This facility can be used to simulate "break” signals from terminals or
error or complelion codes from |/O devices, for example. The semantics of this signal
lo the receiving process are unspecified. The receiving TCP will signal the urgent
condition to the receiving process as long as the urgent pointer indicates data
preceding the urgent pointer has not been consumed by the receiving process.

If the conneclion is not open or the calling process is not authorized to use this
connection, an error is returned.

Slalus
Format: STATUS{local conneclion name)

This is an implementation dependent user command and could be excluded without
adverse effecl. Information returned would typically come from the TCB associated
wilh the connectlion,

This command returns a data block conlaining the following information:

local socket, foreign sogket, local connection name, receive window, send window,
conneclion state, number of buffers awailing acknowledgement, number of buffers
pending receipt (including partial ones), receive buffer size, urgent state, and
defaull transmission timeout.

Depending on the state of the connection, on or the implementation iteelf, come of this
informalion may not be available or meaningful. If the calling process is not authorized
lo uwe this connecltion, an error is refurned. This prevents unauthorized processes
{rom paining information about a connection.

Aborl
Formal: ABORT {local connection name)

This command causes all pending SENDs, URGENTs, and RECEIVES to be aborted, the
TCB 1o be removed, and a special RESET message to be sent to the TCP on the other
side of the conneclion. Depending on lhe implementation, users may receive abort
indicalions for each outslanding SEND, RECEIVE, or URGENT, or may simply receive
an ABORT-acknowledgmenl.

Postel [Page 55]

DRAFT June 1978
TCP-4 Specification

Specificalion

" TCP-lo-User Messapes
Type Codes

All messages include a type code which identifies the type of user call to which the
messapge applies. Types are:

B - General message, spontaneously sent to user
1 - Applies to OPEN
2 - Applies to CLOSE
3 - Applies to URGENT
4 - Applies to ABORT
18 - Applies to SEND
ZA - Applies to RECEIVE
38 - Applies to STATUS

Mensage Formats
All messages include the following three fields:

Type code
Local connection name
Evenl code

For message types 0-4 (General, Open, Close, Urgent, Abort) only these three fields
are nccessary, . .

For message lype 10 {Send) one additional field is necessary:
Buffer address
For message lype 20 {Receive) three additional fields are necessary:

Buffer address
Byte counl (counls bytes received)
Ernd-of-Leller flag

For message type 30 (Status) addilional data might include:

Local socket, foreign socket

Send window (measures buffer space al foreign TCP)
Receive window (measures buffer space at local TCP)
Connectlion stale

Number of buffers awaiting acknowledgement
Number of buffers awaiting receipt

Receive buffer size

Urgent State {urgent or not urgent)

User timeout

Once more, it is important to nole that these formats are notional. Implementations

[Pape 56] Postel

DRAFT

TCP-4 Specification
Specification

June 1978

which deal with bufiering in different ways may or may not need to include buffer
addresses in some responses, for example.

Event Codes

The event code specifies the parlicular event that the TCP wishes to communicate to
the user. Generally speaking, non-zero event codes indicate important state changes or

orrors.

In addition to the event code, two flags may be useful to classify the event into major
calegories and facilitate event processing by the user:

E flag: sel if evenl is an error
P flag: sel if permanent error (otherwise, retry may succeed).

Events are encoded in 8 bils, the two high order bits being reserved for E and P flags,
respeclively.

Po=lel [Page 57]

DRAFT

TCP-4 Specification

Specificalion

June 1978

Evenls specified so far are listed below with their codes and flag settings.

flags

TmD

code

=t (A D =MW M= m
-

bt
£ L P2

meaning

general success

connection illegal for this process
unspecified foreign socket has
become bound

connection not OPEN

insufficient resources

foreign socket not specified
connection already OPEN

buffer size not acceptible
unused

user timeout, connectlon aborted
unused

user urgent indication received
connection closing

general error

connection reset

Possible responses to each of the user commands are listed below.

Type
Type
Tupe
Tupe
Tupe

Lo) B =@

[generall:
lopen]
[closel:
[urgent]:
[Abort]:

Type 18 [sendl:
Tupe 28 [receivel:
Tupe 38 [status):

[Pape B8]

2, sl il 14
8,1, 4, B, 13
8,1, 3, 9, 13,14
8,1, 3,4,5, 3, 12,13,14
8,1, 3, 13
Bill 3|4t5| 31 121.13.14
8,1, 3.4, Ty 3, 12,13,14
8,1, 3, 13

Postel

June 1978 DRAFT
TCP=-4 Specification
Verification

4. VERIFICATION

Requires further research.

Pastel [Page 59]

DRAFT ™ June 1978
TCP-4 Specification

Implementalion

[Page 60) Postel

June 1978 DRAFT
TCP-4 Specification

Implementation

5. IMPLEMENTATION

5.1. What not to leave oul.

77

H.2. User Inlerfaces
w
5.3. Mcchanisms

Structure of the TCP

Any particular TCP could be viewed in a number of ways. It could be implemented as an
independent process, servicing many user processes, It could be viewed as a set of .
ro-enlrant library roulines which share a common interface to the local PSN, and common
buffer slorage. It could even be viewed as a set of processes, some handling the user,
some the inpul of packels from the net, and some the output of packels to the net.

We offer one conceplual framework in which to view the various algorithms that make up
the TCP design. In our view, the TCP is written in two parts, an interrupt or signal driven
parl {(consisting of five processes), and a reentrant library of subroutines or system calls
which inlerface the user process lo the TCP. The subroutines communicate with the
interrupt part through shared data structures (TCBs, shared buffer queues etc.). The five
processes are the Output Packet Handler which sends packets to the packet switch; the
Packelizer which formals letiers into internel packets; the Input Packet Handler which
processes incoming packels; the Reassembler which builds letters for users; and the
Rotransmitter which retransmits unacknowledged packets.

NOTA BENE: This model is purely conceptual and not recomended for any
conventional operating system with process switch times on the order of 1 ms.
Fxamples of such systems are: Multics, TENEX, UNIX, and ELF.

A= an example, we can consider what happens when a user executes a SEND call to the
1CP service routines. The buffer o be sent is placed on a send buffer queue associated
wilh the user's TCB. A "Packetizer” process is awakened to create one or more output
packels from the buffer. The Packetizer allempts to maintain a non-empty queue of
output packets so that the output handier will not fall idle waiting for the packetizing
operalion,

A major implementation issue is whether to use TCP resources or user resources for
incoming and oulgoing packets. If the former, there is a fairness issue, both among
competing connections and between the sending and receiving sides of the TCP.

When a packel is crealed, it is placed on a FIFO send packet queue associated with its
1CH. The Packetizer wakes the Qutpul Packet Handler and then continues to packetize a
few more buffers, perhaps, before going 1o sleep. The Output Packet Handler is

Postel [Page 61]

DRAFT June 1978
TCP-4 Specification

Implemenlation

awakened either by a "hungry” packet swilch or by the Packetizer. The send packet
queue can be used as a "work queue” for the Output Packet Handler. After a packet has
been sent, bul usually before an ACK is returned, the Qutput Packet Handler moves the
parket to a retransmission queue associated wilh each TCB.

Fctransmission timeouts can refer to specific packels, or the retransmission gueue can
be periodically searched for the limed-out packets. If an ACK is received, the
relransmission entry can be removed from the retransmit queue. The send packet queue
contains only packets waiting to be sent for the first time.

Simullaneous reading and writing of the TCB queue pointers must be inhibited through
some sort of semaphore or lockout mechanism. When the Packetizer wants to serve the
noxl send buffer queue, it must lock out all other access to the queue, remove the head
of the queue (assuming of course that there are enough buffers for packetization),
advance the head of the queue, and then unlock access to the gueue.

Incoming packels are examined by the Inpul Packet Handler. Here they are checked for
valid connection sockels and acknowledpements are processed, causing packets to be
removed, possibly, from the retransmil packet queue, as needed.

Packets which should be reassembled into buffers and sent fo users are queued by the
Input Packet Handler, on the receive packet queue, for processing by the reassembly
process. The Reassembler looks at its FIFO work queue and tries to move packets into
user buffers which are queued up in an input buffer queue on each TCB. If a packet has
arrived out of order, it can be queued for. processing in the correct sequence. Each time
a packet is moved inlo a user buffer, the left window edge of the receiving TCB is moved
to the righl so that outpoing packets can carry the correct ACK information. If the send
buffer quecue for the connection in question is empty, then the Reassembler creates a
packel to carry the ACK,

As packets are moved into buffers and there are filled, the buffers are dequeued from
the receive buffer queue and passed to the user. The Reassembler can also be awakened
by the RECEIVE user call should it have a non-empty receive packet queue with an empty
receive buffer queue.

Inpul Packel Handler

The Input Packel Handler is awakened when a packet arrives from the network. It first
verifies thal the packet is for an existing TCB (i.e. the local and foreign socket
numbers are matched with those of existing TCBs). If this fails, a "reset” message is
construcled and sent to the point of origin.

The Input Packet Handler looks out for control or error information and acts
approprialely. As an example, if the incoming packet is a RST (reset) request, and is
"believable®, then the inpul packet handler clears out the related TCB, empties the
associated send and receive packel queues, and prepares error returns for
oulslanding user SEND{s) and RECEIVE(s) on the reset TCB. The TCB is marked

[Page 62] Postel

June 1978 DRAFT

Paoslel

TCP-4 Specification

Implementation

unused and returned to storage. If the RST refers to an unknown connection, it is
ipnored.

Any ACKs contained in incoming packels are used to update the send left window
edpe, and to remove the ACKed packets from the TCB retransmit packet queue. If the
packet being removed was the end of a user buffer, then the buffer must be degueued
from the packetized buffer queue, and the user informed.

The packel sequence number, the current receive window size, and the receive left
window edge determine whether the packet lies within the window or outside of it.

Let W = window size
5 = sive of sequence number space
L = left window edge
R = L+W = right window edge
¥ = sequence number to be tested
For any scquence number, x, if
0 <= {x-L) mod § < (R-L) mod § = W (7)
* then x is within !he window.

A packel should be rejecled only if all of it lies outside the window. This is easily
tesled by lelting x be, first the packel sequence number, and then the sum of packet
sequence number and packet length, less one in inequality 7 above.

The other case to be checked occurs when the packet has both head and tail outside
ol the receive window, but includes the window.

Let PL = packet length

L,R are as before
H = first sequence number in packel

T=H+PL-1 =last sequence number in packet

[Page 63]

DRAFT June 1978
TCP-4 Specification

Implemenlation

For any packel ranging over sequence numbers [H,T}, if

OQ<wL-H<PL
and
D<-R-H<PL . (3)

then the packel includes the receive window.

It the packet length is zero (e.g, an ACK packet), tests should be performed as if the
packet length were one to accommodate the case when the receive window is zero.

If the packel lies outside the window, and there are no packets waiting to be sent,
then the Input Packet Handler should construct an ACK of the current receive left
window edge and gqueue it for output on the send packet gueue, and signal the Output
Packel Handler. Successfully received packets are. placed on the receive packet gueue
in the appropriale sequence order, and the Reassembler is signalled.

The packet window check can not be made if the associated TCB has not received a
SYN, so care must be taken fo check for control and TCB state before doing the
window chock.

Rearnsembler

The Reassembler process s aclivaled by bolh the Input Packet Handler and the
RICEIVE user command. When the Reassembler is awakened it looks at the receive
packel queuve for the associaled TCB. If there are some packets there, then it sees
whether the receive bufter queue is empty. If it is, then the Reassembler gives up on
this 1CB and goes back lo sleep; otherwise, if the first packet matches the left window
cdpe, then the packet can be moved into the user’s buffer. The Reassembler keeps
transferring packets into the user’s buffer until the packet is empty or the buffer is
full. Nole that a buffer may be partly filled and then a sequence "hole” be
encountered in the receive packel queue. The Reassembler must mark progress so
thal the buffer can be filled up starling al the right place when the "hole” is filled.
Similarly a packel mighl be only partially emplied when a buffer is filled, so progress
in lhe packel musl be marked.

It a letler was successfully transferred 1o a user buffer, then the Reassembler signals
the user that a lefter has arrived and dequeues the buffer associated with it from the
TCB receive buffer queue. If the buffer is filled, then the user is signaled and the
buffer dequeued as before. The event code indicales whether the buffer contains all or
parl of a letter,

Of course, the sequence number processsing is adjusted to take into account the
EQL.

In every cese, when a packet is delivered to a buffer, the receive left window edge is

[Page 64] Postel

June 1978 DRAFT
TCP-4 Specification

Implementation

updated, and the Packelizer is signaled. If the send packet queue is empty, then the
Reassembler musl creale a packet to carry the ACK and place it on the send packet
queue,

Packetizer

The Packetizer process gels work from both the Input Packet Handler and the SEND
user call. The signal from the SEND user call indicates that there is something new to
sond, while the one from the Input Packet Handler indicates that more TCP buffers
may be available from delivered packels.

When the Packelizer is awakened it looks al the send buffer queue for the associated
TCB. If there is a new or partial letter awaiting packelization, it tries to packetize the
letter, TCP buffers and window permitting. For every packet produced it signals the
Output Packet Handler (lo prevent deadlock in a time sliced scheduling scheme). If a
‘run to completion’ scheme is used then one signal only need be produced, the first
lime a packet is produced since awakening. If packetization is mot possible the
Packelizer goes to sleep.

If a partial buffer was transferred then the Packetizer must mark progress in the send
buffer queue. Completely packetized buffers are dequeued from the send buffer
queue and placed on a packelized buffer queue, when an ACK for the last bit is
received the send buffer is returned to the user.

A SYN must logitally precede the first data transmitted on a conneclion. When the
Packetizer packelizes a letter it must see whether it is the first piece of data being
sonl on the connmeclion, in which case it must include the SYN bit, or cause a SYN
packel lo be sent before the dala packet. Some implementations may choose not to
send data wilh SYN, and some may choose to discard any data received with SYN.

Oufpul Packel Handler

When aclivaled by the Packetizer, or the Input Packet Handler, or some of the user
call routines, the Outpul Packet Handler attempts to transmit packets to the network
(lhis may involve going through some other network interface program). Transmitted
packets are dequeued from the send packet queue and put on the retransmit queue
along, with the time when they should be relransmitted.

All dala packets that are (re)lransmilied have the latest receive left window edge in
the ACK field. Some error messages may sel the ACK field to refer to a received
packet’s sequence number.

Retransmitler

This process can either be viewed as a separate process, or as part of the Output
Packel Handler. Its implementalion can wvary; it could either perform its function by
being awakened at regular intervals, or when the retransmission time occurs for every

Postel [Page 65]

DRAFT June 1978
TCP-4 Specification

Implemenlation

packel put on the retransmit queue. In the first case the retransmit queue for each
TCH is examined to see if there is anything to retransmit. If there is, a packet is
placed on the send packet queue of the corresponding TCB. The Output Packet
Handler is also siphaled.

N "demon" process monitors all user send buffers and retransmittable control
messapes sent on each connection, but not yet acknowledged. If the global
relransmission timeout is exceeded for any of these, the user is notified and the
conneclion aborled.

Nole thal, since retransmitled packels carry the latest receive left window edge and
acknowledgemen! information, the checksum may require recomputation.

5.1, Data Structures
Transmission Control Block

It is highly likely that any implementation will include shared data structures among parts
of the TCP and some asynchronous means of signalling users when letters have been

delivered.

One lypical data sltructure is the Transmission Control Block (TCB) which Is created and
mainlained during the lifelime of a given connection. The TCB contains the following
informalion ({field =izes and contenl are nolional only and may vary from one
implemenl alion 1o another):

Local conneclion name: 16 bils
Local sockel: variable (fixed for any given TCP)
Local address: wvariable (fixed for any given TCP)
Local porl: 32 bits
Foreipn socket: wvariable
Foreipgn address: variable
Foreign porl: 32 bits
Receive window size in octets: 16 bits
Receive left window edge (next sequence number expected): 32 bits
Send window size in oclets: 16 bils
Eend lefl window edge {earliest unacknowledged octet): 32 bits

Nox! packet sequence number to send: 32 bits

[Fage &6] Fostel

June 1978 DRAFT

Postel

TCP-4 Specification

Implementation

Last sequence number used lo updale send window (to make sure that only the most
recont window information is used): 32 bits

Send Buffer Size: 16 bils
Reeceive Buffer Size: 16 bits
Send Urgent Pointer: 16 bils
Receive Urgent Poinler: 16 bils
Conneclion slale: 4 bits

Sce figure 3 for basic state diagram.

CLOSED (0), OPEN (1), SYN-SENT (2), SYN-RECEIVED (3), ESTABLISHED (4),
Cl OSE-WAIT (5), FIN-WAIT (6), CLOSING (7).

Foreipn conneclion specification (UUNUTUP): 4 bits

LN is set it the foreign network was nol specified in the OPEN command. U.T is
sl if the foreign TCP was nol specified in the OPEN command. UP is set if the
foreign Porl was nol specified in the OPEN command. U is set if any of LN, UT,
or UP are set. UT implies UP and UN implies both UT and UP. UN, UT, and
UP are used lo remember the specificity of the foreign socket at the initial OPEN
so that a RST (resel) will return the foreign socket to its proper ctate. U is reset
(i.c. made false) when a SYN is received, but may be set again on receipt of RST,
depending upon UN, UT. or UP. Once in the ESTABLISHED state, UN, UT, and
UP can be resel, since the connection will not return to OPEN on receiving RST
aller it has become ESTABLISHED.

Relransmission timeout: 16 bils

Head of Send buffer queue [buffers SENT from user to TCP, but not packetized]:
16 bils

Tail of Send buffer queue: 16 bits

Poinler to last octet packetized in parlially packetized buffer (refers to the buffer at
the head of the queue): 16 bits

Head of Send packet queue: 16 bits
Tail of Send packet queue: 16 bils
Head of Packelized buffer queue: 16 bits

Tail of Packelized buffer queue: 16 bils

[Page 67]

DRAFT June 1978
TCP-4 Specification

Implementation

Head of Retransmit packet queue: 16 bits
Tail of Retransmit packet queue: 16 bils

tead of Receive buffer queue [queue of buffers given by user to RECEIVE letters, but
unfilled]: 16 bits

Tail of Receive buffer queue: 16 bits

Head of Receive packet queue: 16 bils

Tail of receive packet queue; 16 bits

Poinler lo last oclet filled in receive buffer: 16 bits

Poinler to next octet to read from parily emptied packet: 16 bits

Nole: The above two pointers refer to the head of the receive buffer and receive
packet queues respeclively.

Forward TCB pointer: 16 bils
Backward TCB pointer: 16 bits

5.5. Program sizes, performance data.

77

5.6. Tesl scquences, procedures, exerciser.

"
5.7. Parameler values: limeouts, segment sizes, buffer sirategies.

Much work needs to be done in this area slill, but we do have the following discussion on
buflers and windows, and the interaction thereof.

Bulfer and Window Allocalion

The TCP manages buffer and window allocation on connections for two main purposes:
cquitably sharing limited TCP buffer space among all connections (multiplexing function),
and limiling allempls to send packets, so that the receiver is not swamped (flow control
function). For further delails on the operation and advantages of the window mechanism
sep [CK74]. :

Good allocation schemes are one of the hardest problems of TCP design, and much
cxperimentation must be done to develop efficient and effective algorithms. Hence the
following supgestions are merely initial thoughts. Different implementations are
encouraged with the hope that resulls can be compared and better schemes developed.

[Pape 68) Postel

June 1978 DRAFT
TCP-4 Specification

Implementation

For commoents on some allocation policies and other factors effecting communication
performance sec [GRP77, Sunshine77c]

The E‘l MND Side

The window is determined by the receiver. Currently the sender has no control over
the send window size, and never transmits beyond the right window edge. An
exceplion is made in the case of a zero send window when it is necessary to
periodically retransmit to poll for a window opening ACK.

Buffers must be allocaled for oulgoing packels from a TCP buffer pool. The sending
TCP may nol be willing to allocate a full receiver’s window’s worth of buffers, so
buffer space for a conncclion may be less than what the window would permit. No
dradlocks are possible even if there is insufficient buffer or window space for one
Iolter, since the receiver will ACK parts of letters as they are put into it’s user’s buffer,
thus advancing the window and freeing buffers for the remainder of the letter.

It i= not mandatory that the TCP buffer outgoing packels until acknowledgements for
them are received, since il is possible to reconstruct them from the actual buffers
sent by the user. However, for purposes of retransmission and processing efficiency it
is very convenient fo do.

The RICEIVE Side
Al the receiving side lhere are two requirements for butfering:
{1) Rale Discrepancy:

If the scnder produces data much faster or much slower than the receiver
consumes it, litlle buffering is needed to maintain the receiver at near maximum
rate of operalion. Simple queueing analysis indicates that when the production and
consumplion (arrival and service) rates are similar in magnitude, more buffering is
needed to reduce the effect of slochastic or bursty arrivals and to keep the
receiver busy.

{(?) Dizorderly Arrivals:

When packels arrive out of order, they must be buffered until the missing packets
arrive so lhat packels (or letlers) are delivered in sequence. We do not advocate
the philesophy that they be discarded, unless they have to be, lest a poor effective
bandwidlh may be observed. Path length, packet size, traffic level, routing,
limrouts, window size, and other factors may affect the degree to which packets
arrive oul of order,

The considerations for choosing an appropriate window are as follows:

Suppose thal the receiver knows the sender’s retransmission timeoul, K. This is
u.ually close lo the round trip transmission time. Suppose also that the receiver’s

Po«tel [Page 69]

DRAFT

June 1978

TCP-4 Specification

Implementation

acceptance rate is U bitsfsec, and the window size is W bits. lgnoring line errors
and olher traffic, the sender {ransmits at a rate between W/K and the maximum
line rate. The sender is permilted by the protocol to send at most a window’s
worlth of dala each timeout period.

Il W/K iz greater than U the difference must be retransmissions, which are
undesirable, so the window should be reduced to W, such that W/K is
approximalely equal to U This may mean that the entire bandwidth of the
transmission channel is nol being used, but it is the fastest rate at which the
receiver is accepling data, and the line capacity is free for other users. This is
oxaclly the same as the case where the rates of the sender and receiver are almost
equal, and so more buffering is needed. Thus we see that line utilization and
relransmiszions can be traded off against buffering.

If the receiver docs nol accept data fast enough (by not performing sufficient
RECEIVEs) lhe sender may continue relransmilling since the unaccepted data will
nol be ACKed. In this case lhe receiver should reduce the window size to
"throllle” the sender and inhibit useless retransmissions.

Limiled experimentation, simulation, and analysis with buffering and window allocation
suppests that the receiver should set aside buffer space to accommodate any window
sent lo the sender. Any allempls al oplimistically setting a large window with
inadequate buffer appears to lead to poor bandwidth owing to occasional (or frequent)
dincarding of arriving packels for which no buffers are available. Theoretically,
selection of theé ratio of window ' slze granted to buffer store reserved should be
equivalenl lo the seleclion of a buffer size for a slatistical multiplexor.

f the user al the receiving side is nol accepting data, the window should be reduced
fo zero. In particular, if all TCP incoming packet buffers for a connection are filled
with received packets, the window must go to zero to prevent retransmissions until the
user accepls some packels.

Setling the receive window to zero can have some interesting side effects. |In
parlicular, it is nol enough to merely send an empty ACK packet with the newly
non-zero window, when the window is re-opened, If the ACK is lost, the other TCP
may never transmit again {ACKs cannol be retransmitted since they cannot,
tlhemselves, be ACKed as we would nol know when to stop retransmitting). A TCP
should therefore continue lo send data (retransmissions) even when faced with a zero
window, albeit at a low rate. Design and discussion of several mechanisms have led to
the belief that this is the simplest and least costly solution to the zero window
problem,

h&8. Decbupging

ity

[Page 70] Postel

June 1978 DRAFT
TCP-4 Specification

Glossary

GLOSSARY

1877
HBN Report 1822, "The Specificalion of the Intercennection of a Host and an IMP".

The specification of interface between a host and the ARPANET.

ALK
A control bit (acknowledge) occupying no sequence space, which indicates that the
acknowledument field of this packet specifies the next sequence number the sender of
thi= packet is expecting to receive, hence acknowledging receipt of all previous
woquence numbers,

Addronas
An address is a variable length quantity (in multiples of octets).

ARPANET messape
The unit of transmission between a host and an IMP in the ARPANET. The maximum

cize in about 1012 oclels (8096 bils).

ARPANET packel
A unil of transmission used internally in the ARPANET between IMPs. The maximum

size is ahout 126 octets (1008 bits).

L ' y
A control Eil (Begin of Leller) occupying no sequence space, indicating that this packet

hepins a logical letter with the first data octel in the packet.

bulfer size
An option (buffer size) used to slate the receive data buffer size of the sender of this

oplion. May only be sent in a packet that also carries a SYN.

AL
Denlinalion Address Length, an inlernel header field, which specifies the destination

address lenglh in oclets.

[Ielinalion
The {variable lenglh) deslination address, an internet header field.

]
The Don't Fragment bil carried in the internet header type of service field.

DG
DataGram Prolocol: A host-to-host protocel for communication of raw data.

conncclion
A logical communication path identified by a pair of sockets.

Postel [Page 71]

DRAFT June 1978

TCP-4 Specificalion
Glossary

EOL
A conlrol bit (End of Letter) occupying no sequence space, indicating that this packet

ends a lopical letler with the lasl data octet in the packet. If this end of letter causes a
less than full buffer to be released to the user and the connection buffer size is not one
oclet then the end-of-letlerfbuffer-size adjustment to the receive sequence number
musl be made,

PN
A control bit (finis) occupying one sequence number, which indicates that the sender
will send no more data or control occupying sequence space.

tlaps
Arn internet header field carrying various control flags.

frapment

A portion of a lopical unil of dala, in parficular an internet fragment is a portion of an
internet segment,

Fragment Offset]
This internetl header field indicales where in the inlernet segment this fragment

belongs.
FTP

A Mile transfer protocol.
héader ! . : :

Control informalion at the beginning of a message, segment, packet or block of data.
host

A compuler. In particular a source or destination of messages from the point of view
of the cnmmynicatiun network.

ldentification pat '
An internet header field identifying value assigned by the sender to aid in assembling

the fragments of a sopment.

15N
The Initial Sequence Number,

IHL .
The internet header field Internet Header Length is the length of the internet header
measured in 32 bil words.

W1

The Interface Messape Processor, the packet switch of the ARPANET.

internet frapment
A porlion of the dala of an internet segment with an internet header.

[PB[‘,E ??] Postel

June 1978 DRAFT
i TCP-4 Specification

Glossary

internet packet
Eilher an inflernet segment or an internet fragment,

internel segmenl !
The unit of dala exchanged between an internet module and the higher level protocol

together with the internet header.

leader :
Conlrol information at the bepinning of a message or block of data. In particular, in
the ARPANET, the conirol information on an ARPANET message at the host-IMP

inlerface,

LEF T-SEQUENCE Lo
This is the next sequence number fo be acknowledged by the data receiving TCP (or

the lowest currently unacknowledged sequence number) and is sometimes referred to
as the lefl edpe of the transmit "window.”

letler
A lopical unit of data, in parlicular the logical unit of data transmitted between

processes via TCP.

local packel
The unil of transmission within a local network.

MF
The More-Frapmenls Flag carried in the internet header Flags field.

modulp
An implementation, usually in software, of a protocol or other procedure.

more-frapments-flag :
A flap indicaling whether or not this internet packet contains the end of an internet

sepmenlt, carried in the internel header Flags field.

NI 3 -
The Number of Fragment Blocks in a portion of an internet packet. That is, the length
ol a portion of dala measured in B octel units,

oclet
An eipht bit byte.

Postel [Page 73]

DRAFT June 1978

- TCP-4 Specification
Glossary

Oplions .
An Oplion field may contain several options, and each option may be several octets in

lenglh. The oplions are used primarily in testing situations, for example to carry
timestamps. Both the Internetwork Protocol and TCP provide for options fields.

packel
A package of data wilh a header which may or may not be logically complete. More

oflen a physical packaging than a logical packaging of data.

Padding
A Padding field is used to ensure that the data begins on 32 bit word boundary. The

padding is zero. Both the Internetwork Protocol and TCP provide for padding fields.

FET- ACKNOWIL EDGMENT o
The sequence number in the acknowledgment field of the arriving packet.

PET-LFNGTH .
The amount of scquence number space occupied by a packel, including any controls

which occupy sequence space.

process ;
A propram in execution. A source or destination of data from the point of view of the

TCP or other host-to-hosl protocol.

port
The porlion of a socket or address lhat specifies which logical input or cutput channel
ol a process is associated wilth the dala.

PSN
A Packet Switched Network. For example, the ARPANET.

Ps

h Packel Switch., For example, an IMP,

RECEIVE-SEQUENCE ; 2
Thi= is the next sequence number the local TCP is expecting to receive.

RECEIVE -WINDOW 2
Thi= represenls lhe sequence numbers the local (receiving) TCP is willing to receive.
Thus, the local TCP considers that packets overlapping the range RECEIVE-SEQUENCE
lo RECEIVE-SEQUENCE + RECEIVE-WINDOW - 1 carry acceptable data or control
Packels containing sequence numbers entirely outside of this range are considered

duplicates and discarded.

[Pape 74] Postel

June 1978 DRAFT
TCP-4 Specification
Glossary

RST

A control bit (reset), occupying no sequence space, indicating that the receiver should
delete the connection without further interaction. The receiver can determine, based on
the sequence number and acknowledgment fields of the incoming packet, whether it
chould honor the resel command or ignore it. In no case does receipt of a packet
containing RST give rise to a RST in response.

RTP
Real Time Prolocol: A host-to-host protocol for communication of time critical
information.

SAL
Source Address Length, an internet header field, which specifies the source address
lenpth in oclets.

segment

A lopical unit of dala, in particular an internet segment is the unit of data transfered
belween a pair of inlernet modules, and a TCF segment is the unit of data transfered

between a pair of TCP modules.

SIEMD-SEQUENCE
This is the next sequence number the local (sending) TCP will use on the connection. It

is inilially selected from an initial sequence number curve {ISN) and is incremented for
each oclet of data or sequenced control transmitted.

socket- :
An address which specifically includes a port identifier.

SEND-WINDOW
This represenis the sequence numbers which the remote {receiving) TCP is willing to

receive. It is the value of the window field specified in packets from the remote (data
receiving) TCP. The range of sequence numbers which may be emitted by a TCP lies
belween SEND-SEQUENCE and LEFT-SEQUENCE + SEND-WINDOW - 1.

Source
The {variable length) source address, an inlernet header field.

SYN
A conirol bit in the incoming packel, occupying one sequence number, used to indicate
al the initiation of a connection, where the seguence numbering will start.

TCP
Transmission Control Protocol: A host-to-host protocol for reliable communication in
internelwork environments,

Tolal Lenpth

The inlernel header field Total Length is the length of the packet in octets including
internet header and data.

Poslel [Page 75]

DRAFT June 1978
TCP-4 Specification

Glocsary

Type of Service
An inlernel header field which indicates the type of service for this internet fragment,

URG
A control bit {urgent), occupying no sequence space, used to indicate that the receiving
wser should be nolified to do urgent processing as long as there is data to be
consumed with sequence numbers less than the value indicated in the urgent pointer.

URGFNT-POINTER
A control field meaningful only when the URG bit is on. This field communicates the
value of the urgent poinler which indicates the data oclet associated with the sending
user's urgent call.

Version
The Version field indicates the format of the internet header.

XME T

A cross-net debupging protocol.

[Page 76] Postel

—

June 1978 DRAFT
TCP-4 Specification
Bibliography

BIBLIOGRAPHY

Notes of Werking Group 6.1 of the Inlernalional Federation of Information Processing, [also
known as lhe Inlernational Network Working Group or INWG], are available through its
chairman,

Mr. Derek L. A, Barber,

Frojecet EIN,

Mational Physical Laboratory,
Teddinpton, Middiesex, England.

Readers inleresled in a rich source of reference to the literature on resource sharing networks
are urped lo consult NBS special publication 384:

Helen M. Wood, Shirley Ward Watkins, Ira W. Collon

Annolaled Bibliography of the Literature on Resource Sharing Networks
Nalional Burcau of Standards Special Publication 384

In<tilute for Compuler Sciences and Technology

Revieed 1976

available from

Superiniendent of Documents

LL &5 Gevernment Printing Office
Washinpton, D.C, 20107

order by S Calalog-Mo. C13.10.384/rev
Stock Mo, 0D03-003-01670-5, §2.45

Spedial colleclions of papers on related subjecls may be found in:
1. Wesley Chu (Ed.), Advances in Computer Communications, Artech House, 1976 (revised).
¢. Roberl Blanc and Ira Cotton {Eds.), Computer Networking, IEEE Press, New York, 1976.
ARTE

. Ailwyver, A. M. Rybczynski, "Dalapac Subscriber Interfaces,” Proceedings of |ICCC76, p.
1143 149,

Barber /6
Derek LA, Barber, "A European Informatics Network," Proceedings of ICCC?76, p. 44-50
HEN]R?2

all Brranck and Mewman, "Specification for the Interconnection of a Host and an IMP"
HEIN technical Report 1822, January 1976 {Revised),

Posliel [Page 77]

DRAFT Juna 1978

TCP-4 Specification
Bibliopraphy

I!r-lr nes 74

Dap, Belsnes, "Nole on Single Message Communication,” INWG Protocol Note 3, IFIP Working
Group 6.1, Seplember 1974,

Belanes70a

D. Brlsnes, "Flow control in packet switching networks,” INWG Mote 63, IFIP Working Group
6.1, October 1974,

B S5

Jorey D Burchfiel, Elsie M. Leavill, Sonya Shapiro, Theodore R. Strollo, TENEX USERS®
GLIDE, Bolt Beranek and Newman, Inc., Cambridge, MA, January 1975,

BIwW74

Richard Binder, Wai Sum Lai, Morris Wilson, "The Alohanet Menehune - Version II," The
Aloha Syslem Technical Report B74-6, University of Hawaii, September 1974, 3

BI*176

Jorry DL Burchfiel, William W. Plummer, Raymond 5. Tomlinson, "F‘rnpused Revision to the
100" INWG Protocol Nole 43, IFIP W.G. 6.1, September 1976.

Briphl 75

Roy 0. Brighl, "Experimental Packet Switch Project of the UK Post Office, "In Computer
Communicalion Nelworks, Grimsdale and Kuo, Editors, NATO Advanced Studies Institute
Series, 15-4, Noordhoff International, Leyden, Netherlands, 1975, pp 435-444.

BB

Jriry [Burchfiel, Raymond S. Tomlinson, Michacl Beeler, "Functions and Structure of a
Packet Radio Station,” AFIPS Procecdings, volume 44, 1975, National Computer Conference,
{(Anaheim, CA, May 19-22, 1975), AFIPS Press, Montwvale, NJ, 1975, p. 245-251.

w7 e

Rober! Bressler and David C. Walden, "A proposed Experiment with @ Message Switching
Prolocol,” ARPA RFC 333, NIC 9926, Augmentalion Research Center, Stanford Research
Inulilute, henlo Park, CA., May 1972,

Carhin76

P.M. Cashin, "Datapac Nelwork Prolocols,” Proceedings of ICCCY6, P. 150.

[Pape 78] Postel

June 1978 DRAFT
TCP-4 Specification
Bibliography

CCC70

Stephen Carr, Slephen D. Crocker and Vinton G. Cerf, "Host-Host Communication Protocol in
the ARPA Network,” AFIPS Proceedings, 1970 Spring Joint Computer Conference, wolume
36, (Allantic City, NJ, May 5-7, 1970), AFIPS Press, Montvale, NJ, 1970, p. 589-598.

cns?a

Vinlon G. Cerf, Yogen K. Dalal, Carl Sunshine, "Specification of Internet Transmission Control
Propram,” INWG General Note 72, IFIP Working Group 6.1, December 1974,

CEHKKST?

Vinton G. Cerf, Stephen Edge, Andrew Hinchley, Richard Karp, Peter T. Kirstein, Paal Spilling,
"Final Report of the Internetwork TCP Project,” to appear.

Cerl74

Vinlon G. Cerf, "An Assessment of ARPANET Protocols,” The Second Jerusalem Conference
on Information Technolopy, (Jerusalem, lsrael, July 29-August 1, 1974), p. 653-664 (also,
INWG Grneral Nole 70, IFIP W.G. 6.1, July 1974 and in Network Systems and Software
infolech Slate of the Art Report 24, Infotech Information, Lid, Nicholson House, Maidenhead,

Berkshire, England, 1975.)
. Cerlib

Vinlon G. Cerf, "SCCU/MCCU Characteristics for AUTODIN II," Digital Systems Laboratory
Technical Note §2, Stanford University, July 1976.

Cerl/6a

Vinlon G. Cerf, "TCP Resynchronization," Digital Syslems Lab Technical Note 79, Stanford
Liniversity, January 1976,

Crrf7bb

Vinton G. Cerf, "ARPA Inlernetwork Protocols Projects, Status Report, for the period
November 15, 1975 - February 15, 1976," Digilal Systems Laboratory Technical Note &3,
Stanford University, February 1976.

Cerl77

Vinton G. Cerf, "Specification of Inlernet Transmission Control Program - TCP (Version 2),"
IEN &, March 1977,

Postel [Page 79]

DRAFT June 1978

TCP-4 Specification
Bibliopraphy

Cerl78

Vintlon G. Cerf, “A Proposed New Inlernet Header Format," Advanced Research Projects
Apency, IEN 26, February 1978,

Corf78a

Vinlon G. Cerf, "A Proposal for TCP Version 3.1 Header Formal," Advanced Research
Projecls Apency, IEN 27, February 1978.

CGNTG

W. W. Clipsham, F. E. Glave, M. L. Narraway, "Datapac Network Overview," Proceedings of
ICCC76, p. 131-136.
CHMMWT 4

W. Crowther, F. Hearl, A. McKenzie, J. McQuillan, D. Walden, Network Design Issues, Bolt
Brranek and Newman, Inc. Technical Report No. 2918, November 1974 (also, INWG General

Nole 64, IFIF Working Group 6.1, Oclober 1974; ARPA Network Measurement Note 26,
Melwork Measurement Group, October 1974).

ClMP 2

Stephen [0 Crocker, John F. Heafner, Robert Metcalfe and Jonathan B. Postel,
"Funclion-Orienled Protocols for the ARPA Compuler Network, AFIPS Proceedings, 1972
Spring Joinl Compuler Conference, volume 40, (Atlantic City, NJ, May 16-18, 1972), AFIPS
Pres, Montvale, NJ, 1972, p. 271-279.

CK?74

Vinton (. Cerl and Robert E. Kahn, "A Prolocol for Packet Network Intercommunication,”
1 Transaclions on Communications, volume COM-22, No. 5, May 1974, p. 637-648. (An
early wversion of this paper appeared as INWG General Note 39, IFIP Working Group 6.1,
Seplember 1973).

CMST75

Vinton (. Cerf, Alexander McKenzie, Roger Scantlebury, Hubert Zimmermann, "Proposal for
an Inlernctwork End to End Protocol,” INWG General Note 96, IFIP W.G. 6.1, September
1975 {also in ACM SIGCOMM Quarterly Review Vol. 6, No. 1, Jan 1976.) p. 63-89

. [Pape BO) Postel

June 1978 DRAFT
TCP-4 Specification
Bibliography

CPr78

Vinlon G. Cerf and Jonathan B. Poslel, "Specification of Internetwork Transmission Control
Propram - TCP Version 3," Information Seiences Institute, IEN 21, January 1978,

Ccs?4

Vinlon G. Cerf and Carl Sunshine, "Protocols and Gateways for the Interconnection of Packet
Swilching Melworks,” The Aloha Syslem Technical Report CN 74-22, Proceedings of the
Sevenlh Hawaii Inlernalional Conference on Syslems Sciences, University of Hawaii, (Honolulu,
Hawaii, Januvary B-10, 1974),

Dalal74

Yopen K. Dalal, "More on Selecting Sequence Mumbers, " INWG Protocol MNote 4, IFIP
Working Group 6.1, August 1974. Also in Proceedings of the ACM SIGCOMM/SIGOPS
Inlerprocess Communications Workshop, (Santa Monica, CA, March 24-25, 1975), and ACM

Operaling Systems Review, Volume 9, Number 3, July 1975, Association for Computer
Machinery, Now York, 1975,

Dalal?y

Yopen K. Dalal, "Establishing a Connection,"INWG Protocol Note 14, IFIP Working Group 6.1,
March 1975,

Danlhine 75

Andre Danthine and E. Eschenauer, "Influence on the Node Behavior of the Node-to-Node
Prolocol,” Proceedings, Fourth Data Comm. p 7-1 to 7-8

Davies? 1

Donald W. Davies, "The Control of Congestion in Packel Switching Networks,” Peter E.
Jackson, proceedings, ACM/IEEE Second Symposium on Problems in the Optimization of Data
Communicalion Syslems, (Pale Alto, CA. October 20-22, 1971), IEEE {at -71C59-C, p.
46-49,

DCATS

Syslem Performance Specification for Autodin Il, Phase 1, Defense Communications Agency,
Drefense Communication Engineering Center, November 1975.

DCATE

Elizabeth Feinler and Jonathan B. Postel, ARPANET Protocol Handbook, Network Information
Cenler, Stanford Research Instilute, Menlo Park, CA, April 1976.

Postel [Page 81]

DRAFT : June 1978

TCP-4 Specification
Bibliopraphy

DDLPR76

A. Danel, R Despres, A. LeRest, G. Pichon, 5. Ritzenthaler, "The French Public Packet
Swile hing Service: the TRANSPAC Network," Proceedings of ICCC76, p. 251-260.

* PGS

Slanley C. Fralick and James C. Garrett, "Technological Considerations for Packet Radio
MNrtworks," AFIPS Proceedings, volume 44, 1975, Mational Computer Conference, (Anaheim,
CA, May 19-22, 1975), AFIPS Press, Montvale, NJ, 1975, p. 233-243.

TGS

Howard Frank, Isracl Gilman, Richard van Slyke, "Packet Radio System - Network
Considerations,” AFIPS Proceedings, volume 44, 1975, National Computer Conference,
{Anahcim, CA, May 19-22, 1975), AFIPS Press, Montvale, NJ, 1975, p. 217-231.

GRPeI7

L. Garlick, R. FRom, and J Postel, "Reliable Host-to-Host Protocols: Problems and
Techniques,” proceedings of the Fiflh Data Communications Symposium, (Snowbird, Utah),
ACM and ILEE, pp. 4.58 .65, September 1977.

M. Gien and R Scantlebury, “interconnection of Packet Switched Networks, Theory and
FPractice,” proceedings of European Computing Conference on Communication Networks,
EURDCOMP, pp. 44]1-260, Brunel Universily, Online Conferences Ltd, Uxbridge, England,
Srplember 1975,

HKQCW?70

Frank E. Hearl, Robert E. Kahn, S. M. Ornstein, William R. Crowther, and David C. Walden,
"Thr Inlerface Messape Processor for the ARPA Computer Nelwork," AFIPS Proceedings,
1970 Spring Joinl Compuler Conference, volume 36, (Atlantic City, NJ, May 5-7, 1970),
ANINS Press, Montvale, NJ, 1970, p. B51-567.

Kahni3d

Robert "E. Kahn, "Stalus and Plans for the ARPANET,” Martin Greenberger, Julius Aronofsky,
James L. McKenney, William F. Massy, Nelworks for Research and Education: S_F'Iaring
Compuler and Informalion Resources Nalionwide, MIT Press, Cambridge, MA, 1973, p.
51-54,

[Pape B2] Postel

June 1978 DRAFT
TCP-4 Specification
Bibliography

Kahn7%

Robert E. Kahn, "The Organizalion of Computer Resources into a Packet Radio Network,”
AFIPS Proceedings, volume 44, 1975, National Computer Conference, (Anaheim, CA, May
19 22, 19725}, AFIPS Pre«s, Montvale, NJ, 1975, p. 179-186.
Karp/73

Peppy M. Karp, "Origin, Development and Current Status of the ARPANET," COMPCON73 -
Sevenlh Annual IEEE Compuler Society International Conference, Digest of Papers,
‘Computing Networks from Mini's to Maxi's - Are They for Real?” (San Francisco, CA, February
27-28, March 1, 1973), Institute of Electrical and Electronic Engineers, Inc, Mew York,

19/3, p. 19 b2
K/

Robert E. Kahn, William R, Crowther, "Flow Control in a Resource-Sharing Computer
Network,” Peter E. Jackson, Procecdings, ACM/IEEE Second Symposium on Problems in the
Oplimization of Dala Communication Systems, (Palo Alto, CA. October 20-22, 1971}, 1971,
IECE (AT-71C59-C, p. 108-116.

KEleinrock 74

lronard Kleinrock and William E. MNaylor, "On Measured Behavior of the ARPA Network,
AFLIPS Proceedings, Malional Compuler Conférence, -Volume 43, (Chicago, L., May 6-10,
1971}, AFIPS Press, Montvale, N, p. 767-780.

Kleinrock7h

lronard Kleinrock and Holger Opderbeck, “Throughput in the ARPANET - Protocols and
Measurement,” Proceedings, Fourlh Data Communications Symposium, (Quebec City, Canada,
7-9 Oclober 1975), p. 6-1 to 6-11.

Kleinrock 76

Leonard Klcinrock, William E. Naylor, Holger Opderbeck, "A Study of Line Overhead in the
ARPANE 1," Communications of the ACM, Val. 19, No. 1, p. 3.

LGK

David Lloyd, Martine Galland, Peter T. Kirslein, "Aim and Objectives of Internetwork
Experimenls,” INWG Experiments Nole 3, IFIP Working Group 6.1, February 1975.

Mathis?6

James E. Mathis, "Single-Conneclion TCP Specification," Digital Systems Laboratory
Technical Nole 75, Stanford University, January 25, 1976.

Postel [Page 83]

DRAFT June 1978

TCP- 4 Specification
Hibliography

MI1/6

Robert M. Metcalfe and David R. Boggs, "Ethernet: Distributed Packet Switching for Local
Computer Nelworks,” Communicalions of the ACM, Volume 19, No. 7, July 13876, p.
a94- 104,

MOCW?72

John M. McQuillan, William R. Crowlher, Bernard P. Cosell, David C. Walden, Frank E. Heart,
“Improvemenls in the Desipn and Performance of the ARPA Network, "AFIPS Proceedings,
F all Joint Computer Conference, Volume 41, p. 741-754.

McKenzie73

A. McKenzie, "Hosl-Hos! Prolocol for the ARPANET,” NIC 8246, Stanford Research Institute
[aleo in ARPANET Prolacols Notebook NIC 7104].

MecKenrzie7da

Alexander McKenzie, "Some Computer Melwork Interconnection lssues," AFIPS Proceedings,
Malional Compuler Conference, Volume 43, (Chicago, ll., May 6-10, 1974), AFIPS Press,
Montvale, NJ, p. 857-859,

ki Ernzie 7k

Alexander McKenzie, "internetwurklHasl'—to—Hnsil Protocol,” INWG General Mote 74, IFIP
Waorking Group 6.1, December, 1974,

M Quillanh

John M. M:Quillan, "The Evolulion of Messape Processing Techniques in the ARPA Network,”
Mriwork Syslems and Software, Infolech Stale of the Art Report 24, Infotech Information,
[tad,, Nicholson House, Maidenhead, Berhshire, England, 1975,

MM A

fric R. Mader, William R. Plummer, Raymond S. Tomlinson, "A Protocol Experiment,” INWG
Fxperiment Nole 1, IFIP Working Group 6.1, August 1974,

MAC?3

Network Analysis Corporation, ARPANET: Design, Operation, Management and Performance,
Melwork Analysis Corporation, Glen Cove, NY, April 1973.

[Pape 84] Postel

June 1978 DRAFT
TCP-4 Specification
Bibliography

OK74
Holper Opderbeck and Leonard Kleinrock, "The Influence of Control Procedures on the

Performance of Packel-Swilched Metworks, "National Telecommunications Conference, San
Diepo, California, December 1974,

PGR76a

Jonathan B. Postel, Larry L. Garlick, Raphael Rom, Transmission Control Protocol
Specificalion, Augmentation Research Center, Stanford Research Institute, Menlo Park, CA,
15 July 1976,

PGRYEDL

Jonalhan B. Poslel, Larry L. Garlick, Raphael Rom, Terminal-to-Host Protocol Specification,
Augmentalion Research Center, Stanford Research Institute, Menlo Park, CA,, 15 July 1976.

Postel72

J. Postel, "Official Initial Connection Protocol," Current Network Protocols, Network
Information Cenler, Stanford Research Institute, Menlo Park, California, January 1972 (NIC
7101).

Poutel?7

J. Poslel, "A:.sighéd Nﬁmhnrs," RFC 739, NIC 42341, USC--Information Sciences Institute,
Marina del Rey, California, 11 November 1977.

Postel78
Jonathan B. Postel, "Drafl Inlernetwork Prolocol Specification - WVersion 2," Information
Sciences Inslitute, IEN 28, February 1978,

Pouzin7d
Louis Pouzin, "Interconnection of Packet Swilching Networks," INWG General Note 42, IFIP
Working Group 6.1, Oclober 1973,

Pourin?3a

Louis Pouzin, "Presentation and major design aspects of the CYCLADES Computer Network,"
Dala Networks: Analysis and Design, Third Data Communications Symposium, St. Petersburg,
Flerida, MNovember 1973, pp. B0-87. Also in: Grimsdale and F. Kuo eds, Computer
Communication Networks, NATQ Advanced Studies Institute Series, E-4, Noordhoff, Leyden,
Neltherlands, 1975, pp. 415-434,

Postel [Page BS]

DRAFT June 1978

TCP-4 Specification
Bibliography

P;Dl.l?fl'i?'QH

Louis Pougzin, "A Proposal for Inferconnecling Packet Swilching MNetworks,” INWG General
Note 60, IFIP W.G. 6.1, March 1974. {(also in proceedings of EUROCOMP, Brunel University,
May 1974, p. 1023-1036).

Pouzin7 b

Louis Pouzin, "Cigale, the Packet Switching Machine on the CYCLADES Computer Network,”
Jack L. Rosenfeld, Information Processing 74, proceedings of the IFIP Congress 1974,
Computer Hardware and Architecture Volume, (Stockholm, Sweden, August 5-10, 1574),
American Elsevier Publishing Co., Inc., New York, 1974, p. 2155-159,

Relz 7%

David L. Relz, "ELF - A Syslem for Network Access," 1975 |EEE Intercon Conference
Record, (New York, April 8-10, 1975), Institute of Electrical and Electronic Engineers, Inc.,
Mew York, 1975, p. 25-2-1 1o 25-2-5.

Roberis?76

Lawrence G. Roberts, “International Interconnection of Public Packet Networks,” Proceedings,
International Conference on Computer Communication, (Toronto, Ontario, Canada, August

1976), p. 239-245.
RW70

Lawrence G. Roberls and Barry D. Wessler, "Computer Netweork Development to Achieve
Resource Sharing,” AFIPS Proceedings, 1970 Spring Joint Computer Conference, volume 36,
{Allanlic Cily, NJ, May 5-7, 1970}, AFIPS Press, Montvale, NJ, 1970, p. 543-549.

RW73

Lawrence G. Roberts and Barry D. Wessler, "The ARPA Net," Norman Abramson and Franklin
F. Kuo, Computer-Communication Networks, Prenlice-Hall, Inc., Englewood Cliffs, NJ, 1973.

Schantz74
R. Schanlz, "Reconnection Prolocol”, private communicalion; available from Schantz at BBN.
SH75

Adrian V. Stokes and Peler L. Higginson, "The Problems of Connecting Hosts into
ARPANET," Proceedings of the European Conference on Communication Networks,
Seplember 1975, On-line Conferences, Ltd., Oxbridge, England, p. 25-34.

[Pape 86) Postel

June 1978 1 I?IRA.FT
TCP-4 Specification
Bibliography

Eulnf_.hine 75

Carl Sunshine, "lssues in Communication Protocol Design - Formal Correctness,” INWG
Prolocol Nole 5, IFIP Working Group 6.1, October 1975. Also in Proceedings of the ACM
SIGCOMM/SIGOPS Inferprocess Communications Workshop, (Santa Monica, CA, March
70-24, 1975).

Sunshine76a

Carl Sunshine, Interprocess Communication Protocols for Computer Networks, Stanford
Liniversity (Ph.D. Dissertation), 1976.

Sunzhine76b

Carl Sunshine, "Interconnection of Computer Networks," Computer Networks, Vol. 1, NO. 3,
January 1977, pp. 175-195,

Sunshine 76¢

Carl Sunshine, "Efficiency of Interprocess Communication Protocols for Computer Networks,"
Transaclions of the IEEE on Communications, February 1977, pp. 287-293.

SW71

R. Scanllebyry and P.T. Wilkinson, "The Design of a Switching System to allow remote Lﬂccass
to Computer Services by olher compulers ‘and Terminal Devices," Second Symposium on
Problems in the Oplimization of Dala Communication Systems Proceedings, Palo Alto,
California, October 1971, pp. 160-167.

Tomlinson 4

Raymond S. Tomlinson, "Sclecling Sequence Numbers,” INWG Protocol Note 2, IFIP Working
Group 6.1, August 1974, Also in Proceedings of the ACM SIGCOMM/SIGOPS Interprocess
Communications Workshop, (Santa Monica, CA, March 24-25, 1975), and ACM Operating
Syslems Review, Volume 9, Number 3, July 1975, Association for Computer Machinery, New
York, 1974,

Tomlinton7 7

Raymond S, Tomlinson, "Proposal for TCP 3" ARPANET message number
<[BN-TENEXA]12-0ct-77 11:59.Tomlinson>, October 1977.

Walden72

David C. Walden, "A Syslem for Interprocess Communication in a Hesum:ce Sharing
Computer Network,” Communications of the ACM, Volume 15, lssue 4, April 1972, p.
271-230,

Postel [Page 87]

DRAFT June 1978

TCP-4 Specification
[hblopraphy

W75

D. C. Walden and R. C. Rellberg, "Gateway Design for Computer Network Interconnection,”
Proceedings, European Compulting Conference on Communication Networks, September
1974, On-line Conferences, Lid, Oxbridge, England, p. 113-128.

YM76

S. C. K. Young, C. . McGibbon, "The Control System of the Datapac Network," Proceedings
of ICCCY6, p. 137-142.

fH73

thibert Zimmermann and Michele Elie, "Proposed Standard Host-Host Protocol for
Hreleropeneous Computer Networks: Transport Protocol,” INWG General MNote 43, IFIP
Working Group 6.1, December 1973 (also Institute Recherche d'Informatigue et
d"Automatique [IRIA] Project CYCLADES report SCM 519).

PN

Hubert Zimmermann and Michele Elie, "Transport Protocol Standard Host/Host Protocol for
Heleropeneous Computer Networks,” INWG General Note 61, IFIP Working Group 6.1, April
1974 {al~o IRIA Project CYCLADES Report SCH 519.1)

Fimmermann/h

Huberl Zimmermann, "lhe CYCLADES End fo End Protocol,” Proceedings, Fourth Data
Communication Symposium, (Quebec City, Canada, Oclober 7-9, 1975), p. 7-21 to 7-26.

[Pape BE] Postel

