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I. Introduction

This paper presents a method for routing packets among gateways.
It explains a routing algorithm and the protoceol for exchanging
routing information, proposes a method for handling gateway and
network failure and recovery, and discusses the use of status
messages and flow control to improve internet performance.

The routing algorithm is dynamic, as routing decisions are made
at each gateway based on periodic calculations of delay through
the networks. The algorithm minimizes the average delay of all
packets in the internet and guarantees loop free routing. An
optimal dynamic routing scheme, such as the one presented here,
potentially provides the best service, in terms of minimizing
delay, in the internet. However, the cost of such a routing
procedure in terms of the complexity of the gateway and the
gateway processing time should be carefully considered in
comparison to other, perhaps suboptimal, yet simpler routing
schemes.

The gateways currently use a static routing procedure based on
routing tables assembled inte each gateway. In the near future,
we plan to implement a simple gateway routing scheme, which will
improve internet performance by providing the capability to route
around failed gateways and networks. At the same time, we will
continue to study the problems of gateway dynamic routing, both
to determine the desirability of implementing a more complex
routing scheme and to define a dynamic routing algorithm.

II. Assumptions

The following definitions and assumptions have been made and the
routing procedure presented should be considered under these
constraints.



=

The internet is a collection of networks connected by gateways.
The gateways between networks must be capable of readdressing
packets among the networks to which they are attached. This is a
minimal requirement for the gateways; to the extent that they
implement the design proposed below, they will participate in and
benefit from globally optimized rou<ing. It is assumed that
where reliable communication is needed between end devices, an
end-to-end protocol such as the Transmission Control Protocol
will be implemented to guarantee this reliability. The
collection of gateways and networks that composes the internet is
not responsible for perfectly reliable delivery.

We further assume that it is not desirable for the gateways to
have any memory of end-to-end communications carried on through
them. This assumption explicitly excludes the wvirtual call

method of communication, where it is necessary for all

participating nodes to set up a connection and remember
parameters with respect to that connsction for the life of the
end-to-end communication. By requiring that gateways have no
specific information about the traffic through them, it is
possible to dynamically route packets around failed gateways or
networks and to split traffic addressed to a particular
destination among different gateways to achieve optimal
performance without disrupting the end-to-end communications.

The following additional assumptions are made:

| E1 Each entity to be addressed has a single unigue (over the
entire internet) address. This specifically avoids identifying a
destination by some route to that destination.

2. There is sufficient addressing information in the packet to
identify its destination network, to construct a local header for
each network in the internet through which the packet may pass,
and to address the end processes involved in communicating across
the internet.



The procedures which have been under consideration for internet
routing can be categorized in three ways. There are static
routing schemes in which the routes for all destinations {or set
of destinations, e.g. all hosts on one network) are assembled
into the gateway code. When a new net or gateway appears, or an
existing net or gateway is taken away, all the tables in all the
gateways must be reassembled, This type of routing is not
responsive to network or gateway failures and makes no attempt to
optimize routing of packets dynamically. A second category of
routing which could be considered is one in which primary and
alternate routes are assembled into the gateways or derived from
the exchange of connectivity information between the gateways.
When a network or gateway failure causes the primary route to
fail, the alternate route is used. The third category of routing
is optimal dynamic routing and is the one considered in this
paper. In this scheme, gateways build up routing tables by
exchanging routing information between the gateways. An
algorithm is defined to optimize some characteristic of internet
data transfer, i.e., bandwidth, delay, marginal delay, etc. This
scheme 1is dynamic: routing updates are done periodically as well
as in response to failures in the internet or to additions of new
routes. On receiving a packet, each-gateway decides the next
destination for the packet based solely on the packet's
destination address and on that gateway's routing information.
The packet's route is not stored in the packet before it is sent.
This routing system potentially provides the best service
throughout the internet.

III. Routing Algorithm

The remainder of the paper presents a detailed description of an
internet routing mechanism. It is divided into two sections; in
the first, we give the algorithm for deciding a packet's route,
and in the second, we describe a protocol for passing routing
information between the gateways.



The routing algorithm is based on the work of Robert Gallager as
reported in his paper, "A Minimum Delzy Routing Algorithm Using
Distributed Computation" (IEEE Transzctions on Communication,
Jan. 1977). This routing algorithm wminimizes the average delay
for all packets in a network and ensurss that the route to each
destination in the network is loop fre=z. The necessary condition
for minimum average delay is that the marginal delays from a node
to a destination on each active link from that node be egual and
that there is no inactive link for which the marginal delay is
less than that of an active link. The marginal delay on a link
is the derivative of the delay on the link with respect to the
traffic load on the link. 1In the routing algorithm, the marginal
delay on a link is assumed to be solely a2 function of the amount
of traffic flowing on that link (see Gzllager for a discussion of
this assumption).

The algorithm is explained in terms of the initial set of
information needed in each gateway, the information which must be
exchanged by the gateways, the calculations to be done to update
the routing information, and the handling of new gateways and
failed gateways and networks. Examples are also given. In the
explanation, each gateway is referred to z2s a node of a network.
In this analogy, the networks between gateways are the 1links
connecting the nodes.

A. Terminology

The following terms are used.

Dik is the LINK MARGINAL DELAY on the link from node i to
node k (link i,k). This is the derivazive of delay with respect
to traffic.

Tik{j} ' the ROUTING VARIABLE, iz the non-negative
fraction of the traffic from node i %o node j which traverses

link i,k.



Di(j) is the traffic-weighted NODE MARGINAL DELAY from
node i to node j, i.e., the marginal delay seen at node i for
traffic to node j.

Bi{j}, the set of BLOCKED NODES, is the set of nodes, k,
such that Tiktj} may not be increased from zero: it includes the
nodes k for which link i,k does not exist.

tilj] is the total traffic through i to j.

NEIGHBORS of a node 1 are those nodes k that are
physically connected to i (i.e., for which link i,k exists).

A DOWNSTREAM NEIGHBOR of i with respect to j is any node
k, such that Tik{j] is non-zero.

An UPSTREAM NEIGHBOR of node i with respect to j is any
node k such that Tki{jj is non-zero.

A ROUTING MESSAGE from node i with respect to node j is a
message containing the walue Di{j} and node 1i's blocked status

with respect to j.

The STATE of the network is the set of Dik’ TiR{j], Di[j}

and B, (J).

B. Initialization

To initialize the network, each node, i, must be given:
its set of neighbors, k,
the set of all destinations,
a set of Tik{j} for all neighbors, k, and destinations, j,
D:, for every neighbor node, k,
D{{j} for every destination, j, and

B;(j) for every destination, j.

An initial set of Tik{j} may be defined as:

Tik{j} = 1 if i,k,j 1is the shortest path in number of
hops from i to j;

otherwise, Tik{j} = @



To add a new gateway to an existing set, the new gateway must be
given a list of its neighbors. 1In addition, each neighbor of the
new gateway must have that gateway added to its 1list of
neighbors. The other gateways in the internet may establish
routes to the new gateway, and the new gateway may establish
routes to other gateways in the internet as explained in the
section below on recovery of a crashed node.

C. Routing Updates

A routing update for node j is explained in terms of the series
of steps taken by node j and by each node, i, to compute and
propagate their marginal delays with respect to j and to compute
new routing variables for traffic to j. The traffic variables
computed by each node in the routing update give the fraction of
traffic for node j that each node should send to each of its
neighbors. The calculation of the routing variables, node
marginal delay and blocked status are explained below in the
section on Calculations.

1. Each node, i, calculates a set of'Tik{j] for each neighbor,
Ky using the state information obtained from the 1last routing
update. 1If this is the first routing update for j, the nodes use
the information with which they were initialized (see Section B
above) .

2. Each node, i, measures Dik for each neighbor, k (see Section
VII for a discussion of how nodes measure this value).

3. Node j starts a routing update for itself, by sending a
routing message containing Di{jj = P to all its neighbors.

4. After receiving Dﬁ{j} from all downstream neighbafs, k, node

i calculates Di{j] and determines whether it is blocked with

respect to j. ©Node i then sends a routing message to all its
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neighbors. The routing message contains the walue of Di{j} and
the status of node i (blocked or unblocked) with respect to j.

5. After receiving routing messages from all neighbors, go to
step 1. Note that it is necessary to wait until routing messages
have been received from all neighbors before updating the values
of T. To compute new values of T, each node needs a complete set
(Erom both its downstream and non-downstream neighbors) of Dﬁ{j],
and the blocked nodes, k, for each destination, j.

D. Calculations

The routing algorithm outlined above requires that the node
marginal delay Di[j]. the blocked status of node i with respect
to j, and the routing wvariables Tik{jj be calculated. These

calculations are done as follows:

1. Node marginal delay for traffic from node i to node j:
1 3 — = L] | 5
DI(3) = ) T, (3) * (B}, + D(3))
k

where k is the set of downstream neighbor nodes such that k is
not blocked with respect to j.

2. Blocked status: The set Bi{j} is the set of blocked nodes k
for which Tik{j} = @ and for which Tik{j} cannot be increased
from @ in order to prevent loops. The set Bi{j] consists of
nodes k such that link i,k does not exist or such that Tik{j} = @
and k is blocked with respect to j. WNode k is blocked relative
to j if k has a routing path to j containing some link m,n such
that D-(3) < Dﬁtj}. In the routing algorithm outlined above,
node k determines whether it is blocked relative to j as follows:

a. For each neighbor, m, such that Tkm(j} > B, node k compares
Di{j} to D&{j]. If Dé{j} % Dﬁ{j}, then k is blocked relative to
¥
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b. For each neighbor, m, if Tkm{j) > 8 and m has reported in a
routing update for j that m is blocked relative to jr then k is
blocked relative to j.

No node, i, is allowed to increase the wvalue of its routing
variable, Tik[j} from @ if node k is blocked with respect to j.
By preventing a node from sending new data through a blocked
node, the loop free property of the algorithm is maintained.

3. Node i's routing variables for j, Tik{j}:

a. For each k such that Tik{j} = B, and k is blocked with

respect to j, the new value of T (noted as "new T") is
new Tik{]] =

b. For all nodes k, which are either not blocked or for which
Tik(j}>ﬂ, the routing variables are calculated as follows. (Note
according to the above definition of blocked nodes, the set of
all non-blocked nodes, k, excludes node i, and nodes 1, for which
link i,1 does not exist.)

i 2 . 1 1 C
First, compute M, m;n [ Dip + Dp(d)].

My is the marginal delay on the best route to j from i.

e z m— 1 1 -
Next, compute A, (j) = [Df), + Dp(3)] M.

Aik[j} is the difference in marginal delays between each route to
J from i and the best route to j from i. Note that k may be
equal to j, which is simply the case in which i is sending to j
directly through no intermediate nodes.

Compute
ﬁ,\ik{j} = min | Tik{]]: B * Eih{]]ftltj} 1
‘ﬁik{j} is the amount by which to decrease Tik[j} for any route

which is not the best route from i to j. Tik(j} for the best
route from i to j is increased by the sum of the deltas over all
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other routes. Each node, i, measures ti{j}, the total traffic
through i1 to j. E is a parameter chosen experimentally and used
by all nodes in the net. A value of J corresponds to the case in
which the routing variables, T, will not change in response to a
change in the marginal delays. For Efti{j} close to @, the
values of T will converge slowly; as Efti{j] increases, the
values of T will change more gquickly, but may not converge. (The
choice of this scale factor, E, is discussed more thoroughly in a
paper by Robert Gallager entitled "Scale Factors for Distributed
Routing Algorithms.") The new routing variables are:

new Tik{j} = Tik{]] - ggik(j} for k not on the best path

to j
new Tik{j] = Tik{]} + ji g}ik{j} for k on the best path
to j. k

IV. Exchnanging Routing Information

This section describes the gateway-gateway protocel that will be
used in passing routing updates between the gateways. As the
internet message formats and, in particular, internet addressing,
are being reviewed, a specific format is not proposed here. It
is assumed that there will be a method for distinguishing
gateway-gateway packets from packets using some other protocol
(such as TCP). This may be done by using the current message
format field or by using the proposed new internet address, which
is extended to the level of the process implementing a protocol
within a machine.

This protocol provides for reliable delivery of routing messages.
As mentioned earlier, one of the important features of the
proposed routing algorithm is that it gquarantees that no packet
will loop through the gateways. It can be proved that loop free
routing is maintained if gateways never increase their routing
variables from =zero through a blocked node. If the routing
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updates are not delivered reliably, then some gateways may not
receive information that a node is blocked, and these gateways
could violate this restriction on their routing variables. Thus,
the consequences of unreliable delivery are not simply that the
gateways will do slightly suboptimal routing with out-of-date
information, but more importantly, that loops can form in the
routing paths. Note that the algorithm does not provide a metheod
for breaking loops in routing paths; it simply provides a method
for maintaining loop freedom given an initial set of loop free

routing paths.

A routing update for node j is done in several steps.

l. Each routing message, D;(j) and i's blocked status with
respect to j, has a seguence number. Sequence numbers are kept
on a per destination basis, i.e., each node, i, has an expected
sequence number for the next routing update for each node, j, in
the network.

2. When node i receives a routing message from its neighbor, it
compares the received seguence number to the expected sequence
number (defined below). If the received sequence number is less
than the expected sequence number, then the packet must either be
a duplicate, or it is the result of a link failure (see Section
V), and is therefore acknowledged but ignored. If the received
sequence number is greater than the expected seguence number,
then it must be from a routing update in which node i cannot yet
participate, and is therefore not acknowledged and ignored. (A
node cannot participate in the nth routing update until it has
successfully transmitted its routing message for the (n-1l)th
update to all of its neighbors.) If the received sequence number
matches the expected sequence number, then an acknowledgement is
returned, and the information is retainad.
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3. If node i does not receive an acknowledgement from a
neighbor, it retransmits for some time. (The retransmit scheme
and timeout interval are network specific functions and are not
discussed here.) If the neighbor was upstream, then the neighbor
could be engaged in a previous routing update cycle and thus may
not be able to respond to the routing update from i. 1In this
case, node 1 cannot interpret lack of an acknowledgement as a
link failure. Node i must wait to receive routing updates with
sequence number, n, from all its neighbors before accepting any
routing updates with sequence n+l.

4. When node i has received an acknowledgement and a routing
message with sequence number n from all its neighbors, k (such
that neither k or 1link i,k is dead), then node i sets the
expected seguence number, n, to n+l.

V. Node and Link Failure and Recovery

No node has enough information to declare another node down.
Even in the case where explicit destination dead messages are
received from the subnet, they may be only an indication that the
interface to that network failed, and the node reported dead may
still be able to communicate on other networks. Thus, in the
discussions on node and link failure and recovery, all failures
are viewed as link failures. A node failure will appear as an
inability to communicate with the node on all links.

Link failure may be detected by status messages from the subnet,
status messages from network interface modules in the gateway
node, or the failure of the gateway module in a node to
communicate with a neighboring node. WNote that a node should not
assume a link has failed if it does not receive an
acknowledgement for a routing update (see Section IV.3 above) .
However, as each node should be sending routing updates for
itself periodically, if a node does not receive a routing update
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for one of its neighbors for a period of time much greater than
the normal routing update interval, it should assume that its
link to that neighbor is down.

When node i has detected that 1link i,k is down, it uses this
information and propagates it to other nodes as follows. HNote
that node i detecting link i,k is down is equivalent to node i
assuming that it received a routing message from k for itself.
Thus, if link i,k recovers, and node i receives a routing message
from node k, while node i is executing the steps outlined below,
it should be treated as a duplicate routing message. HNode i
should acknowledge the message, but ignore it. The information
that link i,k has recovered will be propagated and used in the
next routing update.

1. MNode i sets Dik to infinity. For all nodes, j, such that
Tik{j} was not zero, node 1 sets Tik{j} to =zero. Non-zero
routing variables for neighbor nodes, m (m not equal to k), can
be increased proportionally so that the sum of the new routing
variables is one. Thus, other links in use for traffic to j can
take over the traffic load from link i,k. However, to maintain
loop freedom, links not previously in use cannot be used until
new routing information, in particular the blocked status of
neighbor nodes, is propagated throughout the net.

2. PFor all nodes, j, to which i was sending traffic and to which
i can no longer send traffic on any route, node i should set
Di{j} to infinity and should say that it is blocked with respect
to j.

3. For each j such that the new value of D:(J) is infinity, node
i sends a routing message to each of its neighbors. The routing
message contains the wvalue Di{j}' which is infinity, and that i
is blocked with respect to j. This message uses the seguence
number that node i expects to be in the next routing update for
i.

i



4. Each node, m, receiving a message as in step 3 treats it as a
normal routing wupdate, except that it sets Tmi{j} te @ and
increases its non-zero routing wvariables proportionally so that
the sum of the new routing variables is one. If the node can no
longer send traffic to j on any route, it sets its node marginal
delay to infinity and says that it is blocked with respect to j.
These values are then passed to its neighbors in its routing
update for Jj. If a node receives a message giving Di{j} as
infinity and that node is still upstream from j, then it sends a
special message to j to prompt j to immediately start two routing
updates for itself. 1In the first routing update, the node that
initially detected the failed 1link will receive routing
information giving alternate routes to j (if alternate routes
exist). In the second routing wupdate, the information on
alternate routes will be propagated to all nodes upstream of the
node that detected the failed link (see below). By forcing the
two routing updates to occur, new routing parameters can be
gquickly established. This is essential as some nodes may be

disconnected from other nodes because of the failed link.

Recovery of 1link i,k can be detected in several ways. In the
simplest case, the failure was detected by an explicit status
message from the subnet, and this message gave a time at which
the link would be back up. An example of this is the "IMP going
down" message in the ARPANET. In other cases, the network
specific modules in the gateway may have detected the 1link
failure and may continually attempt to use the link until it
succeeds. At this point the 1link 1is declared "up" and the
gateway can be notified. An example of this is the Reliable
Transmission Protocol module, which runs the VDH interface. When
the VDH line is detected down, this code will continually send
control messages until the line is detected up. In the most
general case, the link failure was detected by the gateway module
in nodes i and k when a routing message was not acknowledged. In
this case, the gateways can attempt to send packets addressed to
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themselves on the failed 1link. When the packets are received and
echoed back to their source, then i and k can begin to measure
their marginal delay to each node, j, over this link and can
update their routing parameters accordingly. These new
parameters will be passed in the next routing update for each

node, j, as explained below.

When the node recovers or an alternate route is established,
knowledge of the new route should be propagated as quickly as
possible. A node that has set all its routing wvariables for
another node, j, to @ has no downstream neighbors with respect to
5 I Because it has no downstream neighbors, it 1is free to
transmit its node delay (D:(j)=infinity) at any time during a
routing update for j. However, if node i sends its node delay of
infinity during the next routing update for j, then on each
routing update only the next level of nodes upstream from the
recovered link or alternate route will adjust their routing
variables. In order to propagate the new node delays more
quickly, the following change is made to the routing procedure
explained in Section III above. 1If no?e i has set Tik{j] to zero
for all k, then on receipt of a routing update in which Défjl is
not equal to infinity and k is not blocked with respect to j,
node 1 sets Tik{j} to 1 and says that it is not blocked with
respect to j. Node i then recalculates its Di[j] and transmits
this wvalue in its routing update for j. In this manner, all
nodes calculate new values of their routing variables for j in
one update after the link has recovered or a new route has been
established.

The following is the procedure to be followed when a node, i,
recovers from a crash. Node i is assumed to have only a table of

its neighbors, k.

l. Node i requests the expected sequence number for routing
updates for itself from all its neighbors, k. It then uses the
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lowest seguence number and starts a normal routing update (see
Section III) for itself by sending Di{i}=ﬂ to all its neighbors.

2. Each node, j, on receiving a routing update for i when the
sum over k of Tjkti} = @, sets Tjk{i] = 1 for the k from which
the routing update was received. Note that this makes k the sole
downstream neighbor from j with respect to i; thus, j can now
send its routing information to all its neighbors, k. HNote that
this action is identical to that taken during recovery from a.
link failure.

Steps 1 and 2 have explained how all the nodes in the net
discover that a particular node has recovered; step 3 describes
how the recovered node sets its routing variables for all other
nodes in the net.

3. The recovered node 1 awaits routing updates from its
neighbors, k. On receiving a routing update for node j from node
k, it sets Tik{j} toc 1, if k is not blocked with respect to j.
When Tik{j} has been set to 1, 1 broadcasts its routing
information on j to all its neighbors. (Note that by setting
Tik[j] to 1, k becomes the only downstream neighbor of i with
respect to j, and i is therefore free to transmit its values for
the routing update.) HNode i also sets its expected sequence
number for routing updates for j to x+1, where x is the sequence
number in the first packet received from an unblocked node, k.

VI. Handling Gateways without Dynamic Routing Capabilities

It may not be possible for all gateways to implement the routing
algorithm presented above. 1In a collection of networks in which
some gateways implement this routing algorithm and other gateways
use a different routing strategy, the average packet delay cannot
be minimized nor can paths to the destination be guaranteed loop
free. In this case, the proposed routing algorithm attempts to
insure that:
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1) gateways that do implement the routing algorithm provide
optimal service (in terms of minimizing average delay) within the
networks served by gateways that implemesnt the routing algorithm,
and

2) all gateways are able to route traffic between all points on
the networks between which a physical path exists (although such
routes may not be optimal).

To achieve these goals, gateways that do not implement the
dynamic routing algorithm will not be usesd on any route to a
destination unless these gateways provide the only route to that
destination. As the marginal delay through these gateways to any
destination is unknown, it is assumed that it is larger than any
known marginal delay. Such an assumption prevents gateways from
taking advantage of possible optimal routes through
non-dynamically routing gateways, but avoids sending packets on

‘routes that may be wery suboptimal. Blso, unless status-

information concerning these gateways and their connecting
networks is made available to all gateways, then these gateways
and networks must always be assumed to be up. If gateways that
do not implement the routing scheme presented here do implement a
static routing scheme, then given the static routing tables, the
gateways implementing dynamic routing can avoid looping traffic
through any of the gateways. If gateways that do not implement
this routing algorithm implement an alternate routing scheme (to
avoid failed components) or use a different dynamic routing
scheme, then the internet cannot be guaranteed to deliver
traffic. Such a use of conflicting routing algorithms within the
internet is unacceptable because there is no practical way known
to prevent indefinite looping and congestion between gateways
that implement different routing algorithms.

VII. Measuring Marginal Delay

As stated above, this dynamic routing algorithm attempts to
minimize average packet delay by sending packets on 1links with
the lowest marginal delay. The description of the algorithm
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assumed that there was a method for each gateway to calculate the
marginal delay to each of its neighbors. In some networks, this
information may be made available to the gateways by the
communications subnet. If the marginal delay is not available
from the subnet, the gateways can either attempt to measure the
marginal delay directly, or can use some model of the traffic
loads and delay which allows them to calculate marginal delay
from other known quantities. The problem of measuring or
calculating marginal delay will be considered in a separate
paper.

VIII. Status Messages

In the description of node and link failure, the use of explicit
status messages was mentioned. The handling of status messages
is explained in terms of how each gateway obtains information
local to itself, how the gateway can use this information, what
information should be transmitted to other gateways, and how this
transmission can be done.

Status messages «can come from several different sources.,
Networks may send status messages to hosts on the network. For
example, the IMPs in the ARPANET send IMP/destination dead
messages to hosts on the net. Processes within the gateway
machine may have status information; for example, the Reliable
Transmission Protocol process knows the up/down status of the VDH
line. Finally, the gateway can make use of statistics collected
on traffic through itself; for example, the gateway can use its
information on buffer allocations to detect congestion before
packets must be dropped because of lack of gateway resources.
The types of information specifically considered here are: link
status (up or down), host status (up or down), and throughput
information (i.e., the gateway is using all its resources to
transmit packets to a particular network). As additional

information becomes available from networks, the gateways can



make use of it. This paper is simply concerned with explaining
mechanisms for gateways to collect and use whatever status
information may be available.

Gateways can use status information to maintain tables on the
state of their links to other gateways and on the state of local
hosts (i.e., hosts attached to one of the same networks as the
gateway). This information can also be exchanged with other
gateways in the internet. Further, status information on local
congestion (such as resource allocaticn information) can be used
by a gateway in calculating its marginal delay to other gateways.
To avoid the need to recognize in each gateway the many types of
status messages available from the networks in the internet, the
status messages can be grouped into classes. For example,
different networks will use different status messages to indicate
a dead destination, and these can all be translated into one type
of gateway;gateway message. To transmit a status message to
other gateways, the gateway must compose an internet message
(which follows the format for gateway-gateway messages). These
messages can be transmitted in the same manner as are routing
updates (see the retransmit and acknowledgement scheme outlined
above); or in the cases of failed nodes and links, the gateway
can take action to avoid the failed components (see Section V).

IX. Flow Control and Routing

This dynamic routing scheme should alleviate congestion in the
gateways as well as in the networks between gateways. The
marginal delay measured or approximated should include processing
and queueing delay in the gateways. Thus, the marginal delay
will increase for a heavily congested gateway and the routing
algorithm will attempt to adjust routing parameters to avoid the
congested gateway. To avoid network congestion, any flow control
procedure must ultimately quench flow into the network from the
pécket sources. One possible approach to the flow control
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problem is to make gateways that are heavily congesﬁed notify the
internet host sources of the packets travelling through the
gateway. In response to this notification, the packet sources
would decrease their traffic Elow into the internet. As flow
control procedures can be considered somewhat independently of
routing algorithms, solutions to flow control problems will be

discussed in a separate paper.
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X. Examples

Example 1

This example gives the routing updates for ncéz D in the network
pictured below:

VI / A
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The example is explained by following steps 1 through 5 in the
routing algorithm explained in Section III.C. Start with the
initial state given below.

Routing variables, Tik{D}

k\1i A B & D E
A - 1 .5 ) -
B g - : - -
C 0 - ~ -
D 1 - ~ - 1
E - - - g -

Note that - implies that node k is in the set B. (D).

From the above table, make up the table of downstream neighbors.
A downstream neighbor of i with respect to node j 1is any
neighbor, k, of i such that Tikijl is non-zero. As this example
is concerned with routing updates for node D, the following are
the downstream neighbors with respect to node D for each node in
the network:
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Node Downstream neighbors with respect to D
A D
B A
C A,B
D none
E D

L

k

fasl
@]

D
4
+5 w0
w
@
2

=~ 8 8 8 m

The value of Dik for any link i,k which is non-existent is
infinity, oo, the wvalue of Dii is by definition 8.

The node marginal delay can be calculated as:

Ve = i ; TRt
DI(3) = ) T; (3) * (D}, + DL(3))
k
As this example is concerned with routing updates for node D,

substitute D for j in the above equation. The equation must be
solved for i = A,B,C,D, and E. The routing variables, Tik[j}.
and the link marginal delays, Dik' can be obtained from the above
two tables. 1In addition, it can be seen from the above equation
that in order to calculate D:(j), the value of Di{j} must be
known for each Tik{j} that is non-zero. (Note that k is defined
as a downstream neighbor of i with respect to j if Tik{j} is
non-zero. Thus, to calculate the node marginal delay for any
node, i, the node marginal delay of all i's downstream neighbors
must be known). Referring to the table of downstream neighbors,
note that Dﬁ{ﬂ} may be calculated first as D has nc downstream
neighbors. MNext, DA{D} and Dé{Dj can be calculated, as D is the
only downstream neighbor of A and E. Dé{D} can then be
calculated as its downstream neighbor is A. Finally, Dé{D} can

o= 22 -



be calculated as its downstream neighbors are A and B. By
definition, Dﬁ{D} is zero. The calculation of D'E{D}' the node
marginal delay to D for node A, is as follows. In the above
equation, substitute D for j, A for i, and nodes B,C, and D for k
(k is the set of all non-blocked nodes of i with respect to j).
Values of TAk(D} and Dik{D’ are obtained from the tables above.

D (D) = T, (D) * [DﬁB + Da (D) ]

1 |
+ TAC{D:I * [DAQ + DC{D}]
1 ]
+ Tpp(DP) * [D',, + D) (D)]
=8 +0 + 1*(4 + B)
Calculating node marginal delays for all nodes gives the

following results:

Di{D} A B c D
4 5.5 7 8 2

Blocked status of nodes with respect to D, Bi{D]
Eh{D} BBEDI BC{D] BD(D] BEED1

A X = = X
B - X = X
c = - X . 4
D = X X -
E X X X 4

An X in row E, column EC{D] implies that E is blocked with
respect to traffic from C to D. It is not necessary to specify
the set BD{D} as D will never send traffic to itself into the
net. Recall that for each node, i, the set of blocked nodes,
Bi{j}, consists of nodes k such that link i,k does not exist or
such that Tik{j} = B and k is blocked with respect to j.

The initial state in this example was chosen so that the set of
blocked nodes for each node i consists only of node i and nodes k
such that link i,k does not exist.
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Following the steps in the routing algorithm explained in Section
ITI, new routing variables can be computed. As the values in the
initial state in this example were chosen to be steady state
values, the routing wvariables will not change in the first
routing update.

Routing Update 1

Step 1. Each node;, i, calculates a set of Tikij} for each
neighbor, k, using the state information obtained from the last
routing update. If this is the first routing update for j, the

nodes use the information with which they were initialized.

Note that these calculations are not carried out for blocked
nodes; in the following tables for A and delta, blocked nodes are
represented by -. BAlso, the calculations are done only for nodes
that are sending to node D; thus, they are not done for node D.
Recall that for non-blocked neighbor nodes, k, node i calculates
routing variables for its traffic to node j as follows. First,
compute
= \ e
Mi m;n [ Dik + Dk{]}].
Mi is the marginal delay on the best route to j from i.
Next, compute
[ = 1 1 L] Jaxr
hik{j] is the difference in marginal delays between each route to
J from i and the best route to j from i.

Compute

Ajg(3) =min [ Ty, B * B, (3)/t;(3) ]
ﬁhik{j} is the amount by which to decrease Tik{j] for any route
that is not the best route from i to j. The best route from i to
j is increased by the sum of the deltas over all other routes.
Each node, i, measures ti{j}, the total traffic through i to j.

E is a parameter chosen experimentally and used by all nodes in
the net. 1In this example, the value of E is assumed to be .2 and
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the wvalue of ti{j} is assumed to bs 5. Finally, the new routing
variables are computed as:

new Tik{j] = Tik[]) - ilikt]} for k not on the best path
o s T

new Tik{j] = Tik{j} + E: g;ik{]} for k on the best path
to Jj. k

The calculations for node A are as follows (substituting A for i,

D for j, and B,C, and D for k in the above equations).

M, = min [Djp + D§(P)], [Dy. + DA(D)], [Dy, + DY(D)]

Substituting values from the tables above:

M, = min [1.5 + 5.5), [3 + 7], [4 + 8] = 4

A

B, AD) =B £VD (D) EE8p
= [1.5 + 5.5] - 4
= 3
= ! ! - M

A,o(D) = DR, #:DL(D) = My
= [30497] =4
=6

A (D) = Di + DA(D) — M,
= [4 + 8] - 4
= @

=min [ B8, (.2 * 3)/5]

;ﬁhc{bl = min [ TRC’ (E * EAC{E}]Xth{D} 1
=min [ 6, (.2 * 6)/5]

App(P) = min [ T, (B * A, (D)) /L, (D) ]
=min [ 1, (.2 * 8)/5 ]
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For B and C, which are not on the best path to D, the routing
variables are:
new T, (D) = Trp (D) - ﬁABim
=8 -8 =28
new TAC{D] = TRC{D} - .ﬁHC{D}
=@ - f = A
For D, which is on the best path to D, the new routing wvariable

is:
new T, (D) = T, (D) + z Ay (D)
D

=1+0+6 =1

Note in the summation that k takes on the wvalues of all
non-blocked nodes not on the best path to D, i.e., nodes B and C.
The following tables give the wvalues of A, delta and T for all

nodes in the net.

ﬁik[D}, difference between a route from i through k to D

and the best route from i to D

k\i B B C D E
A - 8 B -
B 3 = B =
C 6 3 = =
D ] = = @
F = = = &

ﬁkik’ the amount by which to change routes to D

k\L A B C D E
. - 5] 5 -
B @ - B -
& 4} B - -
D 8 - - 8
E - - — =

=
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New routing variables, Tik{D}

k\i A B C D E
A = 1 .5 ~
B 8 = .5 -
C ] g = -
D 1 = - 1
B = = = =

Step 2. Each node, i, measures Dik for each neighbor, k.

In practice, Dik is a continually changing value sampled by node
i. Determining new values of Dik is shown as a distinct step to
point out that the calculations in step 1 are done with a Dik
calculated in one time period Ty» and the calculations done in

step 4 are done with a Di calculated in the next time period,

k
T,. Assume that the marginal delay, Dik’ on links A,B and B,A
changes from 1,5 to 6 and that all other marginal delays remain

the same. This gives the following wvalues of Di

k -
Link marginal delays, Dik
kM1 A B c D E
A [5] B 3 4 T oo
B (3] a 1.5 oo o
C 3 1.5 a oo oo
D 4 [o's ] [o'n) 8 2
E oo oo oo 2 g

Step 3. Node j starts a routing update for itself, by sending a

routing message containing Di{j} = P to all its neighbors.
This example is concerned only with the routing update for node

D; this is started by D sending Dﬁ{ﬂ} = B to its neighbors, A
and E.

= P



.fﬂ

Step 4. After receiving Di{j} from all downstream neighbors, k,
node i calculates Di{j} and determines whether it is blocked with
respect to j. MNode i then sends a routing message to all its
neighbors. The routing message contains the value of Di{j} and
the status of nede i (blocked or unblocked) with respect to j.

The following table indicates what values each of the routing
messages contains, to which nodes each message is sent, and in
what order the messages may be sent. The new node marginal
delays are calculated with the link marginal delays from Step 2
and the routing wariables from Step 1. As each node must wait to
receive routing messages from its downstream neighbors, it can be
seen from the downstream neighbor table above that D can send its
routing message first (it has no downstream neighbors), followed
by A and E (their only downstream neighbor is D), followed by B,
then C. The far right column lists the nodes that have received
routing messages from all their downstream neighbors and have not
yet sent their routing messages.

Node sending Di{D} blocked sent to nodes that have

routing message status rcvd all downstream

routing msgs

D g not blocked AE A E
A not blocked B,C,D B,E
E not blocked D

B 18 not blocked A,C C

C 9.25 blocked A,B

After exchanging routing messages, the network state is as
pictured. WNote the new values of link marginal delays from Step
2 (the delay on link A,B changed from 1.5 to &) and the new node
marginal delays. Nede C is blocked (indicated by * in the
diagram) with respect to traffiec to D, because node C-is sending
traffic for D to node B and node B's marginal delay to D is
greater than C's marginal delay to D. Routing variables have not
yet been changed.
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Step 5. After receiving routing messzges from all neighbors, go
to step 1. HNote that it is necessary to wait until the routing
information has been received from all neighbors before updating
the values of T. To compute new valuss of T, each node needs a

- complete set (from both its downstream and non-downstream

neighbors) of Ditj}' and the blocked nodes, k, for each
destination, j.

Routing Update 2

Step 1. Each node, i, calculates =z set of Tiktj] for each
neighbor, k, using the state information obtained from the last
routing update.

Using the link marginal delays and node marginal delays from the
previous routing update (see the diagram above or the tables in
Steps 2 and 4 above), the new routing variables are calculated.

Values of these routing variables are given in the table below.

Cie 28



Aik{n}, difference between a route from i through k to D

| A A
A —
B 12
C —
D - 4]
B —
ziik' the
k\i A
A —
B {4
f: —
D B
3 4

and the best route from i to D

B
i}

c
g

D

E

amount by which to change routes to D

c
5

D

.18

-

New routing variables, Tik{D}

k\i A
A -
B 8
c i
D 1
E -—

The new routing variables are shown in

B
1

(&

D

.68

32

the diagram below. Note

that node C is now sending more of its traffic for node D through
node A. Node B is still sending all its traffic through A to D,
because in the last routing message

node.)

e

{see Step 4 above), C said
that it was blocked with respect to D.
is blocked,

{Recall that when a node

no node can increase its routing variables for that
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Step 2. Each node, i, measures Dik for each neighbor, k.

It is assumed that the link marginal dszlays do not change at this
point.

Step 3. Node j starts a routing updats for itself, by sending a
routing message containing Di[j} = B te all its neighbors.

Node D starts a routing update for itseslf by sending Dﬂ{D] to A
and E.

Step 4. After receiving Dﬁ{j] from all downstream neighbors, k,
node i calculates Di{j} and determines whether it is blocked with
respect to j. Node i then sends a routing message to all its
neighbors. The routing message contains the wvalue of Di{j} and
the status of node i (blocked or unblocked) with respect to j.
The new node marginal delays calculated with the routing
variables from Step 1 above and the link marginal delays from
Step 2 are:

D!(D) A B C D E
4 10 8,44 B 2

Note that node C is still blocked with respect to D, as it is
sending traffic through a node that has a greater marginal delay
to node D than itself. After propzgating routing messages

= 3L -



containing the new wvalues of Di{D} and the new blocked status of

each node, the state of the network is:

/ B\ / p \ Y
IDE{D}=\TED{DI=1'E }fﬂb{D}=\< TADED}:I'EIDEID]=\
\ 2.8 / Dgp=2-8 "\ pg.g / Dap=4.8 \ 4.9 /
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[ xCx \ £ 3 N\
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Step 5. After receiving routing messages from all neighbors, go
to step 1.

Routing Update N

After several routing updates, assuming that the 1link marginal
delays do not change, node C is no longer sending traffic for
node D through neode B. At this stage, node C becomes unblocked,
and node B is free to start sending its traffic for D through
node C.

Step 1. Each node, i, calculates a set of Tik{j} for each
neighbor, k, using the state information obtained from the last

routing update.

New routing wvariables, Tik{D}

kN1 A B c D E
A ~ .94 1 e
B g = g -
C = .66 - -
D 1 = = 1
E = - - -

I
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After calculating the new routing wvariables, the state of the
network is as pictured. HNote that a small amount of traffic is
now being sent from node B through node C to node D. Succeeding
routing updates will increase this amount of traffic until the

marginal delay on the path from B through € egquals that on the
path from B through A.
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Example 2

This example shows how routing variables for node C adjust when
link C,D in the network pictured below fails. This example is

explained in terms of the procedure in Section V.

T
1 {‘: -
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\ /
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/ \ SR
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Ae N Ly " /S F o\
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After the first routing update for C, it is assumed that the
network is in this state.

Routing variables, Tik{C}

70 TR R v R o S R = B ]

k\i A B o D E F G
A - .5 5] - - = -
B 4 - - 1 - - -
G- 1 - - 1 - - -
D - 5 B - il o5 -
E - - - g - . 1
F - - - 8 8 - -
G - == — — - =
Link marginal delays, D;k
k\i A B D E F G
B 2 2 w oo o o]
2 g w 2 m oo 0
2 o (] 2 loe’ (s o] (s3]
o 2 2 @ 1 4 o
w oo oo i 5 3 5
(oo} oo o 4 3 5} oo
0 o (o'0] (o's] 5 (s] B
Di{C] 2 4 4] 2 3 6 8
Bh[{':] BE{C} BC{C} BD{C] EE{C} BF{C} BG(C]
Fiy 4 - X = X
B = X - X X X
C = X = b4 b4 X
D X - X = = X
E X X - X - -
F X X - - 4
G £ X b4 - b4

Failure of link D,C is detected by node D.
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Step 1. Node i sets Di to infinity. For all nodes, j, such that

Tik{j} was not zerﬂ,k node 1 sets Tik{j} to zero. Non-zero
routing variables for neighbor nodes, m (m not egual te k), can
be increased proportionally so that the sum of the new routing
variables is one. Thus, other links in use for traffic to j can
take over the traffic load from link i,k. However, to maintain
loop freedom, links not previously in use cannot be used until
new routing information, in particular the blocked status of

neighbor nodes, is propagated throughout the net.

r
HNode D sets DDC to oo and TDEIC} to 8.
Step 2. For all nodes, j, to which i was sending traffic and to
which i can no longer send traffic on any route, node i should
set D'i[j} to infinity and should say that it is blocked with
respect to j.

Node D sets Dﬁ{ﬂ] to wand node D is blocked with respect to C.

Step 3. For each j such that the new value of Di{j} is infinity,
node i sends a routing message to each of its neighbors. The
routing message contains the value Diij], which is infinity, and
that i is blocked with respect to j. This message uses the
sequence number which node i expects to be in the next routing
update for j.

MNode D sends routing update 2 to nodes B,E, and F.
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Node sending Di{C] blocked sent to nodes that have

routing message status rcvd all downstream

routing msgs

D oo blocked B;E,.F E

E oo blocked D,?,G F,G
F los] blocked D,E

-G [es) blocked E

Step 4. Each node, m, receiving a message as in step 3 treats it
as a normal routing update except that it sets Tmi{j} to 8 and
increases its non-zero routing variables proportionally, so that
the sum of the new routing wariables is one. If the node can no
longer send traffic to J on any route, it sets its node marginal
delay to infinity and says that it is blocked with respect to j.
These values are then passed to its neighbors in its routing

-update Foxr="9. If a node receives a message giving Di{j} as

infinity and that node is still upstream from j, then it sends a
special message to j to prompt j to immediately start two routing
updates for itself.

Since they have received a routing update, nodes E,F, and G
calculate new routing variables. Their new routing variables for
Gy Tik{C} are all zero. Also, their node marginal delays to C
are infinity, and they are blocked with respect to C.

Node B is still waiting for a routing update from its downstream
neighbor, A, so it does not recalculate its routing variables for
C, nor does it propagate the routing update for C which was
started by D. However, B sends a special message to C to prompt
C to start two routing updates for itself.

At this point, as can be seen in the diagram below, nodes D, E,
F, and G are unable to send traffic to node C.
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In response to the message from B, node C starts routing update 2

for 1itself. The node marginal delays are calculated from the
routing variables and link marginal delays shown above.

Node sending DE{C} blocked sent to nodes that have
routing message status rcvd all downstream

routing msgs

C g not blocked A A
A 2 not blocked B B
B 4 not blocked D
Nodes A and B now calculate new routing wvariables for C. The

values of node and link marginal delays needed to calculate new
routing variables are taken from the diagram above; the values
of E and t are assumed to be .2 and 5, respectively.
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New routing wvariables, Tiktc}

k\i A B
A - 1
B = o
C 1 -
D = g
E - =
F - =
G - i

As nodes E, F, and G have already received routing messages for
routing update 2 from all their downs:ream neighbors (see Step 3
above), they do not receive the new marginal delays that would
enable them to make use of the alternzte route through B at this
time. Similarly, node D, in detecting that 1link C,D was down,
essentially assumed receipt of the second routing update from C.
Node D ignores receipt of the second routing update from C, as
this is considered a duplicate.

Node C starts routing update 3, which propagates to all nodes in
the net. All nodes set new routing variables for their traffic
to C reflecting the use of link D,B in place of 1link D,C. The
values of routing variables and 1link marginal delays needed to
calculate the new node marginal delays are taken from the diagram
above.

Node sending Di{C] blocked sent to nodes that have

routing message status rcvd all downstream

routing msgs

c 1] not blocked A A

A 2 not blocked B;C B

B 4 not blocked L,D D

D 6 not blocked B,E,F E,F
E T not blocked D,F,G F,G
F 148 not blocked D,E

G 12 not blocked E

Ve agie
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The new values of the routing variables (calculated from the node
marginal delays in the table above and the 1link marginal delays
in the previous diagram) are as follows. Note that any node that
had set Tik{C} to 8§ for all k, now sets Tik{CJ to 1 on receipt of
the first DQ{C] not egual to infinity and for which k is not
blocked with respect to j.

New routing wariables, Tik{C]

kAL A B C D E F G
A - 1 B - - - -
B o - - 1 - - -
C 1 ~ - 0 - - -
D - B g - 1 1 -
E - - - 0 - p il
F - - - g B - ~
G - - - - B - -

The state of the network is shown in the diagram below. HNote
that all nodes can now send traffic to node C. Nodes D, E, F,
and G are routing traffic for C over link D,B rather than the
failed link, D,C.
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