Ués

January 1978

EM?E&ME?’/Vay‘.e—éc:aL Saectitn X4 2,1
\

SPECIFICATION OF INTERNETWORK
TRANSMISSION CONTROL PROGRAM

TCP

Version 3

Vinton G. Cerf

Advanced Research Projects Agency

Jonathan B. Postel

. Information Sciences Institute

January 1978

Information Sciences Institute
University of Southern California
4676 Admiralty Way
Marina del Rey, California 90291

(213) 822-1511

INFORHATION SCIEMCES INSTITUTE

UNIVERSITY OF SOUTHERN CALIFORMIA /% /;

f""'\.

January 1978
TCP-3 Specification
Table Of Contenis

TABLE OF CONTENTS

Prel‘rac&--..........f+......*............pageiii
e T L M e |
2. The TCP InterfacetodlhaUsar 4 4+ i « 4 ¢ v s s s s a5 s s s o 4 s s-n o« page B
2.1 The TCP as a post office of L e e, IS OREE A eV mareen, B S 8 nape 05

) 2-2 SDEHEiS ﬂl'ld ﬂddeSSinE " L] - [] [[] [- [] » [} [- " [- [L]] [L] L] [] DEE.B E

'bq

2+3 Wh?rt 15 a LE“EJ"? E B B ® ¥ & ® # ® & & @& & #F ® ® & & & & ® ¥ ¥ B B W Fagﬂ

2.4 TCP user commands T e e e T e e Y oD T,
2'4!1 Open - [] [] - - - " " L] L] L] [L] L] L] - - - - - - - L] - L] w L] L] L 3 page E‘
e el L e it e il ot PR T e e e L o
A RECEIVE. - o e e e e e N e o oo page 10
.21"1»& CIOEE = 8 ® = ® F 4 . ¥ 4 & 8 ® . » . % 0w I;‘-EIEE 11
214.5 Urg-E!nt - - - - - [] " L]] L] - L L] L] - L paEE 12
2.4.6 Stalus « & & & & @ " . o ow ® 8 8 % B 8 & B @ page 12
2-4-? nb“r[- L] L] L L] L]] . [] [] w L] # L] L] . L3 L] L] - L] L] - L] L] L] - - page 13

215 TCP l'ﬂ USEI’ ﬂ"lEEﬁaE!ﬁE » - [] . - [] " L] ']] L] » - [» [» L] [[] L] L] . PEEE is
T e 1 T B o L e e e e e (i e R e P I page 14
25.2Message formal " o . o, 0 4 0 e s e 5 e 0 s 0w e a5 s e page 14
R VNt EOanE. e v von b T e s e page 15

5..Hfghar T R el bt o e P b ol el i e o i) page 17

e Lt o [T P G e e i e e S g o Gin o i g o e e e o o page 17

3-2 WE.‘" hﬂﬂ‘wﬂ 5DCF'-Et5 L] L] []] [L] - L] L] - - L] - * - L L] L] - L] L] - L] - page 1?

3;3 HEEBI’THEEHG"I Prﬂifﬂ:ﬂ| L L] - [] 1] - [" [] [EF L] L] L] L . L] Ll L] L - - page 1?

Cerf & Postel [Page i]

TCP-3 Specification
Table Of Contenis

Q. TGP DesIgn o« 5 5 5w a St e N o o] e
. 4+1 Iﬂ'rndu:tiﬂn‘ L] L] L] L] L] L] [] L] L] L] L] L] L] L] L] [) - - L

4.2 Connection management .

4.2.1 Initial sequence number sele:tmn S Py T e
4,2.2 Establishing a connection oM OoioomMio oD o a0
423 Half—ﬂpen connaclions B o8 s % F B O & B OB B 8 2 B @
4.2.4 Knowing When to Keep Quiet e e e o
8.2.5 Closing a connection oD s e e mm el el e
4.2.6 End of Letter Sequence Nurnber Adjustments " e
4.2.7 The Communication of Urgent Information AR O a0 o Ol
4.2.8 The Possibility of Less than Reliable Communication e
4.2.9 TCP Connection State Transitions AR e e

4.3 TCP data structures e e
4.3.1 Internetwork Packet Format
4.3.2 TCP Packet Format s e
4.3.3 Transmission Control Block

- = o =
- = m -
" o & -
« = = =
- ® ® =
L " w
. ® @ L]
® ® & =
LI T T
- -
- - - L
-

4.4 Siructure Df the TGP & @& ® & w & B & & B & ¥ ® B B W
4.4.1 Introduction T RN 0O adnto oo ofgfnfo "o oo
4.4.2 Input packet handler T e o T T e R e e ol
443 Reassembler . « « + & &« & & & & & & & s & & % % e
ﬂ.ILI-'I PEE'I'QEHZEF T T T T T
4,45 OQutput packel handler 05D ORnSD DGO T O 0N D . D

4.4.6 Retransmitter T
4.5 Buffer and window allocalion + « « & 4 & = & = & » s & s
q-E-l |Hfrﬂductiﬂh « & ¥ ® % B B W @ ® W W W B B B B O ®
45.2 The send side T e e 2o R e
453 The receive side & + « « &+ & &« & 5 » soe e s e s

BlbﬂngraphyI-I-I-'I-I-I'I'Inrll'l'l!'ll!!'!Ii'i"Il

[Page ii]

- L] L] - L] - - .

- - - -
- - - -

January 1978

- L3 L -

- - - -

- page 21
. page 21
. page 25
. page 25
O page 25
. page 29
. page 32
. page 33
o page 34
. page 89
. pepe 35
. page 35
A pege 56
. page 56
. page B9
. page 63
. page 65
. page 65
. page 67
. page 68
. page 70
. page 71
. page 71
. page 71
. page 71
. page 72
. page 72
. page 75

Carf & Postel

-

January 1978
TCP-3 Specification

Preface

PREFACE

This document describes the functions to be perforrmed by the internetwork Transmission
Control Program (TCP} and its interface to programs or users that require its services. There
have been three previous TCP specifications: The first [CD574] defined version 1 of TCP. A
second [PGR76a] was written for the Defense Communications Agency in connection with its
AUTODIN Il project. The third [Cerf 77] defined version 2, for use in the ARPA internetwork
research projects. :

The AUTODIN Il version differed from the original version in the following ways:

Specification of a resynthrunizaliuﬁ machanism was included, and fields for securilty and
priority, which were known requirements of AUTODIN Il, were added.

The internet version 2 differed from the original version in the following ways:

A different resynchronization procedure was introduced; an "option” field was defined for
the TCP header to accommodate not only security and priority but other special features
" concerned with, for example, packet speech services, dizznostic timestamping, and so on.

This version eliminated all error messages but for RESET and thus simplified the header
format. There are still many local errors which can be reported to the user, but none of
these need cross the network(s) between TCP’.

Connection closing was slightly more elaborate in Version 2 than in version 1 because the
"FIN signals had to be acknowledged. Furthermore, the INT and FIN facilities no longer
caused flushing of the data stream. (A separate "flush” facility was tested, but eliminated,
in the end.) Dealing with flow-control windows that have gone to zero was a new feature of
version 2, end, finally, the reassembly of fragmenis into segments was more carefully

specified.

In version 3 specified in this document, TCP has further evolved. The primary changes from
version 2 are;

The resynchronization mechanismhas been eliminated in favor of a quiet period on
initialization of the TCP,

Buffer management and lciters are more tightly coupled by the coupling of the end of letter
flag to a receive buffer size.

The interrupt signal has been eliminated in favor of an urgent pointer.

A further separation of the internet and TCP specific information in the packet format has
been achieved, with provision for variable length addresses in the internet header.

Cerf & Postel :) [Page iii]

January 1978
TCP-3 Specification

Proface

The evolulion from TCP version 2 to version 3 was influenced by many people, but special
mention should be made of the work at MIT's Laboratory for Computer Science on the Data
Stream Protocol (DSP) by Dave Clark and Dave Reed. Many of the specific changes introduced
in version 3 were first described by Ray Tomlinson of BBN [Tomlinson77].

Although the list of participants in the TCP work is very long (see [CEHKKS77] - the final TCP
project report), special acknowledgements are due to R. Kahn, R. Tomlinson, Y. Dalal, R. Karp
end C. Sunshine for their active participation in the design of TCP.

This edition of the specification benefited from the comments of the following reviewers:
Michael Padlipsky, Carl Sunshine, John Day, Gary Grossman, and Ray Tomlinsan.

[Page iv] Cerf & Postel

January 1978

Transmission Conirol Protocol

Version 3

1. INTRODUCTION

The Transmission Control Protocol (TCP) is intended for use as a highly reliable host-to-host
protocol between hosts in packet-switched computer communication networks, and especially in
interconnected systems of such networks. This section introduces some of the terminology
used in the remainder of the document and some of the assumptions made in the design of the
protocol.

Several basic assumptions are made about process to process communication and these are
listed here without further justification. The interested reader is referred to [CK74,
Tomlinson74, Belsnes74, Dalal74, Dalal75, Sunshine76a, CEHKKS77] for further discussion.
HOSTs are computers attached to a network, and from the communication network’s point of
view are the sources and destinations of messages. PROCESSES are viewed as the active
elements of all host computers In a network (in accordance with the fairly common definition of
a process as a program in execution). Even terminals and files or other 1/O media ere viewed
as communicating through the use of protesses. Thus, all network communication is viewed as
inter-process communication. |

Since a process may need to distinguish among several communication streams between itself
and another process [or processes], we imagine that each process may have a number of
PORTs through which it communicales with the ports of other processes.

Since port names are selected Independently by each operating system, TCP, or user, they may
not be unique. To provide for unique names at each TCP, we concatenate an internet ADDRESS
specific to the TCP level with a port name to create 8 SOCKET name which will be unigque
throughout all networks connected together.

For example:
Network = ARPANET (number 12),
Host = ISI-TENEXA (imp 22, host 1),
Port = FTP-Server (port 3);

or
£PBn1810-00018118-6BB0BEC3aBBBRER1
alsfalslalafalala el el talahalaahetalatetatal s s D R AN

Cerf & Postel ' [Page 1]

——

January 1878

TCP-3 Specificalion
Infreduction

A pair of socksts form a CONNECTION which can be used to carry data in either direction (ie.
“full duplex”). The connection is uniquely identified by the <local socket, foreign socket>
address pair, and the same local socket name can participats in multiple connections to
different foreign sockets {see section 2.2). :

Processes exchange finite length LETTERS as a way of communicating; thus, letter boundaries
might be significant in some process-to-process communications. However, the length of a
letter may be such that it must be broken into SEGMENTS before It can be transmitled to Its
destination. We assume that the segments will normally be reassembled Into a letter before
being passed to the receiving process. A segment may contain all or a part of a letter, but that
a segment never contains parts of more than one letter.

Furthermore, there Is no restriction on the length of a letter. A connection might be formed to
send a single long letter (a stream of bytes, In effect). In fact, processes can communicate via
TCP without ever marking the end of a letter, but we think this is atypical of most anticipated
use. :

There Is, however, a coupling between letters as transmitted and the use of buffers of data that
cross the TCP/user interface. Each time an end of letter (EQL) signal is associated with data
placed into the receiving user’s buffer, the buffer is returned to the user for processing even if
the buffer is not filled.

We specifically assume that segments are transmitted from Host to Host through means of a
PACKET SWITCHING NETWORK (PSN) [RW70, Pouzin73]. This assumption is probably
. unnecessary, since a circuit switched network; or a hybrid combination of the two, could also
be used, but for concreteness, we explicitly assume that the hosts are connected to one or
mora PACKET SWITCHES [PS] of a PSN [HKOCW70, Pouzin74, SW711

Processes make use of the TCP by handing it letters (or buffers filled with parts of a letter).
The TCP breaks these into segments, if necessary, and then embeds each segment in an
INTERNETWORK PACKET. Each internetwork packet is in turn embedded in a LOCAL PACKET
suitable for transmission from the host to one of its serving PSs. The packet switches may
perform further formatting, fragmentation, or other operations to achieve the delivery of the
local packet to the destination Host. :

The term LOCAL PACKET is used generically here to mean the formatted bit string exchanged
between a host and a packet switch. The format of bit strings exchanged between the packet
switches in a PSN will generally not be of concern to us. If an internetwork packet is destined
for a TCP in a foreign PSN, the packet is routed to a gateway which connects the originating
PSN with an intermediate PSN or with the destination PSN. Routing of internetwork packets to
the gateway may be the responsibility of the source TCP or the local PSN, depending upon the

PSN services available.

One model of TGP operation s to imagine that there is a basic gateway associated with each

[Page 2] ; Cerf & Postel

.-“'-'\
1

January 1978
TCP-3 Specification

Introduction

the gateway may be the responsibility of the source TC? or the local PSN, depending upon the
PSM services available.

One model of TCP operation is to imagine that there is a basic gateway associated with each
TCP which provides an interface to the local network. This basic galeway performs routing and
packet reformatting or embedding, and may also implement congestion and error control
beiween the TCP and gateways at or intermediate to the destination TCP.

Al a galewey belween nelworks, the internetwork packet is "unwrapped” from ils local packet
format and examined to determine through which network the internetwork packet should
travel next. The internetwork packet is then "wrapped” in a local packet format suitable to the
next network and passed on to-a new packet switch.

A gateway is permitted to break up a segment carried by an internetwork packet into smaller
FRAGMENTS if this Is necessary for transmission throuvgh the next network. To do this, the
gateway produces & sel of internetwork packels, each carrying a fragment. Fragmenis may be
broken into smaller ones at intermediate gateways. The packet format is designed so that the
destination TCP can reassemble fragments into segmenis and verify the end-to-end checksum
associated with the segment. Segments, of course, can be reassembled into letters.

Note that the design of fragmentation procedures is still an active area and this function
may in the future be removed from TCP's concerns and become entirely a

gateway-to-gateway Issue.

The TCP is responsible for regulating the flow of internetwork packets to and from the
processes it serves, as a way of preventing its host from becoming saturated or overloaded
with traffic. The TCP is also responsible for retransmitling unacknowledged packels, and for
detecting duplicates. A consequence of this error detection/retransmission scheme is that the
order of letters received on a given connection can also be maintained [CK74,Sunshine75]
To perform these functions, the TCP opens and closes connections between ports as described
in section 4.2,

Cerf & Postel ' [Page 3]

January 1978

TCP-3 Specification
The TCP Interface To Tha User

[Page 4] "~ Cerf & Postel

January 1978
TCP-3 Specification
The TCP intarface To The User

2. THE TCP INTERFACE TO THE USER

The functional description of user commands to the TCP is, at best, fictional, since every
operating system will have different facilities. Consequently, we must warn readers that various
TCP implementations may have ditferent user interfaces. These will all be TCP's, as long as
control messages are properly interpreted or emitted, as required. In spite of this caveat, it
appears useful to have at least one concrete view of a user interface to aid In thinking about
TCP-derived services.

2.1 The TCP as a Post Office

The TCP acts in many ways like a postal service since it provides a way for processes to
exchange letters with each other. It sometimes happens that a process may offer some
service, but not know in advance what its correspondents’ addresses are. The analogy can
be drawn with a mail order house which opens a post office box which can accept mail from
any source. Unlike the post box, however, once a letter from a particular correspondent
arrives, the resulting connection becomes specific to the correspondents until the
correspondents declare otherwise--thus making the TCP more like a telephone service.

~ Without this particularization, the TCP could not perform its flow control, sequencing,
duplicate detection, end-to-end acknowledgement, and error control services.

2.2 Sockets and Addressing

We have borrowed the term SOCKET from the ARPANET terminclogy [CCC70, DCA76]) In
general, a socket ls the concatenation of. an internetwork ADDRESS and a PORT identifier.
A CONNECTION is fully specified by the pair of SOCKETS at each end since the same local
socket name may participate in many connections to different foreign sockets.

Once the conneclion is specified in the OPEM command (see section 2.4.2), the TCP
supplies a (short) local connection name by which the user refers to the connection in
.subsequent commands. As will be seen, this facilitates using connections with initially
unspecified foreign sockets.

TCP's are free to associate ports with processes however they choose. However, several
basic concepts seem necessary in any implementation. There must be well known sockels
which the TCP associates only with the “appropriste” processes by some means. We
envision that processes may ‘"own" sockets, and that processes can only initiate
connections on the sockets they own. {Means for implementing ownership is a local issue,
but we envision a Request Port user command, or 2 method of uniquely allocating a group
of ports to a given process, e.. by associating the high order bits of a port ‘name with 2

given process.)

Once iniliated, a connection may be passed to another process that does not own the local
socket (e.g. from "logger" to service process). Strictly speaking this is a reconnection issue

Cerf & Postel [Page 5]

January 1978

TCP-3 Specification
The TCP Interface To The User

which might be more elegantly handled by a general reconnection protocol as discussed in
section 3.3. To simplify passing a connection within a single TCP, however, such "invisible"
switches may be allowed, as in TENEX systems.

Of course, each connection is assoclated with exactly one process, and any attempt to
reference that connection by another process should be treated as an error by the TCP.
This prevents another process from stealing data from or inserting data into another
process’ data stream, and also prevents masquerading, spoofing, or other forms of.
malicious mischief {given a correct impiementation of TCP in a protective operating system
environment).

A connection is ‘initialed" by the rendezvous of an arriving internetwork packet and a
waiting Transmission Control Block (TCB) created by a user OPEN, SEND, URGENT, or
RECEIVE command (see section 2.4). The matching of local and foreign socket identifiers
determines when a successful conneclion has been initiated. The connection becomes
"established" when sequence numbers have been synchronized in both directions as

described in section 4.2.2.

It is possible to specify a socket only partially by setting the PORT identifier to zero or
setting both the TCP and PORT identifiers to zero. A socket of all zero is called
UNSPECIFIED. The purpose behind unspecified sockets is to provide a sort of "general
delivery” facility (useful for processes offering services on "well known" sockets]).

There are bounds on the degree of unspecificity of socket identifiers. TCB's must have fully
- specified local sockets, although the foreign socket may be fully or partly unspecified.
Arriving packels must have fully specified sockets.

We employ the following notation:
x.y.z = fully specified socket with x=net, y=TCP, z=port
x.y.u = as above, but unspecified port
¥.UuU = as above, but unspecified TCP and porl
uv.uu = complelely unspecified
with respect to implementation, u = 0 [zero]

We illustrate the principles of matching by giving all cases of incoming packets which match
with existing TCB's. Generally, both the local socket field of the TCB and the destination
sockel field of the arriving packet must match, and the foreign field of the TCB and the

source socket field of the arriving packet must match.

[Page 6] ' Cerf & Postel

January 1978
TCP-3 Specification
Tha TCP Interface To The User

TCB-local TCB-foreign Packet-source Pac<et-destination

(a) a.b.c e.f.g e.f.g a.b.c
(b) a.b.c e.f.u e.f.g a.b.c
{c) a.b.c E.U.U e.f.g a.b.c
(d) a.b.c THTAT e.f.g a.b.c

There are no other legal combinations of socket identifiers which match. Case {(d} is typical
of the ARPANET well known socket idea in which the well known socket (ab.c) LISTENS for
a connection from any (uu.u) socket. Cases (b) and (c) can be used to restrict matching to
a particular TCP or net. More elaborate masking facilities could be implemented without
adverse effects, so this matching facility could be considered the minimum acceptable for
TCP operation. :

2.3 What is a Letter?

A letter is a sequence of one or more successive octats (8-bit bytes) on a TCP connection.
The beginning of a letter is marked by a BOL control flag in a packet. The end of a letter is
marked by the appearance of an EOL control flag in a packet. A letter is the minimum unit
of information which must be passed from a receiving TCP to a receiving process. A TCP
may pass less information to the receiving program, or it may pass more, but when a TCP
has & complete letter it must not wait for more data from the remole process before
passing the letter to the receiving process if the receiving process is ready to accept it.

Generally, the locations of letter boundaries are not passed to the receiving program. The
exceplion is for non-reliable transmission (see section 4.2.8). In this case, when a section
of data Is missing, the data which follows must either begin on a letter boundary or contain
an indication that the data does not begin on a letter boundary.

The sequence number of the first octet of data in any letters on a given connection is always
equal to zero, modulo the receive buffer size. That is, whenever an EOL Is transmitted, the
sender advances his send sequence number by an amount (in the range 0 to buffersize=-1)
sufficient to consume all the unused space in the receiver’s buffer. The amount of space
consumed in this fashion is accounted for in the flow control mechanism in the same way as
space s consumend by real dala (see section 45) The size of the receive buifer is
communicated between the TCPs in the connection estzblishing exchange.

The EOL interpretation permits the receiving TCP o discard letter boundary information.
Higher level protocols are required to provide their own mechanism for parsing the data
stream and cannol depend on the EOL mechanism. ECL ailso has the property that it
consumes all the unused space in a buffer {(as specified in the buffer size option).

Cerf & Postel : [Page 7]

January 1978

TCP-3 Specification
Tha TCP Intarfzce To The User

2.4 TCP User Commands

The following seclions functionally characterize a USER/TCP interface. The notation used is
similar to most procedure or function calls in high level languages, but this usage Is not
meant to rule out trap type service calls [e.g. SVC's, UUD's, EMT’s,...].

The user commands described below specify the basic functions the TCP will perform io
support interprocess communication. Individual implementations should define their own
exact format, and may provide combinations or subsets of the basic functions in single calls.
In particular, some implementations may wish to automalically OPEN a connection on the
first SEND, RECEIVE, or URGENT issued by the user for a given connection.

In providing interprocess communication facilities, the TCP must not enly accept commands,
but must also return information to the processes it serves. The latter consists of:

(a) general information about a connection [e.g., interrupts, remote close, binding of
unspecified foreign socket]

{b) replies to specific user commands indicating succcess or various types of failure.

Although the means for signalling user processes and the exact format of replies will vary
from one implementation to another, it would promote common undersianding and testing if
a common set of codes were adopted. Such a set of event codes is described in section 2.5,

- 2.4.1 Open
Format: OPEN (local port, foreign socket [, buffer size] [, timeout))

We assume that the local TCP is aware of the identity of the processes it serves and will
check the authority of the process to use the connection specified. Depending upon the
implementation of the TCP, the source network and TCP identifiers will either be supplied
by the TCP or by the processes that serve it [e.g. the program which interfaces the TCP
to its packetl switch or the packet switch itself]). These considerations are the result of
concern about security, to the extent that no TCP be able to masquerade as another one,
and so on. Similarly, no process can masquerade as another without the collusion of the
TCP.

It no foreign socket is specified {i.e. the foreign socket parameter is 0), then this
constititutes a LISTENING local socket which can accept communication from any foreign
sockel. Provision Is also made for partial specification of foreign sockets as described in

section 2.2,

If the specified connection is already OPEN, an error is returned, otherwise a full-duplex
transmission control block (TCB) Is created and partially filled In with data from the

[Page 8] Cerf & Postel

oy

T

January 1978

TCP-3 Specification
The TCP Inlarface To Tha User

OPEN command parameters. The TCB format is described in more detail in section
432, i

No network traffic need be generated by the OPEM command. The first SEND or
URGENT by the local user or the foreign user will typically cause the TCP o synchronize
(i.e. establish) the connection, although synchronization could be immediately initiated on
non-listaning opens.

The buffer size, if present, indicates that the caller will always receive data from the
connection in that size of buffers.

The timeout, if present, permits the caller to set up a timeout for all buffers transmitied
on the connection. If a buffer is nol successfully delivered to the destination within the
timeout period, the TCP will abort the connection. The present global default is 30
seconds. The buffer retransmission rate may vary, and is the responsibility of the TCP
and not the user. Most likely, it will be related to the measured time for responses from
the remola TCP.

Depending on the TCP implementation, either a lacal connection name will be returned to
the user by the TCP, or the user will specify this local connection name (in which case
another parameter is needed in the calll, The local connection name can then be used as
a short hand term for the connection defined by the <local socket, foreign socket> pair.

Responses from the TCP which may occur as a rzsult of this call are detailed in sections

25 and 4.2.9.

2.4.2 Send

Format: SEND{local connection name, buffer address, byte count, EOL flag [, timeout]}

This call causes the data contained in the indicaled user buffer to be sent on the
indicaled connection. If the conneclion has not bean opened, the SEND is considered an
error. Some implementations may allow users to SEND first, in which case an asutomatic
OPEN would be done. If the calling process is not authorized to use this connection, an

error is returned.

If the EOL flag is set, the data is the End Of a Letter, and the EOL bit will be set in the
last internetwork packet created from the buffer {see section 4.3.2 - TCP packet format).
If the EOL flag is not set, subsequent SENDs will appear to be part of the same letter.

If no foreign socket was specified in the OPEN, but the connection is established (e.g.
because & LISTENing connection has become specific due to a foreign packet arriving for
the local socket]) then the designated bufier is sent to the implied foreign sockel. In

Cerf & Postel ' - [Page 9]

January 1978

TCP-3 Specification
The TCP Interface To Tha User

general, users who make use of OPEN with an unspecified foreign socket can make use
of SEND without ever explicitly knowing the foreign socket address.

However, If a SEND is attempted before the foreign socket becomes specified, an error
will be returned. Users can use the STATUS call to determine the status of the
connection. In some implementations the TCP may nolify the user when an unspecified
socket is bound.

If a timeout is specified, then the current limeoul for this connection is changed to the
new one,

In the simplest implementation, SEND would not return control to the sending process
until either the transmission was complete or the timeout had been exceeded. However,
“this simple method is both highly subject to deadlocks (for example, both sides of the
connection might try to do SENDs before doing any RECEIVEs) and offers poor
performance, so it is nol recommended. A more sophisticated implementation would
return immediately fo allow the process to run concurrently with network 1f0, and,
furthermore, to allow multiple SENDs to -be in progress. Multiple SENDs are served in
first come, first served order, so the TCP will queue those it cannot service immediately.

Respanses from the TCP which may occur as a resull of this call are detailed in sections
25 and 4.2.9.

We have implicitly assumed an asynchronous user interface in which a SEND later elicits
some kind of SIGNAL or pseudo-interrupt from the serving TCP. An alternative is to
retlurn a response immediately. For instance, SENDs might return immediate local
acknowledgment, even if the packet sent had not been acknowledged by the distant TCP.
We could optimistically assume eventual success. |f we are wrong, the connection will
close, anyway, due to the timeout. In implementations of this kind (synchronous), there
will still be some asynchronous signals, but these will deal with the connection itself, and
not with specific packels or letlers.

NOTA BENE: In order for the process to distinguish among error or success indications
for different SENDs, it might be appropriate for the buffer address to be returned along
with the coded response to the SEND request. We will offer an example event code
format in section 2.5, showing the information which should be returned to the calling

process.

[Page 10] Cerf & Postel

January 1978
TCP-3 Specification
The TCP Inlsrface To The User

2.4.3 Receive
Format: RECEIVE (local connection name, buffer addrass, byte count)

This command allocates a receiving buffer associzted with the specified connection. If no
OPEN precedes this command or the calling process is nol authorized to wuse this
connection, an error is returned.

In the simplest implementation, control would not return to the calling program until
either the buffer was filled, or some error occured; bul this scheme is highly subject to
deadlocks (sec section 2.4.2). A more sophisticaied implementation would permit
several RECEIVEs to be oulstanding at once. These would be filled as letters, segments
or fragments arrive. This strategy permits increzsed ihroughput, at the cost of a more
elaborate stheme (possibly asynchronous) to notify the calling program that a letter has
been received or a buffer filled,

If insufficient buffer space is given to reassemble a complele letter, the EOL flag will not
be set In the response to the RECEIVE. The buffer wiil be filled with as much data as it

can hold {see section 2.5.2).

The remaining parts of a partly delivered letter wili be placed in buffers es they are made
available via successive RECEIVES. If a number of RECEIVES are outstanding, they may
be filled with parls of a single long letter or with at mest one letter each. The event codes
associated with each RECEIVE will indicate what is cocntained in the buffer.

If a buffer size was given in the OPEN call, then all buffers presented in RECEIVE calls
must be of exactly that size, or an error indication will be returned.

To distinguish among several outstanding RECEIVES, and to take care of the case that a
letter is smaller than the buffer supplied, the evert code is accompanied by both a buffer
pointer and a byte count indicating the actual length of the letter received.

Responses from the TCP which may occur as a resull of this command are detailed in
sections 2.5 and 4.2.9. :

Alternative implementations of RECEIVE might have ths TCP allocale buffer storage, or
the TCP might share a ring buffer with the user. Variations of this kind will produce
obvious variation in user interface to the TCP,

Carf & Poste! ' [Page 11]

January 1978

TCP-3 Specification
The TCP Interfete To The User

2.4.4 Close
Formatl: CLOSE(local connection name)

This command causes the connection specified to be closed. If the connection is not open
or the calling process is not aulhorized to use this conneclion, an error is returned.
Closing connections is intended to be a graceful operation in the sense that outstanding
SENDs will be transmitled (and retransmitted), as flow control permits, until all have
been serviced. Thus, it should be acceplable to make several SEND calls, followed by a
CLOSE, and expect all the data to be sent to the destination. It should also be clear that
users should continue to RECEIVE on CLOSING connections, since the other side may be
trying to transmit the last of its data. Thus, CLOSE means "I have no more to send” but
does not mean "l will not receive any more." It may happen (if the user level protocol is
not well thought out) that the closing side is unable to get rid of all its data before timing
ouf. In this event, CLOSE turns into ABORT, and the closing TCP gives up.

The user may CLOSE the connection at any time on his own initiative, or In response to
various prompts from the TCP ({(eg., remote close executed, fransmission timeout
exceeded, deslination inaccessible]).

Because closing a connection requires communication with the foreign TCP, connections
may remain in the closing state for a short time. Attempts to reopen the connection
before the TCP replies to the CLOSE command will result in error responses.

Responses from the TCP whichrm'ay occur as a result of this call are detailed in sections
25 and 4.2.5.

2.45 Urgent
Format: URGENT({local connection name)

Special control information is sent to the destination indicating that urgent processing is
appropriate. This facility can be used to simulate "break" signals from terminals or
error or completion codes from 1/0 devices, for example. The semantics of this signal to
the receiving process are unspecified. The receiving TCP will signal the urgent condition
to the receiving process as long as the urgent pointer indicates data preceding the urgent
pointer has not been consumed by the receiving process,

If the connection is nol open or the calling process is not authorized to use this
conneclion, an error is returned.

Responses from the TCP which may occur as a result of this call are detailed in sections
25 and 4.2.9,

[Fage 12] Cerf & Postel

P

oy

January 1978
TCP-3 Specification
The TCP Interface To The User

2.4.6 Status
Format: STATUS({local connection name)

This is an implementation dependent user command and could be excluded without
adverse effect. Information returned would typically come from the TCB (see section
4.3.3) associated with the connection.

. This command returns a dala block containing the following information:

local sockel, foreign socket, local connection name, receive window, send window,
connecltion state, number of buffers awaiting acknowledgement, number of buffers
pending receipt (including parlial ones), receive buffer size, urgent state, and default
transmission timeout.

Depending on the state of the conneclion, on or the implementation itself, some of this
information may not be available or meaningful. If the calling process is not authorized to
use this connection, an error is returned. This prevents unauthorized processes from

gaining Information about & connection.

Responses from the TCP which may occur as a result of this call are detlailed in sections
25 and 4.2.9.

2.4.7 Abort
Format: ABORT (local conneclion name)

This command causes all pending SENDs, URGENTs, and RECEIVES to be aborted, the
TCB to be removed, and a special RESET message to be sent to the TCP on the other
side of the connection. Depending on the implementation, users may receive abort
indications for each oulstanding SEND, RECEIVE, or URGENT, or may simply receive an
ABORT-acknowledgment. The mechanism of resetling a connection is discussed in
sactions 4.2.3 and 4.2.9.

Responses from the TCP which m;a}r occur as a result of this call are detailed in seclions
2.5 and 4.2.9.

Cerf & Postel [Page 13]

January 1978

TCP-3 Specification
Tha TCP Inlarface To The User

25 TCP-to-User Messages
i’.E.l Type Codes

All messages include a type code which identifies the type of user call to which the
message applies. Types are:

B - General message, spontaneously sent to user
1 - Applies to OPEN

2 - Applies to CLOSE

3 - Applies io URGENT

4 - Applies to ABORT

1B - Applies to SEND

28 - Applies to RECEIVE
380 - Applies to STATUS

25.2 Message Formats
All messages include the following three fields:
Type code
Local connection name

Event code

For message types 0-4 (General, Open, Close, Urgent, Abort) only these three fields are
necessary.

For message type 10 (Send) one additional field is necessary:
Buffer address
For message type 20 {(Receive) three additional fields are necessary:

Buffer address
Byte count (counts byles recewed}
End-of-Letter flag

[Page 14] Cerf & Postel

AT,

January 1978
TCP-3 Specification
The TCP Interface To The User

For message lype 30 (Status) addilional data might include:

Local socket, foreign socket

Send window {measures buffer space at foreign TCF)
Receive window (ricasures buffer space at local TCP)
Connection state {see section 4.2.9)

Number of buffers awaiting acknowledgement
Number of buffers awailing receipt

Receive buffer size

Urgent State (urgent or not urgent)

User timeout

Once more, it is important to note that these formats are nolional. Implementations
which deal with buffering in different ways may or may nol need to include buffer
addresses in some responses, for example.

25.3 Event Codes

The event code specifies the parlicular event that the TCP wishes to communicate to the
user, Generally speaking, non-zero event codes indicate important state changes or

errors.

In addition to the event code, two flags may be useful to classify the event into major
categories and facilitate event processing by the user:

E flag: sel if even! is an error
P flag: set if permanent error (otherwise, retry may succeed)

Events are encoded in B bits, the two high order bits being reserved for E and P flags,
respeclively.

Cerf & Postel ' ' [Page 15]

January 1978

TCP-3 Specificalion
The TCP interface To The User

Events specified so far are listed below with their codes and fiag settings.

flags code meaning
] peneral success
E,P 1 connection illegal for this process
2 unspecified foreign socket has
become bound
E,P 3 connection not OPEN
4 insufficlient resources
E 5 foreign socket not specified
E,P B connection already OPEN
E 7 buffer size not acceptible
8 unused
E.,P 9 user timeout, connection aborted
1 unused
11 user urgent indication received
P 12 connection closing
E 13 general error
P 14 connection reset

P{tssible.respumﬁ to each of the user commands are listed below. Section 4.2.9 offers
substantially more detail.

Typa B I[generall: 2, -2 i d b by bt s 17
Type 1 [openl: g,1, 4, B, 13
Tupe 2 Iclosel: BraEs 3 9, 13,14
Type 3 [urgent]: g,1, 3,4,5, 9, 12,13, 14
Type 4 [Abortl: 8,1, 3, 13
Type 18 [sendl: B,1, 3.4,5, 3, 12,13, 14
Tupe 28 [receivel: 8,1, 3.4, {E = 12,13,14
Bl T 13

Tupe 38 [statusl:

[Page 16] ' Cerf & Poste!

January 1978
TCP-3 Specification

Higher Level Protecols

3, HIGHER LEVEL PROTOCOLS
3.1 Introduction

It is expected that the TCP will be able to support higher level protocols efficiently. It should
be easy to interface existing ARPANET protocols like TELNET [DCA76] and FTP [DCA76]
to the TCP. Support of Network Voice Protocal, and broadcast protocols, for example, has
been left to version 4 TCP,

3.2 Well Known Sockels

Well known sockels are a convenient mechanism for a priori associating a socket name with
a standard service. For instance, the "telnet-server" process might be permanently assigned
to a particular socket, and other sockets might be reserved for File Transfer, Remote Job
Entry, text generator, reflector, and sink (the three being for test purposes). A socket name
might be reserved for access to a "look-up” service which would return the specific socket
at which a newly created service would be provided. -

For compatibility with ARPANET socket naming conventions, we refer to the list of assigned
sockets in RFC 739 [Postel77]. :

TCP implementors should note, however, that the gender and directionality of NCP sockets
do nol apply to TCP sockets, so that even numbered as well as odd ones can serve as well
known sockets.

3.3 Reconnection Protocol

Port identifiers fall into two categories: permanent and transient. For example, a
Telnet-server process is generally assigned a port identifier that is fixed and well known.
Transient processes will in general have port identifier’s which are dynamically assigned.

In a distributed processing environment, two processes that don't have well known port
Identifiers may often wish to communicate. This can be achieved with the help of a well
known process using a reconneclion protocol. Such a protacol is briefly outlined using the
communication facilities provided by the TCP. It essentially provides a mechanism by which
port identifiers are exchanged in order to eslablish a connection between a pair of sockets.

Such a protocol can be used to achieve the dynamic esiablishment of new connections in
order to have mulliple processes solving a problem co-operatively, or to provide a user
process access to a server-application process via a server-exec process, when the
server-exec's end of the connsclion can not be invisibly passed lo the server-application
process.

A paper on this subject by R. Schantz [Schanlz74] discusses some of the issues

Cerf & Postel [Page 17]

January 1978

TCP-3 Specification
Higher Leval Protocols

associated with reconnection, and some of the ideas contained therein went inlo the design
of the protocol outlined below.

In the ARPANET, a protocol (called the Initial Connection Protocol [Postel72]) was
implemented which would allow a process to connect to a well known socket, thus making
an implicit request for service, and then be switched to another socket so that the well
known socket could be freed for use by olhers. Since sockets in our TCP are permitted to
participatle in more than one connection name, this facility may not be explicitly needed (i.e.
connections <A,B> and <A,C> are distinguishable).

Howaver, the well known sacket may be in one network and the actual service sockel(s) may
be in another network {or at least in another TCP). Thus, the invisible switching of a
connecltion from one port to another within a TCP may not be sufficient es an "initial
Connection Protocol”. Let Nx be a network identifier, and Tx be a TCP identifier. We
imagine that a process wishes to use socket NL.T1.Q to access well known socket N2 T2.P.
However, the process associated with socket N2.T2P will actually start up a new process
somewhere which will use N3.T3.5 as its server socket. The N(i} and T(i} may be distinct or
the same. The user will send to N2T2.P the relevant user information such as user name,
password, and account. This intermediate server will start up the actual server process and
send to NLTL.Q the actual service socket identifier: MN3.T3S5. The connection
(NL.T1.QN2T2P) can then be «closed, and the wuser can do a RECEWVWE on
(NL.T1.QN3.T3.5). The serving process can SEND on (M3.T3SNLT1.Q). There are many
variations on this scheme, some invalving the user process doing a RECEWVE on a different
socket (e.g. (N1.T1.X,U.U.U)) with the server doing SEND on (N3.T3.5,N1.T1.X).

[Page 18] " Cerf & Postel

January 1978
TCP-3 Specification
Highar Leval Prolocols

Without showing all the detail of synchronization of szquence numbers and the like, we can
iHustrate the exchange as shown below.

USER SERYER
1.RECEIVE (N2,72.P,U.U, W)
1. SENDIN1.T1.Q,N2.72.P)==>
<== 2, SEND{NZ.TZ.P,N1.T1.00
: With "N3.73.5" as data
2. RECEIYE(N1.T1.04,N2.T72.P)
3. CLOSE(N1.T1.Q,N2.T2.P) ==>
<== 3, CLOSE(N2.T2.P,N1.T71.0Q)
4. RECEIVE(N1.T1.0Q,N3.T73.5)
<== 4, SEND{N3.T3.S5,N1.T1.Q)
Reconnection Protocol Example
Figure 3.3-1

At this point, a connection is open between N1.T1.Q and N3.T3.5. A variation might be to
have the user do an extra RECEIVE on (NLT1.X,UUU) and have the data "NL.TLX" be
sent in the first user SEND. Then, the server can start up the real serving process and do a
SEND on (N3.T3.5MN1.T1.X) without having to send thec "M3.7T3.5" data to the user. Or
perhaps both server and receiver exchange this data, to assure security of the ultimate
connection (i.e. some wild process might try to connect to NLTLX if it is merely
RECEIVING on fareign socket UULL).

We do not propose any specific reconnection protocol here, but leave this to further
deliberation, since it is really a user level protocol issus.

Further work on reconnection is in progress and version 4 of TCP may include provisions for
reconnection via TCP control exchanges.

Cerf & Postel L [Page 19]

January 1978
TCP-3 Specificalio
TCP Design :

[P ; 20] ; "~ Cerf & Postel
age :

January 1978
TCP-3 Specification
TCP Design

4. TCP DESIGN

4.1 Introduction

The TCP is designed to offer highly reliable, sequanced, and flow-conlrolled interprocess

- communication across network boundaries. A fundamental notion in the design is that every
octet (8 bit byte) of data in an internetwork packet has a sequence number. Since every
octet is sequenced, each of them can be acknowledged individually or collectively. In
particular, the acknowledgment mechanism employed is cumulative so that an
acknowledgment of sequence number X indicates that all octets up to but not including X
have been received. This mechanism allows for straight-forward duplicale detection in the
presence of retransmission.

This also permits gateways lo fragment packets as needed to get them across networks
with short packet sizes. There is current discussion of how and where fragmentation
should be done, and it may be that in version 4 TCP fragmentation is removed with the
view that it is an internet function not specific to TCP,

It is essential to remember that the actual sequence number space is finite, though very
large. In the current design, this space ranges from 0 to 2++¢32 - |, Since the space is
finite, all arithmetic dealing with sequence numbers must be performed modulo 2#+¢32. This
unsigned arithmetic preserves the relationship of sequence numbers as they cycle from
2#x32 - 1 to O again. The typical kinds of sequence number comparisons which the TCP
must perform include:

(a) determining that an ac'knowledgemant refers to some sequence number sent but not
yet acknowledged. :

(b) delermining that all sequence numbers occupied by a packet have been
acknowledged (e.g. to remove the packet from a retransmission queue).

(c) determining that an incoming packet contains sequence numbers which are expected
(i.e. that the packet "overlaps” the receive window).

The TCP typically maintains status information about each connection, es is illustrated in
figure 4.1-1, below.

Cerf & Postel ' [Paze 21]

January 1978

TCP-3 Specificalion
TCP Dasizn
5
older sequence numbers newer sequence numbers
[| L I A -} ‘ g
Ml T1 Hz 12 HI T3 :
<----=- gequence space ----->

TCP State Information for Sending Sequence Space
Figure 4.1-1

L = oldest, unacknowledged sequence numba-r

S = next sequence number to be sent

A = acknowledgement {nexl sequence number expected I':w the acknowledging TCP) ‘\

H(i} = first sequence nuniber of the i-th packet

T(i} = last sequence number of the i-th packet
An acceplable acknowledgement, A, is one for which the inequality below holds:

O<{A-Ly<=(5-1L) (4.1-1)
We will often write equation (4.1-1} in the form below:

L<A<=5 1 . {4.1-1%)

Note that all arithmetic is modulo 2##32 and that comparisons are unsigned. "<=" means

"less than or equal.”

Similarly, the determination that a particular packet has been fulfy-nckﬁowladged can be
made if the equation below holds:

0<(TEH-L)<(A-L) (4.1-2)

[Page 22] " Cerf & Postel

January 1978

———

TCP-3 Specification
TCP Design
In this instance, H(i) end T(i} are related by the equation:
T{i) = H{i) + nfi} - 1 (4.1-3)
where n(l} = the number of octets occupied by tre data in the packet. It is important to
note that n(i) must be non-zero; packets which ¢o not occupy any sequence space (e.g.
empty acknowledgement packets) are never placed on the retransmission gueus, so
waould not go through this particular test,
Finally, a packet is judged to occupy a portion of valid receive sequence space if
O0<=(T-N)<{(R-N) - (4.1-4)
Where T is the last sequence number occupled by the packel, N is the next sequence
number expecled on an incoming packet, and R is the right edge of the receive window,
as shown in figure 4.1-2,
older sequence numbers newer seguence numbers
/
Y
H 4
Hl1 Tl H2 T2 n3 13

Receive Sequence State Information
Figure 4.1-2
N = next sequence number expected on incoming packets
R = last sequence number expecled on incoming packsls, plus one
H(i} = first sequence number occuplied by the i-th incoming packet

T(i) = last sequence number occupied by the i-th incoming packst

Cerf & Postel ' [Page 23]

January 1978

TCP-3 Specification
TCP Dasign

R and M in figure 4.1-2 are related by the equation:
Re=N+W (4.1-5)

Where W = the receive window size

Note that the acceptance test for a packet, since it requires the end of a packet to lie in the
window, is somewhat more restrictive than is absolutely necessary. |If at least the first
sequence number of the packet lies in the receive window, or if some part of the packet lies
in the receive window, then the packet might be judged acceptable. Thus, in figure 4.1-2, at
least packets 1 (H(1)-T(1)} and 2 (H(2)-T(2)) are acceptable by the strict rule and packet 3,
{H(3)-T(3)) may or may not be, depending on the strictness of interpretation of the rule.

- Note that when R = N, the receive window is zero and no packels should be acceptable
except ACK packets. Thus, it should be possible for a TCP to mainlain a8 zero receive
window while transmilting dala and receiving ACKs on a non-zero send window.

We have taken advaniage of the numbering scheme to protect certain control information as
well. This is achieved by implicitly including some control flags in the sequence space so
they can be retransmilled and acknowledged without confusion (i.e. one and only one copy
of the control will be acted upon). Contral infarmation is not physically carried in the packet
data space (see seclion 4.3.2 for typical internet TCP packet format). Consequently, we
must adopt rules for implicitly assigning sequence numbers to control. In version 3 these
sequenced controls have been reduced to only the SYN and FIN controls which are used
only at connection opening and closing. For sequente number purposes, the SYN is
considered to occur before the first actual data octet of the packet in which it occurs, while
the FIM is considered to occur after the last actual data octet in a packet in which it occurs.

The packet length includes both data and sequence-space-occupying controls.
The main jobs of the TCP are:
a, Connection management {establishing and closing full-duplex connections)
b. "Packetizing” of user letters into segments for internet transmission

¢. Reassembly of fragments into segments and segments into letters. (Note that the
reassembly of fragments into segments may become an internet protocol function and of

no concern to TCP in version 4.)
d. Flow control, sequencing, duplicate detection, and retransmission for each connection.
e. Reacting to user requests for service

In the sections which follow, we elaborate on the way in which the TCP is designed to carry
out each of these tasks.

[Page 24] : Cerf & Postel

January 1978
TCP-3 Specification
TCP Dasign

4.2 Connection Management
4.2.1 Initial Sequence Number Selection

The prolocol places no restriction on a particular connection being used over and over
again. New instances of a connection will be referred to as incarnations of the connection.
The problem that arises owing to this is, "how does the TCP identify duplicate packets
from previous incarnations of the connection?, This problem becomes harmfully
apparent if the connection is being opened and closed in quick succession, or if the
connection breaks wilh loss of memory and is then reestablishad.

The essence of the solution [Tomlinson74] is that the initial sequence number [ISN]
must be chosen so that a particular sequence number can never refer to an "old" octetl.
-Once the connection is established the sequencing mechanism provided by the TCP
filters out duplicates.

For a connection to be established or initialized, the two TCP's must synchronize on each
other’s initial sequence numbers. This is done in an exchange of connection establishing
messages carrying a control bit called "SYN" (for synchronize) and the initial sequence
numbers, as a shorthand messages carrying the SYN bit are also called "SYNs". Hence
the solution requires a suitable mechanism for picking an initial sequence number, and a
slightly involved handshake to exchange the ISN's. A "three way handshake” is necessary
because sequence numbers are not tied to a global clock in the network, and TCP's may
have different mechanisms for picking the ISN's. The receiver of the first SYN has no way
"of knowing whether the packet was an old delayed one or nol, unless it remembears the
last sequence number used on the connection (which is not always possible), and so it
must ask the sender to verify this SYN.

The "three way handshake” and the advantages of a "clock-driven” scheme are
discussed in [Tomlinson74). More on the subject, and algorithms for implementing the
clock-driven scheme can be found in [Dalal74, Dalal75, Cerf76b]

4.2.2 Establishing a connection

The "three-way handshake" is essentially a unidirectional atiempt to establish a
conneclion, i.e. there is an Initialor and a responder. The TCP can also establish a
connection when a simultanecus initiation eccurs. A simultansous attempt occurs when
one TCP receives a "SYN" packet which carries no acknowledgement after having sent a
"SYN" earlier. Of course, the arrival of an old duplicate "SYN" packet can potentially
make it eppear, 1o the recipient, that a simultaneous connection initiation is in progress,
Proper use of "resel” packets can disambiguaste these cases. Several examples of
connection initiation are offered below, using a notation due to Tomlinson. Although
these examples do not show connection synchronization using data-carrying packels, this
_ is perfectly legitimate, so long as the recelving TCP doesn't deliver the data to the user

Cerf & Postel : [Page 25]

TCP-3 Specif
TCP Design

ication

January 1978

until it is clear the data is valid (i.e. the data must be buffered at the receiver until the
connection reaches the ESTABLISHED state (see figure 4.2-1}).

CLOSED
CLOSE
Delete TCB
OPEN CLOSE
Create TCB Delete TCB
)
OPEN
Aev SYN SENO or UIRG
Snd SYN,ACK nd SYN
_Rev SYN
SYN Snd ACK . S¥YN
RCYD L. - SENT
E_,-.- < —Bev SYN,ACK
e Ol OGE. ESTAB Snd ACK
Snd FIN
~LLOSE_ Hey FIN
A < Snd FIN Snd ACK —

FIN CLOSE
WAIT WAIT
JicLF_LH_\ & :/h;_;f_

Snd ACK CLOSING Snd FIN
Bov ACK of FIN —timeout
Delete u:e/ ABORT

[Page 26]

TCP Connection State Diagram

Figure 4.2-1

Cerf & Postel

e

January 1978
TCP-3 Specification
TCP Design

Tha simplest three-way handshake is shown in fizure 4.2-2 below. The figures should be
interpreted in the following way. Each line is numbared for reference purposes. Right
arrows (-->) indicate departure of a TCP packe! from TCP A to TCP B, or arrival of a
packet at B from A. Left arrows (<--), indicate the reverse. Ellipsis (...} indicates a packet
which is still in the network (delayed). An "X3X" indicates a packet which is lost or
rejected. Comments appear in parentheses. TCP states are keyed to those in figure
4.2-1, and represent the stale AFTER the departure or arrival of the packet {whose
contents ere shown in the center of each line). Packe! contenis are shown in abbreviated
form, with sequence number, control flags, and ACK field. Other fields such as window,
addresses, lengths, and text have been left out, genaraily, in the interest of clarity.

TCP A TCP B
1. OPEN . OPEN
2. SYN-SENT --> <SE0 188><5YN> --> SYN-RECEIVYED

3. ESTABLISHED <-- <SEQ 3B88><SYN><ACK 181> <-- SYN-RECEIYED
4. ESTABLISHED --»> <SEQ 181><ACK 381> --> ESTABL ISHED
S. ESTABLISHED --»> <SE0 1B1><ACK 381><CATA> --» ESTABLISHED
Basic 3-Way Handsh_ake for Connection Synchronization
Figure 4.2-2

In line 2 of figure 4.2-2, TCP A begins by sendinz a SYN packel indicating that it will use
sequence numbers starting with sequence number 100. In line 3, TCP B senge a SYN
and acknowledges the SYN it received from TCP A. Note that (per figure 4.1-3), the
acknowledgement ficld indicates TCP B is now expecling to hear sequence 101, implicitly
acknowledging the SYN which occupied sequence 100.

At line 4, TCP A responds with an empty packet containing an ACK for TCP B's' SYN, and
in line 5, TCP A sends some data. Note that the sequence number of the packet in line
5 is the same as in line 4 because the ACK does not occupy sequence number space (if
it did, we would wind up ACKing ACK’s!).

Simullanecus initiation is only slightly mare compiax, as is shown in figure 4.2-3. Each
TCP cycles from QPEN to SYN-SENT to SYN-RECEIVED to ESTABLISHED.

The principle reason for the three-way handshaks is to prevent old duplicate connection
initiations from causing confusion. To deal with this, a special control message, RESET,
has been devised. A TCP which receives a RESET rmessage first verifies that the ACK
field of the RESET acknowledges something the TCP sent (otherwise, the message is

Cerf & Postel ' [Page 27]

January 1978

TCP-3 Specification
TCP Design

ignored). If the receiving TCP is in a non-synchronized state (l.e. SYN-SENT,
SYN-RECEIVED), it returns to OPEN on receiving an acceptable RESET. If the TCP is in
one of the synchronized states (ESTABLISHED, FIN-WAIT, CLOSE-WAIT, CLOSING) it
aborts the connection and informs its user. We discuss this latler case under

"half-open” connection in section 4.2.3.

TCP A TCP B

1. OPEN OPEN
2. SYN-SENT --> <SEQ 188><5YN>

3. SYN-RECEIVED <-- <SEQ 388><SYN> <-- SYN-SENT

&, ++s <SEO 188><SYN> --> SYN-RECEIVED

5. SYN-RECEIVED --» <SEQ 1B1><ACK 381> ...

B. ESTABLISHED <-- <SE0 3B1><ACK 181> <-- SYN-RECEIVED

7. ..+ <SEQ 181><ACK 381> --»> ESTABLISHED
Simultaneous Cnnnec-tion Synchronization

Figure 4.2-3

[Page 28] ' Cerf & Postel

January 1978
TCP-3 Specification
TCP Design

JERAT T TCP B
1. OPEN ' OPEN
Z. SYN-SENT ~-> <5E0 188><5YN> Sl
3. (duplicate) ... <SEQ 188@><SYN> —-> SYN-RECEIVED

&. SYN-SENT <== <5E0 3BB><SYN><ACK 1881> <-- SYN-RECEIVED

5. SYN=SENT --> <SE0 1BBl><RST><ACK 381> --» OPEN
(ACK is ok)
B. « oo <BEQ 188><5YN> --» SYN-RECEIVED

7. SYN-SENT <-- <5EQ 4BB><SYN><ACK 18l> <-- SYN-RECEIVED
8. ESTABLISHED --> <SEQ 1B1><ACK 481> —-> ESTABLISHED
Recovery from Old Duplicale SYN

Figure 4.2-4

As a simple example of recovery from old duplicates, consider figure 4.2-4. At line 3,
and old duplicate SYN arrives at TCP B. TCP B cannot tell that this is an old duplicate,
50 it responds normally (line 4). TCP A delects that the ACK field is incorrect and
returns a RST (reset) with its SEQ and ACK fields selected to make the packet believable.
TCP B, on receiving the RST, returns to the OPZN state. When the original SYN (pun
intended) finally arrives alt line 6, the synchronizaiion proceeds normally. If the SYN at
line 6 had arrived before the RST, a more complsx exchange might have occurred with
RST’s sent in both directions.

4.2.3 Half-Open Connections and Other Anomalies

An established conneclion is said to be "half-open” if one of the TCP's has closed or
aborted the connection at its end without the knowledge of the other, or if the two ends
of the connection have become desynchronized owing to a crash that resulted in loss of
memory. Such connections will automatically become reset if an attempt is made to send
data in either direction. However, half-open conneclions are expected to be unusual, and
the recovery procedure is mildly involved.

If at site A the connection no longer exists, then an attempt by the user at site B to send

Cerf & Postel ' [Page 29]

Januvary 1978

TCP-3 Specification
TCP Design

any data on it will result in the site B TCP receiving a RESET conirol message. Such a
message should indicate to the site B TCP that something is wrong and it is expected to
ABORT the connection.

Assume that two user processes A and B are communicating with one another when a
crash occurs causing loss of memory to A's TCP, Depending on the operating system
supporting A’s TCP, it is likely that some error recovery mechanism exists. When the TCP
is up again A is likely to start again from the beginning or from a recovery point. As a
result A will probably try to OPEN the connection again or try to SEND on the connection
it believes open. In the latter case it receives the error message “connection not open”
from the local TCP, In an attempt to establish the connection A's TCP will send a packet
containing SYN. This scenario leads to the example shown in figure 4.2-5. After TCP A
crashes, the user attempts to re-open the connection. TCP B, in the meantime, thinks
the connection is open.

TCP A - TCP B
18 S ERASHIE (send 388, receive 100)
2. OPEN ESTABLISHED
3. SYN-SENT —-> <SEQ 4@@><SYN> (G
G, (11) < <SEQ 388><ACK" 128> <-- ESTABLISHED

5. SYN-SENT —-> <SEQ 1B8><AST><ACK 388> --> (Abort!!)
Half-Open Conneclion Discovery

Figure 4.2-5

When the SYN arrives al line 3, TCP B, being in a synchronized state, responds with an
acknowledgment indicaling what sequence it next expects to hear (ACK 100). TCP A
sees that this packet does not acknowledge anything it sent and, being unsynchronized,
sends a reset (RST) because it has detected a half-open connection. TCP B aborts at line
5. TCP A will continue to retransmit its SYN and if the user at TCP B re-opens the
connection, eventually everything will work out,

An interesting allernative case occurs when TCP A crashes and TCP B tries to send data
on what it thinks is a synchronized connection. This is illustrated in figure 4.2-6. In this
case, the data arriving at TCP A from TCP B (line 2} is unacceptable because no such

[Page 30] ; Cerf & Postel

—

January 1978
TCP-3 Specification
TCP Design

connaction exists, so TCP A sends a RST. The RST is accepisble so TCP B processes it
and aborts the conneclion. ;

In figure 4.2-7, we find the two TCP’s A and B with passive conneclions waiting for SYM.
An old duplicate arriving at TCP B (line 2} stirs B into action. A SYN-ACK is returned
(line 3) and causes TCP A to generate a RST (the ACK in line 3 is not acceptable). TCP
B sccepts the reset and returns to its passive OPEN siate.

TCP A . TCP B
1. (CRASH) ' (send 388,receive 188)
2. (?7) <-- <5EQ 300><ACK 188><DATA 18> <-- ESTABLISHED
as —-> <SEQ 188><RST><ACK 318> —-> (ABORT!1)

Active Side Causes Half-Open Connaction Discovery

Figure 4.2-6
TCP A TCP B
1. OFEN ’ OPEN
P voe <SEQ Z><SYN> --> SYN-RECEIVED

3. {??) <-- <SEQ X><SYN><ACK Z+1> <-- .SYN-RECEIVED
4. —-=> <SEQ Z+1><RAS5T><ACK K+l> --> (return to OPEN!)
5. DPEN OPEN
Old Duplicate SYN Initiah-es a Reset on two Passive Sockets
Figure 4.2-7

A variety of other cases are possible, all of which are accounted for by the following rules
for RST generation and processing.

Cerf & Postal : [Page 31]

January 1978

TCP-3 Specification
TCP Design

Resel Gensration

As e general rule, reset (RST) should be sent whenever a packet arrives which
apparently is not intended for the current or a future instantiation of the connection.
A reset should not be sent if it is not clear that this is the case. Thus, it any packet
“arrives for a nonexistant connection, a reset should be sent. If a packet ACKs
something which has never been sent on the current connection, send reset,

L. If the connection is in any non-synchronized state (OPEN, SYN-SENT,
SYM-RECEIVED) or if the connection does not exist, a reset (RST) should be formed
and sent for any packet that does not acknowledge something the receiver sent
earlier., The RST should take its SEQ field from the ACK field of the offending packet
(if it has one) and its ACK field should acknowledge all data and control in the
offending packet.

2. [If the conneclion is in a synchronized state (ESTABLISHED, FIN-WAIT,CLOSE-WAIT,
CLOSING), any unacceptable packet should elicit only an emply acknowledgment
packet containing the current send-sequence number and an acknowledgment
indicating the next sequence number expected to be received.

Reset Processing

All RST (resel) packets are validated by checking their ACK-fields and SEQ fields (if
appropriate). If the RST acknowledges something the receiver sent {but has not yet
received acknowledgment for), the RST must be valid. RST packets will have ACK
fields which acknowledge any data and control in the offending packet to assure
acceplability of the RST.

The receiver of a RST first validates it, then changes state. If the receiver was in a
non-synchronized state (OPEN, SYM-SENT, SYM-RECEIVED) it returns to the OPEM
state (possibly modifying the fﬂreigh socket specification in the process--see section
433). If the rcceiver was in a synchronized stale (ESTABLISHED, FIN-WAIT,
CLOSE-WAIT, CLOSING), it aborts the connection and advises the user (see section
2.4.3 - error 14). i

4.2.4 Knowing When to Keep Quiet

A basic goal of the TCP design is to prevent packets from being emitted with sequence
numbers which duplicate those which are shill in the network. We want to assure this
even if a TCP crashes and loses all knowledge of the sequence numbers it has been
using. When new connections are created, an initial sequence number (ISN} generator is
employed which selects a2 new 32 bit ISN. The generator is bound to a (possibly
fictitious) 32 bit clock whose low order bit is incremented roughly every 4 microseconds.
The ISN thus cycles every 4.55 hours, approximately. Since we assume that packets will

[Page 32] : : Cerf & Postel

January 1978
) TCP-3 Specification
TCP Design

stay in the network no more than tens of scconds or minutes, at worst, we can
reasonably assume that ISWN's will be unique.

To be sure that a TCP does not create a packel that carries a sequence number which
may be duplicaled by an old packet remaining in the network the TCP must keep quiet
for a maximum packet lifetime (MPL) before assigning any sequence numbers upon
starting up or recovering fram a crash in which memory of sequence numbers in use was
lost. For this specification the MPL is taken to be 2 minutes. This value may be
changed if experience indicates it is desirable to do so. Nolte that if a TCP is reinitalized
in some sense yel retains its memory of sequence numbers in use, then it need not wait
at all; it must only be sure to use sequence numbers larger than those recently used.

It should be noted that this strategy does not protect against spoofing, or other replay
“type duplicate message problems,

4.2.5 Closing a Connection

CLOSE is an operation meaning "I have no more data to send” The notion of closing a
full-duplex connection is subject to ambiguous inierpretation, of course, since it may not
be obvious how to treat the receiving side of the connection. We have chosen to treat
CLOSE in a simplex fashion. The user who CLOSES may conlinue to RECEIVE until he is
told that the other side has CLOSED also. Thus, a program could initiate several SENDs
followed by a CLOSE, and then continue te RECEIVE until signalled that a RECEIVE failed
because the other side has CLOSED. We assume that the TCP will unilaterally inform a
user, even if no RECEIVEs are oulstanding, that the other side has closed, so the user
can terminate his side gracefully. A TCP will reliably deliver all buffers SENT before the
connection was CLOSED so a user who expects no data in return need only wait to hear
the connection was CLOSED successfully to know that all his data was received at the
destination TCP,

There are essentially three cases:
a) The user initiates by telling the TCP to CLOSE the connection
b) The remole TCP initiates by sending a FIN control signal
c) Both users CLOSE simultanecusly -

Case 1: Local user initiates the close

In this case, a FIN packet can be constructed and placed on the outgoing packet
queue. No further SENDs from the user will be sccepted by the TCP, and it enters the
FIN-WAIT state. RECEIVES are allowed in this state. All packets preceding and
including FIN will be retransmitted until acknowiedged. When the other TCP has both

Cerf & Postel ' : [Page 33]

January 1978

TCP-3 Specification
TCP Dasign

acknowledged the FIN and sent a FIN of its own, the first TCP can ACK this FIN and
delete the connection (see figure 4.2-1). It should be noted that a TCP receiving a
FIN will ACK but not send its own FIN until the user has CLOSED the connection also.

Case 2: TCP receives a FIN from the network

If an unsolicited FIN arrives from the network, the receiving TCP can ACK it and tell
the user that the connection is closing {see Event Codes, section 2.4.3). The user
should respond with a CLOSE, upon which the TCP can send a FIN to the other TCP.
The TCP then waits until its own FIN is acknowledged whereupon it deletes the
connection. If an ACK is not forthcoming, after a timeout the connection is aborted

and the user is told (see 2.4.3).
Case 3: both users close simultaneously

A simultaneous CLOSE by users at both ends of a connection causes FIN packels to
be exchanged. When all packets preceding the FIN have been processed and
acknowledged, each TCP can ACK the FIN it has received. Both will, upon receiving
these ACKs, delete the connection.

4.,2.6 End of Letter Sequence Number Adjustments

The difference between the sequence numbers of the first octets of data in any pair of
letters on a given connection is always equal zero modulo the receive buffer size. That
is, whenever an EQOL is transmitted, the sender advances his send sequence number by
an amount (in the range O to buffersize-1) sufficient to consume all the unused space in
the receiver's buffer. The amount of space consumed in this fashion is deducted from
the send window just as is the space consumed by actual data.

The idea is that an EQL signals the consumption of the rest of the space in the buffer
and that the data sequence numbers reflect that. The exchange of buffer size and
sequencing information is done in units of octets. |f no buffer size is stated, then t_he

buffer size is assumed to be 1 octet.

The receiver tells the sender the size of the buffer in a SYN packet that contains a 16 bit
buffer size field in the TCP header, the presence of the field being signaled by a BSLI
control bit.

If a Iatter.staris at sequence number x and is n octels long and the buffer size is m
octets, then the next letter starts at x+im, where i is a positive integer such that
im = n > (i-1)m.

If a buffer size Is specified and then all receive buffers provided by the user must be
exactly that size, otherwise the TCP should return an error indication.

[Page 34) : Cerf & Postel

A

January 1978
TCP-3 Specification
TCP Design

4.2.7 The Communication of Urgent Information

The urgent mechanism is used to indicate the need for special processing of the data
traversing the connection. This mechanism permits a point in the data stream to be
designated as the end of "urgent" information. \Whenever this point is beyond the left
window edge at the receiving TCP, that TCP so informs lhe application program, so the
program can switch into a mode of operation intended to scan through the data up to the
urgent pointer in an atlempt to extract the urgent information. The exact nature of this
scart depends on the higher level protocol being employed, but would typically involve
discarding information. '

As soon as an urgent pointer is in advance of the left edge the TCP should tell the user
fo go into "read fasl" mode, when left edge catches up fo urgent pointer the TCP should
tell user to go into "read normal” mode. If the urgent pointer is updated while the user
Is in "read fast” mode, the update will be invisible to the user.

The method employs a pointer which is carried in a field of all packets transmitted while
the urgent pointer exceeds the left window edge. A control bit (URG) indicates that the
packet contains a 16-bit field which should be added to the packet sequence number to
yield the urgent pointer. The absence of this bit indicates that the urgent pointer has not
changed.

It should be mentioned that coordinating the urgent pointer with a letter boundary acts to.
insure timely delivery of the urgent information to the destination process.

4.2.8 The Possibility of Less than Reliable Communication

As a future development TCP may be called on to support other types of applications
that require different types of service. One feature included at this time to enable such
development is the beginning of letter flag, or BOL, which could be used in conjunction
with EOL (end of letter) in a mode of operation where the receiver acknowledges
everything to keep retransmissions at a minimum to provide a special type of service. In
this mode TCP provides the user with complete letters but allows letters to be lost in
between the ones actually delivered. For this mode the TCP must be able to find the
beginning of a letter as well as the end. (Actually this could be done without a special
BOL since the end of one letler is the beginning of the next, but a BOL allows a slight
improvement in the probability of finding whole letiers.)

4.2.9 TCP Connection State Transitions

The foregoing sections on connection management were succinctly represented with a
simple state diagram, shown in figure 4.2-1. The figure only illustrates state changes
{and actions which occur as a result), but addresses neither error conditions nor actions
which are nol connected with state changes. In this section, more detail is offered with

Cerf & Postel [Page 35]

January 1978

TCP-3 Specification
TCP Design

respect to the reaction of the TCP fo various events {user command, packel arrivals).
The characlerization of TCP processing of control packets and reaction to user
commands is relatively terse. Certain implementation choices can make the realization of
the specified processing fairly compact, but these implementation issues are dealt with in
sections 4.3 - 45. For the sake of compactness, this section deliberately evoids much
explanatory material which can be found in the implementation sections. Thus, this
section is intended more as a reference than as a tutorial, and really requires exposure to
sections 4.3-4.5 to be fully useful.

Furthermore, it should be kept in mind that some control information occupies sequence
number space along with data (see figure 4.1-3). This latter point means that there is a
natural order in which to process the data and control portions of an incoming packet
and that certain controls will change the connection state BEFORE later control or data
(i.e., those assigned higher sequence numbers) is processed. An implementation could
take advantage of this sequencing lo keep track of which portions of a packet (data and
control) had already bcen processed. Note that by assigning sequence numbers to some
control bits, it is possible to use the normal acknowledgment mechanisms to acknowledge

receipt of control information and to filter out ‘duplicates.

A natural way to think aboul incoming packet processing is to imagine that they are first
tested for proper sequence number (ie, that their contents lie in the range of the
expected "receive window" in the sequence number space} and then that they are
queued and processed in sequence number order. We are, in this view, ignoring for the
moment the problem of reassembling segments thal were fragmented at gateways, or
which overlap olher, already received, packsts. '

We have chosen to organize the description according to the connection state, to key the
description to figure 4.2-1. In the following specifications the user events are mutually
exclusive, while the incomming packet may call for some or all of the steps described to
be carried out. When a packet causes a state change, but carries more data or control
which should be processed, it is appropriate to continue processing in the new state, but
processing of the packet’s acknowledgment field or sequence number field should not be
repeated (lest a packet which looked.valid before appear to be an old duplicate or have a
bad acknowledgment field as an artifact of the state change).

A TCP must typically maintain certain state information about each connection in order to
sequence packels. For reference, we present a list of terms below (see section 4.3 for
more detail) which are used in the action summaries for each state {(also see figure
4.2-8).

[Page 36] ; Cerf & Postel

i !

January 1978
TCP-3 Specification
TCP Design

e SEND UINODOW

[T .-"

P sent, but un-ACKed unsen ‘e
/f//////
I LEF T-SEQUENCE “ SEND-SEQUENCE
L HAXIMUM-WINDOM J
le RECEIYE-WINDOW |
-[RECE1VE-SEQUENCE
¢ Sequence Number Management

Figure 4.2-8

Glossary of terms

ACK - A control bit (acknowledge) occupying no sequence space, which Indicates that
the acknowledgment field of this packel specifies the next sequence number the
sender of this packel is expecting to receive-- hence acknowledging receipt of all
previous sequence numbers,

BOL - A control bit (Begin of Letter) occupying no sequence space, indicating that this
packet begins a logical letier with the first data octet in the packet.

BSZ - A control bit {buffer size) in the incoming SYN packet, occupying no sequence
space, used to indicate the presence of the buffer size field.

BUFFER-SIZE - A control field (buffer size} in the incoming SYN packet, occupylng no

Cerf & Postel : ' [Page 37]

January 1978

TCP-3 Specification
TCP Design

sequence space, used to state the receive data buffer size of the sender of this
control. May only be sent in a packet that also carries a SYN.

EOL - A control bit (End of Letter) occupying no sequence space, indicating that this
packet ends a logical letter with the last data octet in the packet. If this end of letter
causes a less than full buffer to be released to the user and the connection buffer size
is not one octet then the end-of-letter fouffer-size adjustment to the receive sequence
number must be made.

FIN - A control bit (finis) occupying one sequence number, which indicates that the
sender will send no more dala or control occupying sequence space.

LEFT-SEQUENCE - This is the next sequence number to be acknowledged by the data
receiving TCP ({or the lowest currently unacknowledged sequence number) and is
sometimes referred to as the left edge of the transmit "window."

PKT-ACKNOWLEDGMENT - The sequence number in the acknowledgment field of the
arriving packel.

PKT-LENGTH - The amount of sequence number space occupled by a pachket,
including any contrals which occupy sequence space.

RECEIVE-SEQUENCE - This is the next sequence number the local TCP is expecting to
receive.

RECEIVE-WINDOW - This represents the sequence numbers the local (receiving) TCP is
willing to receive. Thus, the local TCP considers that packels overlapping the range
RECEIVE-SEQUENCE to RECEIVE-SEQUEMCE + RCCEIVE-WINDOW - 1 carry
acceptable data or control. Packets containing sequence numbers entirely outside of
this range are considered duplicates and discarded. This topic is discussed in detail in

section 4.5 on window allocation policies.

RST - A control hit (reset), occupying no sequence space, indicating that the receiver
should delete the connection without further interaction. The receiver can determine,
based on the sequence number and acknowledgment fields of the incoming packet,
whether il should honor the reset command or ignore it. In no case does receipt of a
packat containing EST give rise fo a RST in response.

SEND-SEQUEMNCE - This is the next sequence number the local {sending} TCP will use
on the connection. It is initially selected from an initial sequence number curve (ISN,
see seclion 4.2.1) and is incremented for each octet of data or sequenced control
transmitted.

SEND-WINDOW - This represents the sequence numbers which the remote (receiving)

[Page 38] : Cerf & Postel

January 1978
TCP-3 Specification
TCP Dasign

TCP Is willing to receive. It is the value of the wirdow field specified In packets from
the remote (dala receiving) TCP. The range of secquence numbers which may be
emitted by a TCP lies between SEND-SEQUENCE and LEFT-SEQUENCE +
SEND-WINDOW - 1.

SYN - A control bit in the incoming packet, occupying one sequence number, used to
indicale at the initiation of a conneclion, where the sequence numbering will stark.

URG - A control bit {urgent), occupying no seguence space, used to indicate that the
receiving user should be nolified to do urgeni processing as long as there is data to
be consumed with sequence numbers less than the value indicated in the urgent
pointer. :

URGENT-POINTER - An optional control field present only when the URG bit is on.
This field communicates the value of thae urgent pointer which indicates the data octet
associated wilh the sending user’s urgent call.

State and Event Descriptions

Certain error responses shown below are generic. See section 25 for details on
TCP-to-user messapes. User commands referencing connections thal do not exist
receive "connection not open" (EP3) and references to connecltions not accessible to
the caller receive "connection illegal for this process” (EP1). We have not repeated
these generic responses in each description of action performed for each connection
state. Overt allempts to SEND or signal URGENT on a connection with unspecified
foreign socket results in a "foreign socket unspecifiec” (ES) response.

CLOSED STATE (i.e. connection does not exist)
User Commands

1. OPEN

Create a new transmission control biock TCB ta hold connection state
information. Fill in local socket identifier, foreign sockel if present (the
conneclion is passively "listening” if the foreizn socket is unspecified), and user
timeout information. Some implementations may issue SYN packets if the
foreign sockel is fully specified. In this case, an initial sequence number {ISN) is
selecled and a SYN packet formed and seni. The LEFT-SEQUENCE is set to
ISN, the SEND-SEQUENCE to ISN + 1, and SYN-SENT slale is enlered.

If the caller does not have access to the local socket specified, return
"connection illegal for this process." (EPL). If there is no room to create a new
conncction, return "insufficient resources” (4).

Cerf & Postel [Page 39]

January 1978

TCP-3 Specification

TCP Design

2. SEND, URGENT, CLOSE, ABORT, RECEIVE, STATUS

Error return "Connection not open” {EP3).

If the user should no have access to such a conneclion, "connection illegal for
this process" (EP1) may be returned.

Incoming Packets.

All incoming packels are discarded. For an incoming packet containing an ACK,
except for incoming RST packets which should be ignored, a RST is created with a
sequence number (PKT-SEQUENCE} equal to the acknowledgment field
(PKT-ACKNOWLEDGMENT)} of the incoming packet (if it has one; otherwise
PKT-SEQUENCE is sot to zero or, ISN). The acknowledpment field of the RST
should be set to the sum of the incoming PKT-SEQUENCE and PKT-LENGTH. The
RST and ACK control bits for the outbound packet should be set (see figure 4.2-6).

OPEN STATE

User Commands

[Fage 40]

1. OPEN
Return "elready OPEN" {EP6)

2. SEND or URGENT

Select an SN, send a &5YN packet, set LEFT-SEQUENCE fto ISN and
SEND-SEQUENCE to ISN + 1. Enter SYN-SENT state. Data associsted with
SEND may be sent with SYN packet or gueued for transmission after entering
ESTABLISHED state. URGENT can be sent as a combination S5YN, URG packet
{see figure 4.1-3 and section 4.3.2). |If there is no room to queue the request,
respond with "insufficient resources” {4).

3. RECEIVE

Queue request if there is space, or respond with "insufficient resources™ (4}

4. CLOSE

Delete TCB, return "ok" (0). Any outstanding RECEIVES should be returned
with “closing” responses (P12).

Cerf & Postel

January 1978
TCP-3 Specification
TCP Dasign

5. ABORT

Delete TCB, return "ok" {0} any ouistznding RECEIVES should be returned with
"conneaction reset" (P14) responses.

6. STATUS
Return state = OPEN .
Incoming Packets
1. ACK

Any acknowledgement Is bad if it arrives on a connection still in the OPEN state.
A reset (RST) packet should be formed for any arriving ACK-bearing Packet,
exceplt another RST. The RST should be formatted as follows:

<SEQ PKT-ACKNOWLEDGMENT><RST><ACK PKT-SEQUENCE + PKT-LENGTH> =
Thus the RST will acknowledge any text or control in the offending packet.
2. SYN

RECEIVE-SEQUENCE should be set to PKT-SEQUENCE + 1 and any other control
or text should be gqueued for processing later. ISM should be selected and a
SYN packel sent of the form:

<SEQ ISN><SYN><ACK RECEIVE-SEQUENCE>

SEND-SEQUENCE should be set to ISN + 1 and LEFT-SEQUENCE to ISN. The
connection state should be changed to SYN-RECEWED. MNote that any other
incoming control {combined with SYN} will be processed in the SYN-RECEIVED .
state. Processing of SYN and ACK should not be repeated.

3. Other text or control

Any other control or text-bearing packet! (not containing SYN) will have an ACK
and thus will be discarded by the ACK processing. An incoming RST packet
could not be valid, since it could not have been sent in response to anything
sent by this incarnation of the connection.

Cerf & Postel ' [Page 41]

January 1978

TCP-3 Specification

TCP Design

SYN-SENT STATE

User Commands

1

OPEN
Return “already OPEN" (EP6)
SEND or URGENT

Queue for processing after the connection is ESTABLISHED or packetize,
slarling with the current SEND-SEQUENCE number. Typically, nothing can be
sent yel, anyway, because the send window has not yet been set by the other
side. If no space, return "insufficient resources” {4).

RECEIVE

Queue for later processing unless there i no room, in which case return
"insufficient resources” (4).

CLOSE

Delete the TCB and return “closing” (P12) responses to any queued SENDs,
RECEIVES, or URGENTSs.

ABORT

Delete the TCB and return "reset" (Pl4) responses to any gqueued SENDS,
RECEIVES, or URGENTs.

STATUS
Return state = SYN-SENT; SEND-SEQUENCE, RECEIVE-WINDOW

Incoming packets

[Page 42]

1.

ACK

If LEFT-SEQUENCE < PKT-ACKNOWLEDGMENT <= SEND-SEQUENCE then
the ACK is acceptable. LEFT-SEQUENCE should be advanced to equal
PKT-ACKNOWLEDGMENT, and any packet(s) on the retransmission queue which
are thereby acknowledged should be removed,

If the packet acknowledgment is not acceptable, @ RST packet should be formed
(except when the offending packet is also a RST) which carries the

Cerf & Postel

January 1978

TCP-3 Specification
TCP Deasign

PKT-ACKNOWLEDGMENT as a sequence number, and acknowledges all text and
control of the offending packet.

S5YN

RECEIVE-SEQUENCE should be set to PKT-SEQUENCE + 1 and any packet text
or contral queued for later processing. If the packet has an ACK, change the
connection state to ESTABLISHED, ctherwise enter SYN-RECEIVED. In any case,
form an ACK packel:

<SEQ SEND-SEQUENCE=><ACK RECEIVE-SEQUENCE=
and send il. :
RST

Delete TCB, enter CLOSED state.

4, Other text or control.

Incoming packels with other conirol or text combined with SYMN will be
processed in SYMN-RECEIVED or ESTABLISHED state. Arriving packels which do
not contain SYN are either old duplicates or out-of-order arrivals. Since these
must contain ACK fields, they will have been discarded by earlier ACK
processing.

5. User Timeout.

If the user limeoul expires on a packet in the retransmission gueue, abori the
connection, notifying the user “retramsmission timeout, connection aborted”
(EPS), and flushing all gqueues, returning RECEIVES, SENDS or URGENTs with
the same error (EP9). Delete the TCB.

SYN-RECEIVED STATE

User Commands

1.

OPEN

Return "already OPEN" (EP6)

‘2. SEND or URGENT

Cerf & Postel

Queue for later processing after entering ESTABLISHED state, or packetize and
queue for output. If no space to queus, respond with “insufficient resources”

(4)

[Page 43]

January 1978

TCP-3 Specificalion

TCP Design

RECEIVE

Queue for processing after entering ESTABLISHED state. If there is no room to
queue this request, respond with "insufficient resources™ (4).

CLOSE

Queue for processing after entering ESTABLISHED state or packetize end send
FIN packet. If the latler, enter FIN-WAIT stale.

ABORT
Delete TCB, send a RST of the form;
<SEQ SEND-SEQUENCE><RST><ACK RECEIVE-SEQUENCE>

and return any unprocessed SENDs, URGENTs, or RECEIVEs with "reset” code
{P14).

STATUS

Return state = SYN-RECEIVED, LEFT-SEQUENCE, EENb—SEQUENCE.
SEND-WINDOW, RECEMME-SEQUENCE, RECEWE-WINDOW, and other desired
statistics number of (SEND, RECEIVE buffers queued), packets queuved for
reassambly, for retransmission, efc.

Incoming Packels

[Page 44]

1.

Check PKT-SEQUENCE

If RECEIVE-SEQUENCE < PKT-SEQUENCE +MAX {0,PKT-LENGTH-1)
< RECEIVE-SEQUENCE + RECEIVE-WINDOW then the packet sequence
number is acceplable. If not, form a reset (RST) packet:

<SEQ PKT-ACKNOWLEDGMENT> <RST>
<ACK PKT-SEQUEMNCE + TEXT-LENGTH=>

If the incoming packet is RST or has no J&CK,-discard it, and do not send RST

formed above. MNole that the test above guarantees that the last sequence
number used by the packet lies in the receive-window. The special "MAX"
operation makes certain that empty ACK packets, whose length are O, will be
accepted. |f the RECEIVE-WINDOW is zero, no packels will be acceptable, but
special allowance should be made to accept valid ACKs..

Insisting that PKT-SEQUENCE (i.e., the first sequence number occupied by the

Cerf & Postel

January 1978

TCP-3 Specification
TCP Dasign

packet) lie in the RECEIVE-WINDOW could lead to deadlock in the case of
alternate gateway routing and different fragmentation.

A Scenario:
Assume the receivers RECEIVE-SEQUENCE is 1.
The sender transmits a packet (pl) contzining data octets 1 through 8.

Gateway A fragmenis pl into two new packets, the first (p2) carries data
octets 1 through 4, and the second {p3) carries data octets 5 through 8.

Packet p2 arrives at the receiver and is found acceptible. The receiver sets
the RECEIVE-SEQUENCE to 5.

Gateway A breaks.
The sender timesout and retransmits pl as p4.
The receiver finds p3 aflicted with errors and discards it.

Gateway B fragments pd into three naw packels, the first (p5) carries data
octets 1 through 3, the second (p6) carries dala octets 4 through 6, the
third (p7) carries data octets 7 and &,

When p5 arrives at the receiver it is acknowledged then discarded since it is
completely below the RECEIVE-SEQUENCE.

When p& arrives at the receiver it iz acknowledged then if the special MAX
function were not used it would be discarded since it’s PKT-SEQUENCE is

below the RECEIVE-SEQUENCE.

A deadlock would develop if p6 were discarded, and if when the sender
retransmitted it always sent the complete contents of the original packet pl.’

2. ACK

Cerf & Postel

If LEFT-SEQUENCE < PKT-ACKNOWLEDGMENT <= SEND-SEQUENCE then
set LEFT-SEQUENCE = PKT-ACKNOWLEDGMENT, remove any acknowledged
packels from the retransmission queuse, and enter ESTABLISHED state.

If the packe! acknowledgment is nol acceptable, form a resel packel, as for the
bad sequence case above, and send it, unless the incoming packet is an RST, in
which case, it should be discarded.

[Page 45]

January 1978

TCP-3 Specification

TCP Design

3.

RST

If the packet has passed sequence and acknowledgment tests, it is valid. Return
this connection to OPEN state. The user need not be informed. All packets on
the retransmission queue should be removed. All packetized buffers must be
assigned new sequence numbers, so they should be requeued for re-packetizing.

Other text or control

If there is olher control or text in the packet, it can be processed when the
conneclion enters the ESTABLISHED state.

User Timeout

If the user timeout expires on any packet in the retransmission queue, flush all
queues, return outstanding SENDs, URGENTs or RECEIVEs with "user timeout,
connection aborted" (EP9), and delete the TCB.

ESTABLISHED STATE

Uszer Commands

1.

2.

[Page 46]

OPEN
Respond with "already OPEN" (EP6)
SEND or URGENT

Packetize the buffer, send or queue it for output. If there is insufficient space
to remember this buffer, simply respond with"insufficient resources” (4).

RECEIVE

Reassemble queued incoming segments into receive buffer, and return to user.
Mark "end of letter" (EOL) if this Is the case. If buffer size is not one octet
then do end-of-letter /buffer-size adjustment processing. If insufficient incoming
segments are queued fo satisfy the request, queue the request. If there is no
queue space to remember the RECEIVE, respond with “insufficient resources”

(4)

CLOSE

Queue this until all preceding SENDs or URGENTs have been packetized, then
form a FIN packel and send it. In any case, enter FIN-WAIT state.

Cerf & Postel

January 1978
' TCP-3 Specification
L TCP Dasign

5. ABORT
Delete TCB and send a reset packet:
<SEQ SEND-SEQUENCE=<RST><ACK RECEIVE-SEQUENCE>

All queued SENDs, URGENTs, and RECEIVEs should be given "resel" responses
{P14); all packets queued for transmission (except for the RST formed above) or
retransmission should be flushed.

6. STATUS

Return “state = ESTABLISHED; - SEND-SEQUENCE, LEFT-SEQUENCE,
SEND-WINDOW, RECEIVE-SEQUEMCE, RECEIVE-WINDOW, and other statistics,
as desired. '

Incoming Packets
1. Check PKT-S5EQUENCE i

All packets are generally processed in sequence. Initial tests on arrival are used
to discard old duplicates, but further processing is done in PKT-SEQUENCE

(order. If a packel’s contents straddle the boundary betlween old and new, only
the new parts should be processad.

If RECEIVE-SEQUENCE <= PKT-SEQUENCE + MAX(PKT-LENGTH-1,0)
< RECEIVE-SEQUENCE + RECEIVE-WINOOW then packet s acceplable.
Otherwise if PKT-LENGTH is non-zero, an empty acknowledgment packet should
be senl:

<SEQ SEND-SEQUENCE><ACK RECEIVE-SEQUEMNCE™
In any case, unacceplable packets should be discarded.

2. ACK

i LEFT-SEQUEMNCE < PKT-ACKNOWLEDGMENT <= SEND-SEQUENCE then
set LEFT-SEQUENCE = PKT-ACKNOWLEDGMENT. Any packets on the
retransmission queue which are thereby enlirely acknowledged are removed.
Users should receive positive acknowladgments for buffers which have been
SENT and fully acknowledged (i.e, SEND buffer should be returned with "OK"
{0) response). If the ACK is a duplicate, it can be ignored.

3. RST
All pending RECEIVEs, SENDs, and URGEINTs receive "reset” (Pl4) responses.

Cerf & Postel ' [Page 47]

January 1978

TCP-3 Specificalion

TCP Design

[Page 48]

All packet queues are flushed. The TCB is deleted. User also receives an
unsolicited general "resel” signal (P14).

SYN

lgnore the SYN. A packet carrying a SYN could not have passed through the
sequance check unless it had control or tewt lying beyond the SYN which was
acceptable. To prevent repeat processing of controls or text, such packets could
be "marked" so that all duplicate control or text is removed before they exit
sequance-number check. Other marking slrategies could be employed to
achieve the same effect.

URG

Signal user that remote side has urgent data (P11} if the urgent pointer is in
advance of the data consumed. If the user has already been signalled (or is still
in the "urgent mode") for this continuous sequence of urgent data, do not
signal the user again.

"Packet text

Once in the ESTABLISHED state, it is possible to deliver packet text to user
RECEIVE buffers. Some preliminary packet reassembly may be required to form
valid segments from fragments created at a galeway. Text from segments can

. be moved into buffers until either the buifer is full or the segment is emply. |If

the segment emplies and carries an EQL flag, then the user is informed, when
the buffer is returned, that an EOL has been received. If the buffer size is not
one octet then the end-of-letter /buffer-size adjustment processing must be done.

FIN

An ACK packet should be sent, acknowledging the FIN. The user should be
signalled "connection closing” (P12) and similar responses should be returned
for any oulstanding RECEIVEs which cannot be salisfied. Connection state
should be changed to CLOSE-WAIT.

8. User Timeout

If the user timeoul expires on a packet in the retransmission queue, flush ali
queuves, return “"user timeout, connection aborted” (EP3) for all outstanding
SENDs, URGENTs, and RECEIVEs, and delete the TCB. The user should receive
an unsolicited message of the same form (EP3).

Cerf & Postel

January 1978

TCP-3 Specification
TCP Design

FIN-WAIT STATE

User-Commands

1.

OPEN

Return "elready OPEN" (EP6)

SEND or URGENT

Raturn "connection closing" (EP12) and do not service request.
RECEIVE

Reassemble and return a letter, or as much as will fit, in the user buffer. Queuve
the request! if it cannot be serviced immediately.

CLOSE

Strictly speaking, this is an error and should receive a "connection closing”

(EP12) response. An "ok" (0) response would be accepiable, too, as long as a
second FIN is not emitted.

ABORT
A resgi packet (R5T) should be formed and sent:
<5EQ SEND-SEQUENCE><RST><ACK RECEWE-SEQUENCE:'

Outstanding SENDs, URGENTs, RECEIVEs, CLOSEs, andfor packets queued for
retransmission, or packetizing, should be flushed, with appropriate "connesction
reset” {P12),

STATUS

Respond with state = FIN-WAIT, SEND-SEQUENCE, LEFT-SEQUENCE,
SEND-WINDOW, RECEIVE-SEQUENCE, RECEIVE-WINDOW, and other statistical
information, as desired.

Incoming packetls

1.

Ceorf & Postsl

Check PKT-SEQUENCE

If RECEIVE-SEQUENCE <= PKT-SEQUENCE + MAX(PKT-LENGTH-1,0)
< RECEIVE-SEQUENCE + RECEIVE-WINDOW then packet seguence s

[Page 49]

————

January 1978

TCP-3 Specification

TCP Design

{Page 50]

acceptable. Otherwise, if PKT-LENGTH is non-zero, an ACK packet should be
sent:

<SEQ SEND-SEQUENCE><ACK RECEIVE-SEQUENCE>

In any case, an unacceptable packet should be discarded.

. ACK

If LEFT-SEQUENCE < PKT-ACKNOWLEDGMENT <= SEND-SEQUENCE, then
LEFT-SEQUENCE should be advanced appropriately and any acknowledged
packels deleted from the retransmission queue. SENDs or URGENTs which are
thereby completed can also be acknowledged to the user. ACK's outside of the
SEND-WINDOW can be ignored. If the retransmission queue Is empty, the user’s
CLOSE can be acknowledged ("OK" {(0)) and the TCB deleted.

. RST

All RECEIVEs, SENDs, and URGENTs still oulstanding should receive “reset”
(P14) responses. All packet queues should be flushed and the connection TCB
deleted. User should also receive an unsolicited general "connection reset”

(P14) signal.

. SYN

.- This case should not occur, since a duplicate of the SYN which started the

current incarnation will have been filtered in the PKT-SEQUENCE processing.
Other SYN's could not have passed the PKT-SEQUENCE check at all {see SYN
processing for ESTABLISHED state).

. URG

Signal the user that the remote side has urgent data (P11) if the urgent pointer
is in advance of the data consumed. If the user has already been signalled {(or is
still in the “urgent mode”) Yor this continuous sequence of urgent data, do not
signal the user again. '

. Packet Text

If there are outstanding RECEIVEs, they should be satisfied, if possible, with the
text of this packet, remaining text should be queued for further processing. If a
RECEIVE Is satisfied, the user should be notified, with "end-of-letter” (EOL)

signal, if appropriate.

Cerf & Postel

January 1973
TCP-3 Specification
TCP Design

7. FIN

The FIN should be acknowledged. Return any remaining RECEIVEs with
"connection closing” (P12) and advise user that connection Is closing with a
general signal (P12). If the retransmission queue is not empty, then enter
CLOSING state, otherwise, delete the TCB.

8. User Timeout

If the user timeout expires on a packet in the retransmission queue, flush all
queues, return "user timeout, connection aborted" messages for all oulstanding
SENDs, RECEIVEs, CLOSES or URGENTs, send an unsolicited general message
of the same form to the user, and delete the TCB.

CLOSE-WAIT STATE
User Commands
1. OPEN
Return "already OPEN" error {EP5)
2. SEND or URGENT

. Packelize any text to be sent and queue for output. If there is insufficient space
to remember the SEND or URGENT, return "insufficient resouces” (4)

3. RECEIVE

Since the remote side has already sent FIN, RECEIVEs must be satisfied by text
already reassembled, but not yet delivered to the user. If no reassembled
packet text is awaiting delivery, the RECEIVE should get a "connection closing”
(P12) response. OQtherwise, any remaining text can be used to satisfy the
RECEIVE. In implementations which do not acknowledge packets until they have
been delivered into user buffers, the FIN packet which led to the CLOSE-WAIT
state will not be processed until all preceding packet text has been delivered into
user buffers. Consequently, for such an implementation, all RECEIVEs in
CLOSE-WAIT state will receive the "connection closing” (P12) response,

4. CLOSE

Queus this request until all preceding SENDs or URGENTs have been packetized;
then send a FIN packet, enter CLOSING state.

Cerf & Postel [Page 51]

January 1978

TCP-3 Specification

TCP Dasizn

5. ABORT

Flush any pending SENDs, RECEIVEs and URGENTs, returning “connection
reset" (P14) responses for them. Form and send a RST packet:

<S5EQ SEND-SEQUENCE><RST><ACK RECEIVE-SEQUENCE>

Flush all packet quaves and delate the TCB,

6. STATUS :

Return state = CLOSE-WAIT, all other TCB values as for ESTABLISHED case.

Incoming Packets

[Page 52]

1. Check PKT-SEQUENCE

If RECEIVE-SEQUENCE <= PKT-SEQUENCE + MAX{PKT-LENGTH-1,0)}
< RECEIVE-SEQUENCE + RECEIVE-WINDOW then the packet sequence is
acceptable. Otherwise, If PKT-LENGTH is non-zero, an ACK should be sent:

<SEQ SEND-SEQUENCE><ACK RECEIVE-SEQUENCE>

Unacceptable packets should be discarded. Others should be processed in
sequence number order.

. ACK

If LEFT-SEQUENCE < PKT-ACKNOWLEDGMENT <= SEND-SEQUENCE, then
LEFT-SEQUENCE should be advanced appropriately and sany acknowledged
packets removed from the retransmission queue, Completed SENDs or
URGENTs should be acknowledged to the user {"OK" (0) returns). ACK's which
are oulside the receive window can be ignored.

. RST

All RECEIVEs, SENDs, and URGENTs still outstanding should receive "reset™
{P14) responses. Packet queues should be flushed and the TCB deleted. The
user should also received an unsolicited general "connection reset” signal

(P14).

. SYN

This case should not occur, since a duplicate of the SYN which started the
current conneclion incarnation will have been filtered in the PKT-SEQUENCE

Cerf & Postel

p—

January 1978

7.

TCP-3 Specification
TCP Deasign

pracessing. Othar SYN's will have been rejected by this test as well (ses SYN
processing for ESTABLISHED state).

URG

This should not occur, since a FIN has been received from the remote sids.

‘Ignore the URG.

Packet text

This should not occur, since a FIN has been received from the remote side.
lgnore the packet texl.

FIN

This should not occur, since a FIN has already been received from the remote
side. lgnore the FIi.

User Timeout

If the user limeoul expires on a packet in the retransmission qusue, flush all
queues, return "user timeout, connection aborted" (EPS) for any oulstanding
SENDs, RECEIVEs or URGENTs, send an unsolicited general messsge of the
same form to the user and delete the TCB.

CLOSING STATE -

User Commands

1.

Cerf & Postel

CPEN

Respond with "already OPEN" (EP6)
SEND, URGENT

Respond with "connection closing” (EP12)
RECEIVE

Respond with "connection closing” (EP12)
CLOSE

Respond with "connection closing” (EP12)

[Page 53]

January 1978

TCP-3 Specification

TCP Design

5. ABORT
Respond with "OK" (0} and delete the TCB; flush any remaining packet gqueues.
If @ CLOSE command is still pending, respond "connection reset” (P14).

6. STATUS

Return State = CLOSING along with other TCP parameters.

Incoming packels

[Page 54]

1. Check PKT-SEQUENCE

If RECEIVE-SEQUENCE <= PKT-SEQUENCE + MAX(PKT-LENGTH-1,0)
< RECEIVE-SEQUENCE + RECEIVE-WINDOW then packet sequence s
acceptable. Otherwise, if PKT-LENGTH is non-zero, an ACK packet should be
formed and sent:

<5EQ SEND-SEQUENCE=><ACK RECEIVE-SEQUENCE>

In any case, an unacceptable packet should be discarded.

. ACK

If LEFT-SEQUENCE < PKT-ACKNOWLEDGMENT <= SEND-SEQUENCE, then
LEFT-SEQUENCE should be advanced and any acknowledged packets deleted
from the retransmission queue. SENDs or URGENTs which are thereby
completed can also be acknowledged to the user. ACK's outside of the
SEND-WINDOW can be ignored.

. RST

Any oulstanding RECEIVEs, SEND, and URGENTs should recelve "reset"
responses (Pl4). All packet queues should be flushed and the TCB deleted.
Users should also receive an unsolicited general "connection reset" (P14)
signal, '

. Packet text or control

No other control or text should be sent by the remote side, so packets
containing non-zero PKT-LENGTH should be ignored.

. User Timeout

If the user timeout expires on a packet in the retransmission queue, flush all
queues, return "user limeoul, connection aborted” (EP3) responses for all

Cerf & Postel

January 1978

TCP-3 Specification
TCFP Design

oulstanding SENDs, URGENTs, RECE!VEs, or CLOSEs, send an unsolicited
message of lhe same form (EP3} to the user and delete the TCB.

Cerf & Postel : [Page 55]

January 1978
TCP-3 Specification
TCP Design

4.3 TCP Date Structures

Our basic view of internetworking is that all internetwork packets (TCP and otherwise) have
a basic internet header consisting of source/destination address, data and header length
fields, and format indicator. A TCP header follows the Internet header, supplying
information specific to the TCP protocol. This division allows for the existence of internet
protocols other than TCP, and for experimentation with TCP variations.

4.3.1 Internetwork Packet Format

In this section, we offer a terse descriptive summary of the conlents of the internetwork
header. .

S SR T S SN ST S ST ST RS R S F S S S S S A s ot 2
IYersionl TO5 | Format | Total Length |
ISV T SO T W S W S S S S S R S RO S U R A B A T
| IH Length=28 | DAL=S | SAL=3 | Destination |
S S B S B e o ot ot T B B e s Tt ol ot il o
[Uestination continued | Source i
T e o T et ot S e e e e Il ot Bt
[Source continued | Internet Options i
T S T s s s st St ot Ll Bl Bl e
I Internet Options continued | Padding 1
N R S ST S S S S S S s s et T L B

Internet Packet Header Format
Note that each tick mark represents one bit position.
Figure 4.3-1

About Addresses:

An address is a variable length quantity (in multiples of octets). It is intended for the
first octet of an address to be interpreted as a network identifier, and that the rest of
the address identifies a host within that network. The address field is sllowed to be
even longer than lhat with the view that a host may multiplex between several
functions, or further route messages based on the additional address bits.

If a host were to support two instances of TCP they could be assigned distinct
addresses by using an additional oclet of address beyond that needed to identify
the host. Other examples of such processes are the XNET (cross-network
debugger) server process, the gateway control process, or the packet echoer

[Page 56] Cerf & Postel

January 1978
TCP-3 Specification
TCP Design

process. There is also the possibility of placing another whole layer of addressing
hierarchy in this position.

The 8 bit network number, which is the first octet of the variable length address, has
a value as specificd in RFC 739 [Postel?77] In any case the latest information can
be obtained from Jon Postel.

Version: 4 bils

There is a Version field which indicates the "shape®, or format, of the Internet
portion. This is version 0. Subseguent versions may employ different formats.

TOS: 4 bits
Type of service. To be defined [aler.
Format: 8 bits

There is a Format field which indicates the "shape", or format, of the rest (Protoco!
Specific portion) of the packet is {examples of formal values are TCP-3, TCP-4, DSF).
The format field has values as specified in RFC 739 or its successor. In any case the
latest information can be obtained from Jon Postel.

Total Length: 16 bits

Total Length is the length of the packet in octets including Internet Header, Protocol
Specific Header {in our case TCP Header), and Data.

IH Length: 8 bits

Internet Header Length is the length of the Internet Header in octets, and thus points
to the beginning of the Protocol Specific {e.z. TCP) Header,

DAL: 4 bits

Destination Address Length in octets.
SAL: 4 bits

Source Address Length in octels.
Destination: wvariable

The destination address, DAL octets in length.

Cerf & Postel ' [Page 57]

January 1578
TCP-3 Specification
TCP Dacign

Source: variable

The source address, SAL octets in langth.
Internet Options: ‘variable

To be defined.:
Padding: wariable

Padding fields are used to ensure that the Protocol Specific (e.g. TCP) Header and the
Data begin on 32 bit word boundaries.

[Fage 58] : Cerf & Postel

January 1978

TCP-3 Specification
TCP Design

4.3.2 TCP Packel Formal

In this section, we offer a terse descriptive summary of the contents of the TCP header.

e T e s St A Mt SAMSAMT UM WA ST ST ST WY ST S S SO S
I Sequence Number I
T ot 2T TSNV S SOt SR TS SIS U SO SR SOU A W T S S W 8
| Acknouledgement Number I
e e o S S s S IR o O SN S Ui SN ST SHSY WA ST SUF SANY WA S S
Ist 3¢ % % % BEABERSFI I
Ix % % % x > 00C00S Y Il Hindow I
I x % x x SSKLLTNNI : I
s S e Sty Tt T S AT SR WY W WP S ST S S S
| Destination Port |
e T e s St St T o St OSSR ST S S S I S SO W S S N S W
| Source Port : |
R e e e R i S e e i D T e e S e S TP S of (T T B e
| Data Offset | HReserved | Checksum I
L e e e e e s B o e et st T e e
| Urgent Pointers I Buffer Sizew 1
i e o e e B T s T S T R R S N S
| TCP Options | Padding |
L S e et e e e e e e R t t o e e e s A S
| data : |
et B T e Bt e e e s St I [St St S S

DD
I~ o

X X X

TCP Header Format
Mote that one tick mark represents one bit position.
Figure 4.3-2.

MNota:

Fields marked with an asterisk are omitted if {he corresponding conirol flag Is 0.
Sequence Number: 32 bits

The sequence number of the first data octet in this packel.
Acknowledgement Number: 32 bils

If the ACK control bit is set this field contains the value of the next sequence number
the sender of the packet is expecting to receive.

Cerf & Postel [Page 59]

January 1978
TCP-3 Specificalion
TCP Dasign

Control Bits: 16 bits (from left to right):

bite B-5: unused

bit B: URG: Urgent Pointer field present
bit 7: B5Z: Buffer Size field present
bit 8: BOS: Beginning of Segment

bit 9: E0OS: End of Segment

bit 18: ACK: Acknouledgment field significant
bit 11: BOL: Begin of Letter

bit 12: EOL: End of Letter

bit 13: RST: Reset the connection

bit 14: SYN: Synchronize sequence numbers
bit 15: FIN: . No more data from sender

Window: 16 bits

The number of data octets beyond the one indicated in the acknowledgment field
which the sender of this packet is willing to accept.

Destination Port: 32 bits
Source ﬁnrl: 32 bits
Data Offset: E bits
The number of octets in the TCP Header. This indicates where the data begins.
Che?chsum: 16 bits

The checksum field is the 16 bit one's complemant of the one’s complemesnt sum of
all 16 bit words in the header and text, except that unchecksummed option fields are
replaced with zeros in the computation {see below). If a packet contains an odd
number of header and text octets to be checksummed, the last octet is padded with
zeros to form a 16 bit word for checksum purposes. The pad is not transmitted as
part of the packet. 2

Urgent Pointer: 16 bits

It this field is present then it communicates the current value of the urgent pointer as
a positive offset from the sequance number in this packel. This field should only be
sent in packets with the URG control bit set,

[Page 60] : Cerf & Postel

January 1978
TCP-3 Specification
TCP Dasign

Buffer Size: 16 bils

If this field is present then it communicates the receive buffer size for process at the
TCP which sends this packel. This field should only be sent In packets with both the
BSZ and 5YNM control bits sel.

TCP Options: variable

Options may occupy space at the end of the TCP header, and are a mullipla of 8 bits
in length. All options have the same basic format:

Option length: 8 bits

Length in actets (including the two octets of length and kind information)
Option kind: 8 bits

C: 1 bit

If set, this option is not included in the checksum caleulation. That iIs, in the
default case (C=0} the option is included in the checksum.

P: 1 bit

If set, this option is protocol specific (i.e. option is interpreted based on
format and version specified in the internet packet header fields).

Option identifier: 6 bits
There are iwo special cases for options.

The first is an option whose length field is zero. This marks the end of the
option lisl. Only one octet is associated with this option, the length octet
ilself, :

The second Is an option whose length field is one. This option serves as
padding and is also one oclet long. This option does not terminate the option
list,

MNote that the list of oplions may be shorter than the header length field might
imply. Mo guarantees concerning the content of the header beyond the
end-of-oplion mark are made, The two special options are Included in the
checksum of the packet.

Cerf & Postel ' [Page 61]

TCP-3 Specification
TCP Dasign

January 1978

Currently defined options include (kind indicated in octal):

Kind Length
™ g o
- i

BXX ——

Bag ——

IXX ——

188 -

181 4

182 4

183 2

N S o

288 —

284 variable

285 variable

3XN -

384 &

Padding:

Meaning

End of option list {checksummed),
occupies one octet only

Padding (checksummed), occupies ons
octet only

Checksummed and protocol independent
Reserved

Checksummed, protocol dependent (TCP)
Reserved

Facket Label-sequence number for
debugging purposes.

Secure Open = used by TCP's
communicating With BCR security
system

Secure Close-used by TCP's
communicating Wwith BCR security
sustem

Not checksummed and Protocol
independent

Reserved

Internetuork timestamp*field; used to
accumulate timestampirng information
during internst transit

Satellite timestamp field; [(as above)

Not checksummed and protocol
dependent

Internal TCP timestamp for
diagnostics

Padding fields are used to ensure that the protocol specific (e.g. TCP) header and the
data begin on 32 bit word boundaries.

[Page 62]

Cerf & Postel

January 1978
TCP-3 Specification
TCP Daslgn

£.3.3 Transmission Contro! Block

It is highly likely that any implementation will include shared data structures among parts
of the TCP and some asynchronous means of signalling users when letters have been
delivered.

One typical data structure is the Transmission Control Block (TCB) which is created and
maimtained during the lifelime of a given connection. The TCB contains the following
information (field sizes and content are notional only and may vary from one
implementation to another):

Local connection name: 16 bits
Local socket: variable (fixed for any given TCP)
Local address: wvariable (fixed for any given TCP)
Local port: 32 bits
Foreign sockel: variable
Foreign address: variable
Foreign port: 32 bits
Rece_-:ive window size in octets: 16 bits
Fieceiv.e left window edge (next sequence number expected): 32 bits
Send window size in octets: 16 bits
Send left window edge (earliest unacknowledged octet): 32 bits
MNext packet sequence number to send: 32 bils

Last sequence number used to update send window {make sure that only the most
recenl window information is used: 32 bits

Send Buffer Size: 16 bils
Receive Buffer Size: 16 bits
Send Urgent Pointer: 16 bits
Receive Urgent Pointer: 16 bits

Connectlion state: 4 bits

Cerf & Postel ' [Page 63]

January 1978

TCP-3 Specification

TCP Design

See figure 4.2-1 for basic state diagram,

CLOSED (0), OPEN (1), SYN-SENT (2), SYN-RECEIVED (3), ESTABLISHED (4),
CLOSE-WAIT (5), FIN-WAIT (6}, CLOSING (7).

Foreign connection specification (UUNU.T,UP): 4 bils

UN is set if the foreign nelwork was not specified in the OPEN command. U.T is
sel If the foreign TCP was nol specified in the OPEN command. UP is set if the
foreign Port was not specified in the OPEN command. U is set if any of UN, UT,
or UP are set. UT implies UP and UN implies both UT and UP (see section
2.20). UN, UT, and UP are used to remember the specificity of the foreign
socket at the initial OPEN so that a RST (reset} will return the foreign socket to ils
proper state. U is reset (i.e. made false} when a SYN is received, but may be set
again on receipt of RST, depending upon UN, UT. or UP. Once in the
ESTABLISHED state, UN, U.T, and UP can be reset, since the connection will not
return to OPEN on receiving RST afler it has become ESTABLISHED.

Retransmission timeout: 16 bits

Head of Send buifer queue [buffers SENT from user to TCP, but not packetized]:
16 bits

Tail of Send buffer queue: 16 bits

Pointer to lasi octet packetized in partially packetized buffer (refers to the buffer at |
the head of the queue): 16 bits :

Head of Send packet queue: 16 bits

Tail of Send packet queue: 16 bils

Head of Packetized buffer queue: 16 bits

Tail of Packetized buffer queue: 16 bits

Head of Retransmit packet queue: 16 bils

Tail of Retransmit packet queue: 16 bits

Head of Receive buffer queue [queue of buffers given by user to RECEIVE letters, but
unfilled]: 16 bits

Tail of Receive buffer queue: 16 bils

Head of Receive packel queue: 16 bits

[Page 64]

Cerf & Postel

January 1978
TCP~-3 Specification
TCP Design

Tail of receive packet queue: 16 bits
Pointer to last octet filled in receive bufier: 16 bits
Pointer to next octet to read from partly emptied packet: 16 bils

Note: The above two pointers refer to the head of the receive buffer snd receive
packet queues respectively.

Forward TCB pointer: 16 bils
Backward TCB pninlmf: 16 bits
4.4 Structure of the TCP
4.4.1 Introduction

Any particular TCP could be viewed in a number of ways. It could be implemented as an
independenl process, servicing many user processes. It could be viewed as & set of
re-entrant library routines which share a common interface to the local PSN, and common
buffer storage. It could even be viewed as a set of processes, some handling the user,
some the input of packets from the net, and some the output of packets to the net.

We offer one concepltual framework in which to view the various algorithms that make up
the TCP design. In our view, the TCP is written in two parts, an interrupt or signal driven
part (consisting of five processes), and a reenirant library of subroutines or system calls
which interface the user process to the TCP. The subroutines communicate with the
interrupt part through shared data structures (TCBs, shared buffer queues etc.). The five
processes are the Quiput Packet Handler which sends packets to the packet switch; the
Packetizer which formals letters into internet packets; the Input Packetl Handler which
processes incoming packets; the Reassembler which builds letters for users; and the
Retransmitter which retransmits unacknowledged packets.

NOTA BENE: This model is purely conceptual and not recomended for any
conventional operating system with process switch times on the order of 1 ms.
Examples of such systems are: Multics, TENEX, UNIX, and ELF.

As an example, we can consider what happens when a user executes a SEND call to the
TCFP service routines. The buffer to be sent is placed on a send buffer queue associated
with the user’s TCB. A "Packetizer" process is awakened to create ons or more output
packets from the buffer. The Packetizer attempts to maintain @ non-empty queue of
output packets so that the oulput handler wili not fall idle waiting for the packetizing
operation,

A major implementation issue is whether to use TCP resources or user resources for

Cerf & Poslel [Pape 65]

January 1978
TCP-3 Specification
TCP Design

Incoming and outgoing packets. |f the former, there is a fairness lssue, both among
competfing connections and between the sending and receiving sides of the TCP.

When a packet is crealed, it is placed on a FIFQ send packet queue associated with its
TCB. The Packetizer wakes the Qutput Packet Handler and then continues to packetize a
few more buffers, perhaps, before going to sleep. The Output Packet Handler is
awakened either by a "hungry" packel swilch or by the Packelizer. The send packet
queue can be used as a "work queue" for the Qutput Packet Handler. After a packet has
been sent, but usually before an ACK is returned, the Ouiput Packet Handler moves the
packet to a retransmission gueue associated with each TCB.

Retransmission timeouts can refer to specific packels, or the retransmission queue can
be periodically searched for the timed-out packets. If an ACK is received, the
retransmission entry can be removed from the retransmit queue. The send packet queue
contains only packets waiting to be sent for the first time.

Simultaneous reading and writing of the TCB queue pointers must be inhibited through
some sort of semaphore or lockoul mechanism. When the Packelizer wants to serve the
next send buffer queue, it must lock out all other access to the gqueus, remove the head
of the queue (assuming of course that there are enough buffers for packetization),
advance the head of the queue, and then unlock access to the queue.

Incoming packels are examined by the Input Packet Handler. Here they are checked for
valid connection sockets and acknowledgements are processed, causing packets to be
- removed, possibly, from the retransmit packel queue, as needed..

Packets which should bo reassembled into buffers and sent to users are queued by the
Input Packet Handler, on the receive packet queue, for processing by the reassembly
process, The Reassembler looks at its FIFO work queue and trles to move packels into
user buffers which are queued up in an input buffer queue on each TCH. If a packel has
arrived out of order, it can be gqueued for processing in the correct sequence. Each time
a packet is moved.into a user buffer, the left window edge of the receiving TCB is moved
to the right so that outgoing packets can carry the correct ACK information. If the send
buffer queus for the connection in question is emply, then the Reassembler creates a
packet to carry the ACK. '

As packels are moved into buffers and there are filled, the buffers are dequeued from
the receive buffer queue and passed to the user. The Reassembler can also be awakened
by the RECEIVE user call should it have a non-empty receive packet gqueus with an empty
receive buffer queue, .

[Page 66] Cerf & Postel

January 1978
TCP-3 Specification
TCP Dasign

4.4.2 Input Packet Handier

The Input Packet Handler is awakened when a packet arrives from the network. It first
verifies that the packet is for an existing TCB (i.e. the local and foreign socket numbers
are matched with those of exisling TCBs). If this fails, a "resel” message is constructed
and sent to the point of origin.

The Input Packet Handler looks out for control or error informalion and acts
appropriately. As an example, if the incoming packet is a RST (reset) request, and Is
"believable”, then the input packet handler clears out the related TCB, empties the
associated send and receive packet queues, and prepares error returns for outstanding
user SEND{s) and RECEIVE(s) on the reset TCB. The TCB is marked unused and returned
to storage. If the RST refers to an unknown connzction, it is ignored.

Any ACKs contained in incoming packels are used to update the send laft window edze,
and to remove the ACKed packets from the TCB retransmit packet queue. If the pachket
being removed was the end of a user buffer, thzn the buffer must be dequeued from the
packetized buffer queue, and the user informad.

The packet sequence number, the current recesive window size, and the receive Ieft
window edge determine whether the packet lies within the window or outside of it.

Let W = window size

S = size of sequence number space

L = left window edge

R = L+W = right window edge

¥ = sequence number to be tested
For any sequence number, ¥, if

0 <= (x-L) mod § < (R-L) mod S = W (4.4-1)
then % is within the window.

A packet should be rejected only if all of it lies outside the window. This Is easily tested
by letting x be, first the packetl sequence numbsr, and then the sum of packet sequence
number and packet length, less one in equation 4.4-1 above.

The other case to be checked eccurs when the packet has both head and tail outside of
the receive window, but includes the window.

Let PL = packet length

Cerf & Postel : [Page 67]

January 1978
TCP-3 Specificalion
TCP Design

L,R are as before
H = first sequence number in packet
T=H+PL-1 =last sequence number in packet

For any packet ranging over sequence numbers [H,T], if

O <ml-H<PL
and
O<=R-H<PL - (4.9-2)

“then the packet includes the receive window.

If the packet lenglh is zero (e.g., an ACK packet), tests should be performed as if the
packet lenglh were one lo accommodate the case when the receive window is zero.

If the packel lies outside the window, and there are no packels waiting to be sent, then
the Input Packet Handler should construct an ACK of the current receive left window
edge and queue it for oulput on the send packet queue, and signal the Qutput Packet
Handler. Successfully received packels are placed on the receive packet queue in the
appropriate sequence order, and the Reassembler is signalled.

The packet window check can nol be made if the associated TCB has not received a SYN,
s0 care must be taken to check for control and TCB state before doing the window
check,

4.4.3 Reassembler

It is possible that fragmentation of segments may be removed from responsibility of TCP
and placed at the galeway level only. That decision has not been made as yet so we
include the following discussion of fragment reassembly.

The Reassembler process is activated by both the Input Packet Handler and the RECEIVE
user command. When the Reassembler is awakened it looks at the receive packet gueue
for the associaled TCB. If there are some packets there, then it sees whether the receive
buffer queue is empty. If it is, then the Reassembler gives up on this TCB and goes back
to sleep; otherwise, if the first packet matches the left window edge, then the packet can
be moved into the user’s buffer. The Reassembler keeps transferring packets into the
user’s buffer unlil the packet is ernp!y or the buffer is full. Note that a buffer may be
partly filled and then a sequence "hole" be encountered in the receive packel queue, The
Reassembler must mark progress so that the buffer can be filled up starting at the right

[Page 68] : Cerf & Postel

January 1978
TCP-3 Specification
TCP Dasign

place when the "hole" is filled. Similarly a paczket might be only parlially emptied when a
buffer is filled, so progress in the packet must be marked.

It a letter was successfully transferred to a ussr buffer, then the Reassembler signals the
user that a letter has arrived and dequeues the buffer associated with it from the TCB
receive buffer queue. If the buffer is filled, then the user is signaled and the buffer
dequeued as before. The event code indicates whether the buffer contains all or part of a
letter, as described in section 2.4.

Of course, the sequence number processsing is adjusted to take into acmun’t-tha EOL
as indicated in section 4.2.6,

In every case, when a packet is delivered to 2 buffer, the receive left window edge is

- updaled, and the Packelizer is signaled. If the send packet gueus is emply, then tha
Reassembler must create a packet to carry the ACK and place it on the send pachet
queue,

Reassembly of incoming packets containing both the beginning and end-of-segment
marks (BOS, EQS; sec section 4.3.2) is straightforward. The packet checksum is intact
in the packet header and can be used to validale the end-to-end correctness of the data.

Arriving packets with only one or neither bit set are fragments created at a gateway. The
intent behind the TCP design is to preserve the end-to-end nature of the checksum and
acknowledgemenl procedure, even in the presence of fragmentation. To achieve this
goal, fragments must be reassembled into segmenis and checksummed. This means, In
particular, that the original segment header must be reconstructed.

Gateway fragmentation is straightforward. For instance, a packet consisting of sequence
numbers 100-599 can be fragmented inlo two packets of 250 octets each (including
control). The galeway uses figure 4.1-3 to determinme which sequence-consuming control
flags to set in each fragment header. In the worst case, suppose bolh sequence-bearing
control bits are set (ie, SYN and FIN), leaving 458 octets of data. A gateway could
produce two fragments, the first beginning with sequence number 100 and including
SYN, and up to and including data ‘sequence 349. BOS would be set, along with ACK
and the window field. The checksum field would be zero.

The second packet would contain data sequences 350-598 and control FIN, as well as
EOS, and a checksum (for the original segmant - it is not recomputed). The ACK and
window fields are duplicales of those in the first fragment.

If EOL is present in the original packet, it is carried only in the last fragment produced.
Note that & segment can be divided inta more than two fragments, and that a fragment
can also be divided. The BOS bil stays with the first fragment, even if that fragment is

Cerf & Postel ' [Page 69]

January 1978
TCP-3 Specification
TCP Design

subdivided laler. The EQS and EQL bits stay with the last fragment. Intermediate
fragments may not carry any of BOS, EOS, or EOL.

During reassembly of a segmant, it may happen that fragments arrive with sequence
number exlents which overlap (due to alternate gateway routing and different
fragmentation). This makes the job of reassembling fragmenis more difficult, but not
impossible. Althaugh it is not part of the current specification, it may be useful for
gateways to produce a fragment checksum in addition to passing the segment checksum
intact. In this way, a bad fragment is less likely to mess up reassembly of a segment.

Gateway fragmenlation rules may require modification or éugmerwtatinn to deal with
option fields in packet headers. It is generally true that options tend to stay with the
fragment marked "BOS".

The rules of packel retransmission require that retransmitled packets contain the latest
ACK and window information available. This means that a duplicate of a segment, if
fragmented, may bave a different checksum than earlier copies. To assure that segment
reassembly is not frustrated by this effect, the ACK and window information used lo
validate the reassembled checksum should be taken from the packet containing the
checksum (i.e., the fragment marked "EQS").

4.4.8 Packetlizer

The Packetizer p.ocess gels work from both the Input Packet Handler and the SEND user
call. The signal from the SEND user call indicates that there is something new to send,
while the one from the Input Packet Handler indicates that more TCP buffers may be
available from delivered packets.

When the Packetizer is awakened it looks at the send buffer queue for the associated
TCB. If there is a new or partial letter awaiting packetization, it tries to packetize the
letter, TCP buffers and window permitting. For every packet produced it signals the
Output Packet Handler (to prevent deadlock in a time sliced scheduling scheme). If a
run to complelion® scheme is used then one signal only need be produced, the first time
a packet is produced since awakening. If packetization is not possible the Packetizer goes
to sleep.

If a partial buffer was transferred then the Packetizer must mark progress in the send
buffer queue. Complctely packetized buffers are dequeued from the send buffer queue
and placed on a packetized buffer queue, when an ACK for the last bit is received the
send buffer is retlurned to the user,

A SYN must logically precede the first data transmitted on a connection. When the
Packetizer packetizes a letter it must see whether it is the first piece of data being sent
on the connection, in which case it must include the SYN bit, or cause a SYN packet to

[Page 70] ' Cerf & Postel

-

January 1978
TCP-3 Specification
TCP Deasign

be sent before the data packet. Some implementations may choose not to send data
with SYN, and some may choose to discard any data received with SYN.

4.4.5 Qutput Packel Handler

When activated by the Packetizer, or the Input Packet Handler, or some of the user call
routines, the Qulput Packet Handler atlempts o transmit packets to the network (this
may involve going through some other network interface program). Transmitted packets
are dequeued from the send packet queue and put on the retransmit queue along with
the time when they should be retransmitied.

All data packets that are (reMransmitted have the latest receive left window edge in th=
ACK field. Some error messages may set the ACK field to refer lo a received packel’s
segquence number,

4.4.6 Retransmitier

This process can either be viewed as a separale process, or as part of the Output Packe!
Handler. Its implementation can wvary; it could either perform its function by being
awakened at regular intervals, or when the refransmission time occurs for every packet
put on the retransmit queue. In the first case the retransmit queue for each TCB is
examined to sce if there is anything to retransmit. If there is, a2 packet is placed on the
send packet gueue of the corresponding TC3. The Oulput Packel Handler is also
signaled.

A "demon" process monilors all user send buffers and retransmiltable control messages
senl on each connection, but not yel acknowledged. If the global retransmission timeout
is exceeded for any of these, the user is notified and the connection aborted.

Note that, since refransmitted packets carry the latest receive left window edge and
acknowledgement information, the checksum may require recomputation.

4.5 Buffer and Window Allocation

4.5.1 Introduction

The TCP manages buffer and window allocation on connections for two main purposes:
equitably sharing limited TCP buffer space among all connections (multiplexing function),
and limiting atlempls to send packets, so that the receiver is not swamped (flow control
function). For further details on the operation and advantages of the window mechanism
ses [CK74]

Good allocation schemes are one of the hardest problems of TCP design, and much
experimentation must be done to develop efficient and effectiva algorithms. Hence the
following suggestions are merely initial thoughts. Different implementations are

Cerf & Postel : [Page 71]

January 1978
TCP-3 Specification
TCP Design

encouraged with the hope that results can be compared and better schemes developed.
For commenls on some allocation policies and other factors effecting communication
performance see [GRP77, Sunshina?7¢c].

4.5.2 The SEND Side

The window is determined by the receiver. Currently the sender has no control over the
send window size, and never transmits beyond the right window edge. An exception is
made in the case of a zero send window when it is necessary to periodically retransmit to
poll for a window opening ACK. '

Buffers must be allocated for outgoing packets from a TCP buifer pool. The sending
TCP may not be willing to allocate a full receiver’s window’s worth of buffers, so buffer -
space for a connection may be less than what the window would permit. No deadiocks .
are possible even if there is insufficient buffer or window space for one letter, since the
receiver will ACK parts of letlers as they are put into it's user’s buffer, thus advancing
the window and freeing buffers for the remainder of the letler.

It is not mandatory that the TCP buffer outgoing packets until acknowledgements for
them are received, since it is possible to reconstruct them from the actual buffers sent
by the user. However, for purposes of retransmission and processing efficiency it is very
convenient {o do,

4.6.3 The RECEIVE Side
At the r'e:ehrinlg side there are two requirements for buffering:
(1) Rate Discrepancy:

If the sender produces data much faster or much slower than the receiver consumes
it, little buffering is needed to maintain the receiver at near maximum rate of
operation. Simple gueueing analysis indicales that when the production and
consumplion (arrival and service) rales are similar in magnitude, more buffering is
needed to reduce the effect of stochastic or bursty arrivals and to kesp the receiver
busy.

(2) Disorderly Arrivals:

When packets arrive out of order, they must be buffered unlil the missing packets
arrive so that packets (or letters) are delivered in sequence. We do nolt advocate the
philosophy that they be discarded, unless they have to be, lest a poor effective
bandwidth may be observed. Path length, packet size, traffic level, routing, timeouts,
window size, and other factors may affect the degree to which packets arrive out of
order.

[Page 72] _ . Cerf & Postel

January 1978

TCP-3 Specification
TCP Design

The consideralions for choosing an appropriate window are as follows:

Suppose thal the receiver knows the sender’s retransmission limeout, K. This is
usually close to the round trip transmission lime. Suppose also that the receiver’s
acceplance rate is U bitsfsec, and the window size is W bits. Ignoring line errors end
other traffic, the sender transmits at a ralz between W/K and the maximum line rate.
The sender is permitted by the protocol to send at most a window's worth of data
each timeout period,

If W/K is grealer than U the difference must be retransmissions, which are
undesirable, so the window should be reduced to W, such that W'/K is approximately
equal to U. This may mean that the entire bandwidlh of the transmission channel is
not being used, but it is the fastest rate at which the receiver is accepting dalz, ana
the line capacity is free for other users. This is exaclly the same as the case where
the rates of the sender and receiver are almost equal, and so more buffering is
needed. Thus we see thal line utilization and retransmissions can be traded oii
against buffering.

If the receiver does nol accept data fast enough {by nol performing sufficient
RECEIVEs) the sender may conlinue relransmitling since the unaccepled data will neot
be ACKed. In this case the receiver should reduce the window size to “throttle” the
sender and inhibit useless retransmissions.

Limited experimentation, simulation, and analysis with buffering and window sllocation
suggests that the receiver should set aside buffer space to accommodate any window
sent to the scnder. Any attempls at optimislically setting a large window with inadequale
buffer appears to lead to poor bandwidlh owing to occasional (or frequent) discarding of
arriving packels for which no buffers are available. Theorelically, seleclion of the ratio of
window size granled to buffer store reserved should be equivalent to the selection of a
buffer size for a statistical mulliplexor.

If the user at the receiving side is not accepting data, the window should be reduced to
zero. In particular, if all TCP incoming packel buffers for a connection are filled with
received packels, the window must go lo zero to preven! retransmissions until the user
accepls some packets.

Setting the receive window to zero can have some inleresting side effects, In particular,
it is not enough to merely send an emply ACKX packel wilh the newly non-zero window,
whan the window is re-opened. |If the ACK is lost, the other TCP may never transmit
again. (ACKs cannot be retransmitted since they cannol, themselves, be ACKed as we
would not know when to stop retransmitling). A TCP should therefore continue to send
dala (retransmissions) even when faced with & zero window, albeit at a low rate. Design
and discussion of several mechanisms have led to the belief that this is the simplest and
least costly solution to the zero window problem.

Cerf & Postel : [Page 73]

TCP-3 Specification
Bibliography

[Page 74]

January 1978

Cerf & Postel

January 1978
TCP-3 Specificalion
Bibliography

BIBLIOGRAPHY

Notes of Working Group 6.1 of the International Federation of Information Processing, [also
known as the International Netwark Working Group or INWG], are avallable through its
chairman,

Mr. Derek L. A. Barber,
Project EIN,

National Physical Laboralory,
Teddington, Middiesex, England.

Readers interested in a rich source of reference to tha literature on resource sharing networks
are urged to consult NBS special publication 384:

Helen M. Wood, Shirley Ward Watkins, Ira W. Cotton

Annotated Bibliography of the Literature on Resourcs Sharing Networks

MNational Bureau of Standards Special Publication 384

Institute for Computer Sciences and Technology
Revised 1976

available from

Superintendent of Documents
L. S. Government Prinling Office
Washington, D.C. 20402
order by SD Cataiog No. C13.10.384/rev
Stock No. 003-003-01670-5, §2.45
Special collections of papers on related subjects may bz found im:

il Wesley Chu (Ed.), Advances in Computer Communications, Artech House, 1976
(revised).

2. Robert Blanc and Ira Cotton (Eds.), Computer Networking, IEEE Press, New York, 1976.
AR76

D. Aitwyver, A. M. Rybczynshki, "Datapac Subscribsr Interfaces,” Proceedings of - ICCC76, p.
143-149,

Barber76

Derek L.A. Barber, "A European Informatics Network,” Proceedings of ICCC76, p. 44-50

Cerf & Postel ' [Page 75]

January 1978

TCP-3 Specificalion
Bibliography

BBN1822

Bolt Beranek and Newman, "Specification for the Interconnection of a Host and an IMP,"
" BBN technical Report 1822, January 1976 (Revised).

Belsnes74

Dag Belsnes, "Note on Single Messags Communication,” INWG Prolocol MNote 3, IFIP
Working Group 6.1, September 1974, ' '

Belsnes74A

D. Belsnes, "Flow control in packet switching networks,” IN&TG MNote 63, IFIP Working
Group 6.1, October 1974.

BLSS

Jerry D. Burchﬁal..Elsia M. Leavitt, Sonya Shapiro, Theodore R. Strollo, TENEX USERS’
GUIDE, Bolt Beranek and Newman, Inc., Cambridge, MA, January 1975.

BLW74

Richard Binder, Wal Sum Lai, Morris Wilson, "The Alohanet Menehune - Version I," The
Aloha System Technical Report B74-6, University of Hawaii, September 1974,

"BPT76

Jerry D. Burchfiel, William W. Plummer, Raymond S. Tomlinson, "Proposed Revision to the
TCR," INWG Protocol Note 43, IFIP W.G. 6.1, September 1976.

Bright75

Roy D. Bright, "Experimental Packet Swilch Project of the UK Post Office, "In Computer
Communication Networks, Grimsdale and Kuo, Editors, NATO Advanced Studies Institute
Series, 15-4, Noordhoff International, Leyden, Netherlands, 1975, pp 435-444.

BTB

Jerry D. Burchfiel, Raymond §. Tomlinson, Michael Beeler, "Functions and Structure of a
Packet Radio Station,” AFIPS Proceedings, wvolume 44, 1975, National Computer
Conference, (Anaheim, CA, May 19-22, 1975), AFIPS Press, Montvale, NJ, 1975, p.
245-251. ;

[Page 76] ; Cerf & Postel

January 1978

TCP-3 Specificaltion
Bibliography

BW72

Robert Bressler and David C. Walden, "A proposed Experiment with a8 Message Switching
“Protocol,” ARPA RFC 333, NIC 9926, Augmentalion Research Center, Stanford Research
Institute, Menlo Park, CA.,, May 1972,

Cashin76
P.M. Cashin, "Datapac Network Protocols,” Proceedings of ICCC78, P. 150.
CCC70

Stephen Carr, Stephen D. Crocker and Vinton G. Cerf, "Host-Host Communication Protocol
in the ARPA Network," AFIPS Proceedings, 13970 Spring Joint Computer Conferenca,
volume 36, (Atlanltic City, NJ, May 5-7, 1970), AFIPS Press, Montvale, NJ, 1970, p.
589-598,

CD574

Vinton G. Cerf, Yogen K. Dalal, Carl Sunshine, "Specification of Internet Transmission
Control Program,” INWG General Note 72, IFIP Working Group 6.1, December 1974,

CEHKKS?77

Vinton G. Cerf, Stephen Edge, Andrew Hinchley, Richard Karp, Peter T. Kirsteln, Paal
Spilling, "Final Report of {he Internetwork TCP Project,” to appear.

Cerfl4

Vinton G. Cerf, "An Assecssment of ARPANET Protocals,” The Second Jerusalem Conference
on Information Technology, (Jerusalem, Israel, July 29-August 1, 1974), p. 653-664 {(also,
INWG General Note 70, IFIP W.G. 6.1, July 1974 and in Network Systems end Software
Infotech State of the Art Report 24, Infotech Information, Ltd, Nicholson House,
Maidenhead, Berkshire, England, 1975.) .

Cerf76

Vinton G. Cerf, "SCCU/MCCU Characleristics for AUTODIN Ii" Digital Systems Laboratory
Technical Note 92, Stanford University, July 1976.

Cerf/76a

Vinlon G. Cerf, "TCP Rcsynchronization,” Digital Systems Lab Technical Note 79, Stanford
University, January 1976.

Cerf & Postel [Page 77]

January 1978

TCP-3 Specification
Bibliography

Cerf76b

Vinton G. Cerf, "ARPA Internelwork Protocols Projects, Status Report, for the period
November 15, 19756 - February 15, 1976, Digital Systems Laboratory Technical Note 83,
Stanford University, February 1976.

Cerf77

Vinton G. Cerf, "Specification of Internet Transmission Control Program - TCP (Version 2),"
March 1977. :

CGN76

W. W. Clipsham, F. E. Glave, M. L. Narraway, "Datapac Network Overview,” Proceedings of
ICCC76, p. 131-136.

CHMP72

Stephen D. Crocker, John F. Heafner, Robert Metcalfe and Jonathan B. Postel,
"Function-Oriented Protocols for the ARPA Computer Network, AFIPS Proceedings, 1972
Spring Joint Computer Conference, volume 40, {Atlantic Cily, NJ, May 16-18, 1972), AFIPS
Press, Montvale, NJ, 1972, p. 271-279.

CK74

Vinton G. Cerf and Robert E. Kahn, "A Protocol for Packet Network Intercommunication,”
IEEE Transactions on Communications, volume COM-22, No. 5, May 1974, p. 637-648.
-(An early version of this paper appeared as INWG General Note 39, IFIP Working Group 6.1,

September 1973).

CMSZ75

Vinton G. Cerf, Alexander McKenzie, Roger Scantlebury, Hubert Zimmermann, "Proposal” for
an Internetwork End to End Protocol," INWG General Note 96, IFIP W.G. 6.1, Seplember
1975 (also in ACM SIGCOMM Quarterly Review Vol. 6, No. 1, Jan 1976.) p. 63-89

C574

Vinton G. Cerf and Carl Sunshine, "Protocols and Gateways for the Interconnection of
Packet Switching Networks,” The Aloha System Technical Report CMN 74-22, Proceedings of
the Seventh Hawaii International Conference on Systems Sciences, University of Hawaii,

(Honoluly, Hawaii, January 8-10, 1974).

[Page 78] ; : Cerf & Postel

January 1978
TCP-3 Specification
Bibliography

Dalal74

Yogen K. Dalal, "More on Selecting Sequence Numbers, " INWG Prolocol Note 4, IFIP
Working Group 6.1, August 1974, Also in Procceedings of the ACM SIGCOMM/SIGOPS
Interprocess Communications Workshop, (Santa Monica, CA, March 24-25, 1975), and
ACM Operating Systems Review, Volume 9, Number 3, July 1975, Asscciation for Compuler
Machinery, Mew York, 1975,

Dalal75

Yogen K. Dalal, "Establishing a Connection,"INWG Protocol MNote 14, IFIP Working Group
6.1, March 1975. :

Danthine75

Andre Danthine and E. Eschenauer, "Influence on the Node Behavior of the Node-to-Node
Protocol,” Proceedings, Fourth Data Comm. p 7-1 to 7-8.

Davies?71

Donald W. Davies, "The Control of Congestion in Packet Switching Metworks,” Peter E.
Jackson, procecdings, ACM/IEEE Second Symposium on Problems in the Oplimization of
Data Communication Systems, (Palo Alto, CA. October 20-22, 1971), IEEE (at ~71C59-C, p.
46-49, .

DCA7S

System Performance Specification for Autodin Il, Phase |, .Delensa Communications Agency,
Defense Communication Engineering Center, November 1975.

DCA76

Elizabeth Feinler and Jonathan B. Postel, ARPANET Protocol Handbook, Network Information
Center, Stanford Research Institute, Menlo Park, CA, April 1976.

DDLPRY6

A. Danet, R. Despres, A. LeRest, G. Pichon, S. Ritzenthaler, "The French Public Pachket
Switching Service: the TRANSPAC Network," Proceedings of ICCC76, p. 251-260.

Cerf & Postel g ' [Page 79]

January 1978

TCP-3 Specification
Bibliography

DHMMW 74

W. Crowther, F. Heart, A. McKenzie, J. McQuillan, D. Walden, Network Design Issues, Bolt
Beranek and Newman, Inc. Technical Report No. 2918, November 1974 (also, INWG
General Note 64, IFIP Working Group 6.1, October 1974; ARPA Nelwork Measurement Note

26, Network Measurement Group, October 1974).

FG75

Stanley C. Fralick and James C. Garrelt, "Technological Considerations for Packet Radio
Networks,” AFIPS Proceedings, wvolume 44, 1975, National Compuler Conference,
{Anahsim, CA, May 19-22, 1975), AFIPS Press, Montvale, NJ, 1975, p. 233-243.

FGS75

Howard Frank, lsrael Gitman, Richard van Slyke, "Packet Radio Syslem - Nelwork
Considerations,” AFIPS Proceedings, volume 44, 1975, National Computer Conference,
(Anaheim, CA, May 19-22, 1975), AFIPS Press, Montvale, NJ, 1975, p. 217-231.

GS75

M. Gien and R. Scantlebury, "Interconnection of Packet Switched Networks, Theory and
Practice,” proceedings of European Computing Conference on Communication Networks,
EUROCOMP, pp. 4A41-260, Brunel University, Online Conferences Lid, Uxbridge, England,
September 1975. ¢

GRP77

L. Garlick, R. Rom, and J. Postel, "Reliable Host-to-Host Protocols: Problems and
Techniques,” proceedings of the Fifth Data Communications Symposium, (Snowbird, Utah),

ACM and IEEE, pp. 4.58-4.65, September 1977.

HKOCW70

Frank E. Heart, Robert E. Kahn, 5. M. Ornstein, William R. Crowther, and David C. Walden,
"The Interface Message Processor for the ARPA Computer Network," AFIPS Proceedings,
1970 Spring Joint Computer Conference, volume 36, (Atlantic City, NJ, May 5-7, 1970),
AFIPS Press, Montvale, NJ, 1970, p. 551-567.

[Page 80] Cerf & Postel

January 1978
TCP-3 Specification
Bibliography

Kahn73

Robert E. Kahn, "Status and Plans for the ARPANET," Martin Greenberger, Julius
Aronofsky, James L. McKenney, William F. Massy, Networks for Research and Education:
Sharing Computer and Information Resources MNationwide, MIT Press, Cambridge, MA,
1973, p. 51-54.

Kahn75

Robert E. Kshn, "The Organization of Computer Resources into a Packet Radio Network"
AFIPS Proceedings, volume 44, 1975, National Computer Conference, (Anaheim, CA, May
1 19-22, 1975), AFIPS Press, Montvale, NJ, 1975, p. 179-186.

Karp73

Peggy M. Karp, "Origin, Development and Current Status of the ARPANET,” COMPCON73 -
Seventh Annual IEEE Compuler Society Internatiomal Conference, Digest of Papers,
"Computing Networks from Mini’s to Maxi's - Are They for Real?” (San Francisco, CA,
February 27-28, March 1, 1973), Institute of Electrical and Electronic Engineers, Inc., New
York, 1973, p. 49-52,

KC71

Robert E. Kahn, William R. Crowther, "Flow Control in a Resource-Sharing Computer
Network,” Peter E. Jackson, Proceedings, ACM/IEEE Second Symposium on Problems in the
Oplimization of Data Communication Syslems, (Palo Alto, CA. Oclober 20-22, 1971),
1971, |IEEE (AT-71C59-C, p. 108-116.

Kleinrock74

Leonard Kleinrock and William E. Maylor, "On Measured Behavior of the ARPA Network,
AFIPS Proceedings, National Computer Conference, Volume 43, (Chicago, IL, May 6-10,
1974), AFIPS Press, Montvale, NJ, p. 767-780.

Kleinrock75

Leonard Kleinrock and Holger Opderbeck, "Throughput in the ARPAMET - Protocols and
Measurement," Proceedings, Fourth Data Communications Symposium, {(Quebec City,
Canada, 7-9 October 1975), p. 6-1 to 6-11. -

Kleinrock76

Leonard Kleinrock, William E. Naylor, Holger Opderbeck, “A Study of Line Overhead in the
ARPANET,” Communications of the ACM, Vol. 19, No. 1, p. 3.

Cerf & Postel : [Page 81]

January 1978

TCP-3 Specificalion
Bibliography

LGK75

David Lloyd, Martine Galland, Peter T. Kirstein, "Aim and Objectives of Internetwork
Experiments,” INWG Experiments Note 3, IFIP Working Group 6.1, February 1975.

Mathis76

James E. Mathis, "Single-Conneclion TCP Specification,” Digital Systems Laboratory
Technical Note 75, Stanford University, January 25, 1976. . G

MB76

Robert M. Metcalfe and David R. Boggs, "Ethernet: Distributed Packet Swilching for Local
Computer Nelworks,” Communications of the ACM, Volume 19, No. 7, July 1976, p.
395-404.

MCCW72 -

John M. McQuillan, William R. Crowther, Bernard P. Cosell, David C. Walden, Frank E. Heart,
"improvements in the Design and Performance of the ARPA MNetwork, "AFIPS Proceedings,

Fall Joint Computer Conference, Volume 41, p. 741-754,

McKenzie?3

. A.. McKenzie, "Host-Host Protocol for the ARPANET," NIC 8246, Stanford Research
Institute [also in ARPANET Protocols Motebook NIC 7104].

McKenzie7da

Alexander McKenzie, "Some Compuler MNetwork Interconnection Issues,” AFIPS Proceedings,
National Computer Conference, Volume 43, (Chicago, lll, May 6-10, 1974), AFIPS Press,
Montvale, NJ, p. 857-859,

McKenzia7db

Alexander McKenzie, “Internetwork Host-to-Host Protocol,” INWG General Note 74, IFIP
Working Group 6.1, December, 1974,

McQuillan75

John M. McQuillan, "The Evolution of Message Processing Techniques in the ARPA
Netwaork,” Network Systems and Software, Infotech State of the Art Report 24, Infotech
Information, Ltd,, Nicholson House, Maidenhead, Berhshire, England, 1975.

[Page 82] Cerf & Postel

January 1978
TCP-3 Specificalion
Bibliography

MPT74

Eric R. Mader, William R. Plummer, Raymond S. Tomlinson, "A Prolocol Experiment,” INWG
Experiment Note 1, IFIP Working Group 6.1, August 1974,

NAC73

Network Analysis Corporalion, ARPANET: Design, Operation, Managemen! snd Performanca,
Network Analysis Corporation, Glen Cove, NY, April 1973.

OK74

Holger Opderbeck and Leonard Kleinrock, "The Influence of Control Procedures on ths
Performance of Packet-Switched Networks, "Naticnal Telecommunications Conferencs, lan
Diego, California, December 1974,

PGR76a

Jonathan B. Postel, Larry L. Garlick, Raphazsl Rom, Transmission Control Protoco!
Specification, Augmentation Research Center, Stanford Research Institute, Manlo Park, CA,
15 July 1976.

PGR76b

~Jonathan B. Postel, Larry L. Garlick, Raphacl Rom, Terminal-to-Host Protocol Specification,
Augmentation Research Center, Stanford Research Institute, Menlo Park, CA,, 15 July 1976.

Postel72

J. Postel, "Official Initial Connection Protocol," Current Network Protocols, Network
Information Center, Stanford Research Institute, Menlo Park, California, January 1972 (NIC
7101),

Postel?7

J. Postel, "Assigned Numbers,” RFC 739, NIC 42341, USC--Information Sciences Institute,
Marina del Rey, California, 11 November 77. ;

Pouzin73

Louis Pouzin, "Interconnection of Packet Switching Nelworks,” INWG General MNole 42, IFIP
Working Group 6.1, October 1973.

Cerf & Poslel il [Page B3]

January 1978

TCP-3 Specification
Bibliography

Pouzin73a

Louvis Pouzin, "Presentation and major design aspects of the CYCLADES Computer
Network,"” Data Nelworks: Analysis and Design, Third Data Communications Symposium, St.
Petersburg, Florida, November 1973, pp. 80-87. Also in: Grimsdale and F. Kuo eds,
Computer Communication Networks, NATO Advanced Studies Institute Series, E-4,
Noordhotf, Leyden, Netherlands, 1975, pp. 415-434,

Pouzin7 da

Louis Pouzin, "A Proposal for Interconnecting Packet Switching Networks,” INWG General
Mote 60, IFIP W.G. 6.1, March 1974. (also in proceedings of EUROCOMP, Brunel
University, May 1974, p. 1023-1038).

Pouzin74b

Louis Pouzin, "Cigale, the Packet Switching Machine on the CYCLADES Computer Network,”
Jack L. Rosenfeld, Information Processing 74, proceedings of the IFIP Congress 1974,
Computer Hardware and Architecture Volume, (Stockholm, Sweden, August 5-10, 1974),
American Elsevier Publishing Co,, Inc,, New York, 1974, p. 2155-159,

Retz75

David L. Retz, "ELF - A GSystem for Nelwork Access,” 1975 IEEE Intercon Conference
' Record, (New York, April 8-10, 1975), Institute of Electrical and Electronic Engineers, |r1v:,
New Yark, 1975, p. 25-2-1 lo 25-2-5.

Roberts76

Lawrence G. Roberls, ‘International Interconnection of Public Packet Networks,”
Proceedings, International Conference on Computer Communication, (Toronto, Ontario,
Canada, August 1976), p. 239-245,

RW70

Lawrence G. Roberts and Barry D. Wessler, "Computer Network Development to Achieve
- Resource Sharing," AFIPS Proceedings, 1970 Spring Joint Computer Conference, volume
36, (Atlantic City, NJ, Ma; 5-7, 1970}, AFIPS Press, Montvale, NJ, 1970, p. 543-549.

RW73

Lawrence G. Roberts and Barry D. Wessler, "The ARPA Net," Norman Abramson and
Franklin F. Kuo, Computer-Communication Networks, Prentice-Hall, Inc, Englewood Cliffs,
NJ, 1973

[Page 84] : : Cerf & Postel

January 1978
TCP-3 Specification
Bibliography

Schantz74

R. Schantz, "Reconnection Protocol", private communication; available from Schantz at
BBM.

SH75

Adrian V. Stokes and Peter L. Higginson, "The Problems of Connecting Hosts into
ARPANET,” Proceedings of the European Conference on Communication Networks,
September 19?5, On-line Conferences, Ltd,, Oxbridge, England, p. 25-34.

Sunshine75

Carl Sunshine, "Issues in Communication Protocol Design - Formal Correctnass,” INWG
Protocol Mote 5, IFIP Working Group 6.1, October 1975. Also in Proceedings of the ACM
SIGCOMM/SIGOPS Interprocess Communications Workshop, (Santa Monica, CA, March
24-25, 1975).

Sunshine76a

Carl Sunshine, Interprocess Communication Protocols for Compuler Networks, Stanford
University (Ph.D. Dissartation), 1976.

Sunshine76b

Carl Sunshine, "Interconnection of Compuler Networks," Computer Metworks, Vol. 1, NO. 3,
January 1977, pp. 175-195,

Sunshine?6c

Carl Sunshine, “Efficiency of Inferprocess Communication Protocols for Computer
Networks,” Transactions of the IEEE on Communications, February 1977, pp. 287-293.

SW71 3

R. Scantlebury and P.T. Wilkinson, "The Design of a Swilching System to allow remote
Access to Computer Services by other computers and Terminal Devices,” Second
Symposium on Problems in the Optimization of Data Communication Systems Proceedings,
Palo Alto, California, October 1971, pp. 160-167.

Cerf & Postel [Page 85]

January 1978

TCP-3 Specification
- Bibliography

Tomlinson74

ﬂaymund S. Tomlinson, "Selecting Sequence MNumbers," INWG Protocol MNote 2, IFIP
Working Group 6.1, August 1974, Alsc in Proceedings of the ACM SIGCOMM/SIGOPS
Interprocess Communications Workshop, (Santa Monica, CA, March 24-25, 1975}, and
ACM Operating Systems Review, Volume 9, Number 3, July 1975, Association for Computer
Machinery, New York, 1975,

Tomlinson?77

Raymond 5. Tomlinson, “Proposal for TCP 3,” ARPANET message - number
<[BBN-TENEXA]12-0ct-77 11:59.Tomlinson>, October 1977.

Walden72

David C. Walden, "A System for Interprocess Communication in a Resource Sharing
Computer Network,” Communications of the ACM, Volume 15, Issue 4, April 1572, p.

221-230.
WR75

D. C. Walden and R. C. Rettberg, "Gateway Design for Computer Network Interconnection,”
Proceedings, European Computing Conference on Communication Nelworks, September
1975, On-line Conferences, Lid,, Oxbridge, England, p. 113-128.

YM76

5. C. K. Young, C. |. McGibbon, "The Control System of the Datapac Metwork,” Proceedings
of ICCC76, p. 137-142.
2673

Hubert Zimmermann and Michele Elie, "Proposed Standard Host-Host Protocol for
Heterogeneous Computer Networks: Transport Protocol,” INWG General Note 43, IFIP
Working Group 6.1, December 1973 (also Institute Recherche d'Informatique et
d’Automatique [IRIA] Project CYCLADES report SCM 519).

ZE74

Hubert Zimmermann and Michele Elie, "Transport Protocol Standard Host/Host Protocol for
Heterogeneous Computer Metworks," INWG General Note 61, IFIP Working Group 6.1, April
1974 (also IRIA Project CYCLADES Report SCH 518.1)

[Page 86] . ' Cerf & Postel

January 1978
TCP-3 Specification
Bibliography

fimmermann7s

Hubert Zimmermann, "The CYCLADES End to End Protocol," Proceedings, Fourth Data
Communication Symposium, (Quebec City, Canada, October 7-9, 1975), p. 7-21 o 7-26.

Cerf & Postel : [Page 87]

