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1. Intreduction

Protocols at every level of a network architecture
deal with two types of information, control and dafa.
A protocol provides services with respect to the data.
Control information is sent between and interpreted
by the cooperating protocol modules to support the
protocol's service. Mechanisms at any protocol level
designed to deal with error control or assurance
issues such as misaddressed, lost, damaged, dupli-
cated, or missequenced information are based on
(1) identifying the data or control units being error

controlled;

(2) reliably transmitting control or redundant infor-
mation;

(3) reliably initializing, maintaining, and terminating
state information at each end;

(4) assumptions made about the environment pro-
vided by the supporting lower level protocols and
communication technology.

These mechanisms are often based on explicit or
implicit (often wunconscious) assumptions about
bounds on ceriain time intervals. While the discussion
in this paper focuses on transport level protocols,
many of the issues discussed are also applicable to
protocols at other levels.

Transport protocols designed for reliable trans-
mission provide one or more error controlled
channels between transport address pairs (associa-
tions). While state information at each end of an asso-
ciation is maintained for any purpose, a connection is
said to exist. The state information is maintained in
connection records. An important aspect of assurance
is proper synchronization and evolution of state
information in connection records in the face of arbi-
trary transmission delays, errors, and end-node
crashes and deadstarts. This process is called connec-
tion management. In this paper connection manage-
ment mechanisms used in two protocols, the Depart-
ment of Defense Transmission Control Protocal
(TCP) [5], and the Lawrence Livermore Laboratory -
(LLL) Delta-t protocol [3,8], are compared to illu-
strate the role timer-based mechanisms play in achiev-
ing a reliable transport protocol, to demonstrate the
requirement for bounding factors affecting the life-
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time of assurance identifiers, and highlight some of
the implementation and wusage implications of
different connection management mechanisms. Both
the TCP and Delta-t protocols were designed expli-
citly to operate in a general network (internetwork
and datagram) environment where packets can be
duplicated, lost, damaged, or missequenced. In the
following discussion, although some backpround is
provided, we assume that the reader is familiar with
the basic issues of connection management and
reliable transport protocol design and the fundamen-
tals of the TCP and Delta-t assurance mechanisms [3,
4.7].

2. Background

There are three logical phases in connection manage-
ment (explicit phase separation is not required): (1)
initializing (opening) the connection records at each
end, (2) evolving the state during ongoing data
transfer, and (3) resetting or terminating (closing)
state information when no further data requires
transferring. During the reliable opening of a
transport protocol assurance connection, the main
problem is establishing initial error control identifiers,
usually Sequence Numbers (SNs) or SNs qualified by
connection identifiers, meeting the following condi-
tions:

01: If no connection exists and the receiver is will-
ing to receive, then no packets from a previously
closed connection should cause a connection to be
initialized and duplicate data to be accepted.

O2: If a connection exists, then no packets from a
previously closed connection should be acceptable
within the current connection.

In a graceful close of a connection, each side must
know that the other side has received any data sent.
This implies two conditions:

Cl: A receiving side must not close until it has
received all of a sender’s possible retransmissions and
can unambiguously respond to them, and

C2: A sending side must not close until it has
receivet an Acknowledgment (Ack) for all its trans-
mitted data or allowed time for an Ack of its final
retransmission to return before reporting a failure.

We believe a graceful close is important in an
assurance protocol to limit those situations where
ambiguity can exist as to whether data sent reached
the other side. In particular we would like to limit
ambiguity to end-node crash or network partition

events. Ambiguity exists if a sender does not receive
an Ack of some data sent. It will not know whether
the data or Ack got lost, Depending on how it
responds, lost or duplicate data may result. Ambi-
guity may thus require more expensive higher level
error recovery mechanisms.

Most of the design decisions for a complete
transport protocol are independent of the choice of a
connection management mechanism, e.g., addressing,
flow control, options, choice of basic transport data
unit(s), etc. Section 7 discusses one area where the
connection management mechanism may influence
another protocol design decision. Many design deci-
gions associated with assurance issues are also
independent of the connection management mecha-
nism. For example
» What is the meaning of an Ack? Does it mean that

the data reached the destination protocol module or
that the data were placed safely in the destination
user's buffer?

« What iz the unit and identification scheme used for
error control?

+ Should header, packet, or end-end checksums be
used to protect against damaged packets?

Most importantly, we believe, all reliable transport
protocls require explicit or clearly understood impli-
cit bounds on three lifetime factors:

« MPL, the maximum time an identified data or con-
trol unit can exist within the routing network,
which includes time in origin and destination proto-
col modules. At the transport level this is often
called maximum packet lifetime (MPL). At other
levels, it would be maximum frame, message, or
other unit lifetime.

* R, the maximum time a sender requiring a positive
acknowledgment will keep trying to retransmit a
unit before ceasing retransmission.

« A, the maximum time a receiver will hold a unit
before sending an Ack.

One can provide a mechanism to bound these
factors explicitly or make “reasonable™ assumptions
about their bounds. These quantities can be bounded
either individually [3] or as a sum [8]. The values(s)
assumed in each data flow direction may be the same
[3] or different [B]. In this paper we deal with these
quantities as if bound separately.

In its first versions, TCP initiated a connection by
having the first packet of a connection contain a
syncronization flag (syn) indicating to the receiver
that connection SNs would start with the one in this
packet. This mechanism did not satisfy condition O]
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and quickly led to difficulties with duplicates. An
extended message exchange mechanism was intro-
duced satisfying O1. This mechanism requires an end
to receive an Ack of its connection opening SN
before it will accept data. This exchange, illustrated
in Section 4, is called a three-way handshake [4,7].
As TCP's designers came to more fully understand
connection management hazards, time-based and
other mechanisms were added. The mechanisms
implicitly assume bounds on MPL, R, and A.

Delta-t, using the TCP experience, was designed
from the beginning with connection management
based solely on a timer mechanism. This mechanizm
explicitly recognizes the necessity to bound the quan-
tities MPL, R, and A. Delta-t maintains connection
records while any data unit or Ack (including dupli-
cates) with a given identifier can be generated or exist
on a given association.

In comparing protocol assurance mechanisms, one
needs to ask two questions: (1) whether for an
equivalent level of assurance one is more complicated
or uses more resources than the other, or (2) fora
given set of design decisions whether one is more
complicated, uses more resources, of gives more
assurance. One also needs to examine other service
implications of each approach such as delay or
throughput,

Our contention, illustrated with the two protocols
discussed, is that because there is something funda-
mental at the transport level about the requirement
to bound MPL, R, and A to achieve assurance, a
transport protocol explicitly based around this notion
should be simpler for a given set of equivalent design
assumptions. The potential simplication in packet
acceptance testing could result in higher throughput
[2]. It also allows a reliable process-to-process, trans-
action-oriented (low delay) service to be efficiently
supported. Delta-t is currently being implemented.
Although as this is written we cannot refer to opera-
tional experience in comparing Delta-t with TCP, we
feel it is important to present the following connec-
tion management issues because of the current level
of national and international activity in the trans-
port protocol design area.

3. Achieving Reliable Connection Management
Perfect error control is only possible if three

assurance conditions are met:
Al: An identifier of an information unit used for

assurance is never reused while one or more
copies (duplicates) of that unit or its Ack exist.
A2: The assurance state or redundant information
maintained at each end is never lost or damaged.
A3: The assurance control information transmitted
between each end is itself perfectly error con-
trolled.

Let us now consider how each protocol deals with
these conditions and relate them to the opening and
closing conditions of the previous section. Condition
Al implies opening condition O2 and that within a
connection the size of the SN field, n, must satisfy an
SN field-size inequality. Also implied, if A2 cannot be
met, is that there must be care in restarting after a
crash.

An example SN field size inequality is:

2">(2MPL+R+A)T,

where R belongs to the origin desiring an Ack, 4
belongs to the destination, and T is the maximum
rate at which SNs can be generated at the origin. This
is usually the maximum transmisssion rate, but if SN
can be skipped, such as by TCP's “rubber EOLs" [5]
or Delta-t's window overrun mechanism [B], these
must be considered. The assumption on which this
inequality is based is that while possibly retransmit-
ting one unit, units with new SNs are transmitted at
the maximum rate. If a different retransmission/trans-
mission strategy were used, a different function
would result. This particular SN field-size inequality
results because in the worst case an SN of a unit or its
Ack can live for the following periods. A unit with a
given SN could continue to be emitted from the
sender for time R (because all but the last retrans-
mitted instances were lost, for example). The last
instance could take MPL to reach the destination.
The destination could delay A before sending an Ack,
and the Ack could take MPL to reach the origin, Dur-
ing this interval new SNs are assumed to be generated
at the rate T

This result illustrates that maximum transmission
rate, reliable transmission, the transmission strategy,
and the lifetime factors are intimately interrelated
and must be carefully considered and be made
explicit in choosing n. Too small an n could limit
reliable throughput, particularly serious if used in a
high bandwidth local or satellite network.

We now examine requirements for the two proto-
cols to meet conditions 02, Because TCP does not use
connection identifiers and can close a comnection
while duplicate packets can still exist within the net-
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work, it requires a special mechanism to choose initial
sequence numbers (15Ns) larger (modulo 27) than any
used in recent connections. The accepted mechanism
to do this, not requiring explicit per association state
to be safely maintained across a crash [4], maps a
monotonically increasing clock value into the ISN
value. The clock must continue to operate across a
crash. Because both the clock and SN fields can wrap
ground, there are critical relationships between the
quantities (MPL, R, A), the rate at which SNs are
being generated, the clock rate, and the SN and clock
field size that can introduce hazards resulting from
crashes due to SN reuse while units or Acks with that
SN still exist. The TCP designers extensively analyzed
these hazards [4,7]. After considering various
dynamic timer oriented mechanisms, the TCP
designers chose to omit them and instead chose the
following simpler scheme. An origin waits an interval
after a crash before opening a connection to allow
time for all packets from any previous connection to
die. Therefore, there will be no risk of a packet for
the new connection having an SN used on a packet or
Ack of a previous connection. For perfrect assurance
this interval must satisfy the inequality

Sending Recovery Interval > 2MPL + 4.

This inequality satisfies the worst case that results
when the origin sent a packet just before it crashed
with an SN that might be used in a new connection to
be established after deadstart and then recovered
instantly. The last packet before the crash takes MPL
to reach the destination, the destination waits A to
emit an Ack, and the Ack takes MPL to reach the
origin, In the networks in which TCP operates, the
interval MPL is only approximately bounded and can
be very large (several hours), although the probability
is quite low that packets will live beyond 30 to 60
sec. Therefore, the engineering decision was made to
wait about 2min after a crash. No Receiving
Recovery Interval is required because TCP's three-
way handshake and reset mechanisms handle recovery
from half open connections [7].

Deltat maintains state under time control to meet
condition O2. In Delta-t any ISN can be used because
if no active (timers >0) sending or receiving connec-
tion record exists for an association, it is guaranteed
by the DBelta-t timer intervals and rules (assuming
MPL, R, and 4 are bounded) that no data or Ack
packets from a previous connection exist [3]. Delta-t
senders and receivers must wait an interval after a
crash before initiating or accepting a conversaton. For

senders it is:
Sending Recovery Interval >3MPL+R + 4.

This interval ensures that all data or Ack packets
from the previous connection have expired and that
no receiver connection record exists (removing hall
open connections), so that any ISN will be accept-
able. For receivers, the Receiving Recovery Interval
is:

Receiving Recovery Interval >2MPL+R +.4.

This interval guarantees that no unit with a given SN
accepted before the crash will still exist. We include
motivation for the TCP timer interval because we
have not seen an explicit analysis in the TCP litera-
ture,

In summary, to meet Al and thus 02, both proto-
cols require satisfaction of an inequality on SN field
size and must wait an interval after a crash. TCP
requires an additional clock based mechanism for ISN
selection.

If A2 is met, the state information in connection
records would never be lost or damaged. This condi-
tion is difficult or impossible to satisfy. TCP, and
Delta-t have the same issues and the same hazards
here because of hardware errors, software bups, or
crashes with loss of memory. The implication of the
latter was discussed above.

A3 requires that control information (e.g. that
used for connection opening and closing) must itself
be error controlled or not be affected by errors. TCP
uses special packet header flags to indicate connec-
tion opening and closing packets, called syn and fin
respectively. TCP protects its syn and fin flaps against
loss and duplication by placing them in the data SN
space. In Delta-t there are no open or close flags cor-
responding to TCP's syn or fin flags. There is instead
a data-run flag (DRF) used to signal the receiver that
all previous SNs sent have been Acked. DRF does not
require an Ack and is used to aid handling packet
missequencing when a connection does not yet exist
[3].

We now discuss how each protocol meets condi-
tion 01 (Section 2). TCP achieves a reliable connec-
tion open by having each side require the other to
acknowledge its syn (ISN) before it will accept data.
In effect, when an end receives a syn it asks the other
if it is current or an old duplicate “efore it will estab-
lish a connection.

Delta-t achieves a reliable open by assuring that no
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packets from a connection continue to exist before it
discards state. In effect, Delta-t waits for the connec-
tion to be flushed before state is discarded (data
transfer, however can be carried out at any time with
no waiting interval).

We now consider connection closing. To achieve a
smooghly running protocol and meet closing condi-
tions C1 and C2, Delta-t requires receivers to main-
tain state for 2MPL + R +4 from the time of their
last Ack of a new SN and senders to maintain state
for 3MPL + R + 4 from the time the last new SN was
sent [3,8]. If new data are received or sent while state
exists, Delta-t"s receive and send timers and state are
updated, automatically increasing the life of the
connection.

To achieve a reliable close, TCP requires fins to be
Acked, a finack. In any protocol the last message
cannot be critical, because it is not Acked. Because of
the possibility of lost fin-acks, there is an ambiguity
hazard that TCP defends against by requiring the side
sending the last fin-ack to wait until all possible
retransmissions of its partner's fin packet reach it
before discarding its connection state. The assump-
tion is that the fin-ack may also Ack data, otherwise
no hazard exists. This holding of state is required
to satisfy condition C1 for a graceful close. If the
sender of the last fin-ack closed immediately after
emitting the fin-ack (implicitly Acking data as well),
and its fin-ack got lost, then the other side would
timeout and retransmit the unAcked data and fin.
The closed side on receiving the retransmitied
information can only generate a reser packet indicat-
ing it was closed. The receiver of the reset would then
not be able to distinguish this case where there was
successful delivery of data, but a lost Ack, from the
case of a crash or network failure with lost data. This
ambiguity could cause unnecessary confusion
possibly requiring entry to expensive higher level
error recovery procedures. Therefore, the sender of
the last fin-ack must wait an interval,

Final Close Interval >MPL + R,

inorder to assure it can respond to all its correspon-
dents retransmitted fins, where R is that used by the
sender of the last packet with a fin. This inequality
results-because, in the worst case, the final fin packet
arrives-at its destination instantaneously and Acks to
it and all retransmissions but the last get lost, and the
last retransmission takes MPL, to arrive. This TCP
close-timer is similar to the Delta-t receive-timer.

We have not seen condition C2 discussed in the

TCP literature, i.e., how long should the TCP module
wait after emitting its last retransmission of a packet
and without receiving an Ack before reporting failure
to its user program? The answer is the timer interval

Giveup Interval >2MPL + A4,

This condition results because the last emitted
packet can take MPL to reach the destination, the
destination can take 4 to emit the Ack, and the Ack
can take MPL to reach the origin of the data packet.
If a problem is reported before this Giveup Interval,
the user process may create an unnecessary duplica-
tion or the user process may unnecessarily enter an
involved error recovery procedure to deal with what
appears as a possible partner crash or network failure,
This interval was considered as one condition on
Delta-t"s send-timer value.

In summary, TCP uses three separate connection
management mechanisms to achieve assurance: (1)
exchange of connection management (syn, fin)
messages and associated state transitions, (2) careful
choice of an ISN, and (3) assurance timers with inter-
vals containing assumptions about the bounds on
MPL, R, and 4. Delta-t uses a single timer mechanism
with assumptions about bounds on MPL, R, and A.

In comparing TCP with Delta-t we see the follow-
ing. TCP requires additional complexity to deal with
special states to synchronize syn and fin and carefully
choose an ISN. TCP also requires a reset mechanism,
not required in Delta-t. These mechanisms require
additional packet acceptance overhead during normal
data transfer as well [2]. If senders are allowed to
overrun a receiver's flow-control window, Delta-t
requires an extra message, not needed in TCP, to
resynchronize SNs [8].

The final question is, if explicit bounds on MPL,
R, and A are not guaranteed and we rely on an engi-
neering decision (mentioned earlier), then is one or
the other protocol safer? Both rely on these being
bounded in determining maximum SN generation
rate, at crash recovery, and at connection close. TCP,
in addition, relies on bounding these quantities in
1SN selection. Delta-t, in addition, relies on bounding
these factors for a reliable open. Because Delta-t
relies on the bound to meet condition O and TCP
does not, some extra hazard exists. The level of
hazards depends on the percentage of packets that can
live beyond the assumed bound. We believe that it
would be best if all protocols bound MPL, R, and 4.
These quantities can be bound with support from the
lower environment as described in Section 6.
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4, Transaction Applications

We believe a useful design goal is to minimize the
total number of messages and the delay needed to
reliably send a single data message. This results in
minimizing network traffic and increasing system

performance. There are many important transactional |
applications, such as distributed operating systems,

where a request may be sent, a reply may be received,
and no further conversation is required [9]. It is
important to minimize messages or packets at the
transport level, because each packet at this level may
require that many frames or blocks be transmitted by
lower-level link or network-interconnection technolo-
gies. There is increased delay plus considerable net-
work and host overhead in handling each packet,
frame, or block. We want to minimize the number of
such data units that all parties must handle. A data-
gram service can meet this need; however datagrams
are not reliable, and many transaction-oriented appli-
cations could benefit from a reliable transaction-
oriented transport mechanism.

To reliably send a single data packet, Delta-t only
requires two packets to be exchanged, the data
packet and its Ack. TCP requires a minimum three-
message exchange procedure to send one data
message, but there is a hazard inherent in this proce-
dure not present in Delta-t. This hazard does not exist
in TCP if it uses five message to send one data packet.
The three-message procedure also requires a special
case in the TCP rules and implementation, making
writing the specification more complex.

The three TCP messages are, assuming node A
sending to node B:

M, (A to B) ISN,, syn, data, fin
M(B to A) 1SNy, syn, fin, Ack (syn, data, fin)
Mi(A to B) Ack (syn, fin),

where the elements in parentheses are the elements
being Acked. The TCP module at B cannot deliver
the data in M, until it receives M5, because it is not
until that point that it knows M, was not an old
duplicate from a previous connection. Holding the
M, data until the arrival of M3 is a special case not
needed for succeeding data in a longer connection.

A hazard results because if My or any retransmis-
sion of M, triggered by retransmissions of M, does
not get through, the data in M; cannot be delivered.
Yet M, was Acked, and 4 therefore was misinformed.
Basically, this hazard arises because no protocol can

support positive acknowledgment with retransmission
of the last-message. This hazard can be removed with
a wait between connections or a five-message proce-
dure [1]:

M;(A to B) ISN,4, syn
M, (B to A) ISNg syn, Ack (syn)
Ms(A to B) data, fin, Ack (syn)

'Ma(B to A) fin, Ack (data, fin)

Mqz(A to B) Ack (fin)

Thete is another hazard in the three-message
procedure if B crashes after it has sent M, and before
it delivers the data. This hazard exists for any proto-
col if the design decision is that an Ack means
delivery to the protocol module rather than to the
user. Even in the latter case, if the user’s buffer is in
main memory at the time of a crash, it could be lost
before it was acted on. Perfect error control is
impossible at any level, but we believe our designs
should reduce the probability of a problem. In either
the three- or five-message exchange cases above, TCP
requires a transaction delay three times that of Delta-
t, because data in TCP can only be delivered after the
exchange of three messages. Independent of the total
number of messages necessary to reliably send a single
data message, the delay penalty required in a message
exchange-based connection management mechanism
could place serious performance limitations on a
transaction-oriented application such as a distributed
operating system.

5. Required Connection Record Resources

It was sugpested that Delta-t might use more
connection-record resources than TCP because it
must hold inactive connection recrods while they
time out [7]. But TCP also needs to hold connec-
tion records, as discussed earlier, after a fin-ack and
preferably after the last retransmission of a packet.
Delta<t requires both ends of an association te hold
connection records under timer control.

The connection records required by both proto-
cols should be about the same size, For reasonable
assumptions about numbers of connections per hour
and values for MPL, R, and 4 (comparable for each
protocol with the magnitude of A dependent on the
assumption about the meaning of an Ack), the
number of connection records held under timer
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control waiting to close is quite small and about the
same in each case and not significant.

The sum of the lifetime factors can be bound to an
arbitrarily small value even if the underlying network
has a large MPL (Section 6). The value chosen for this
sum must reflect realistic times for R, 4, and the
transmission time across the network to avoid
unnecessarily destroying packets because their life-
time ran out too soon. For example, for a large inter-
network, and assuming that units are Acked on reach-
ing the destination protocol module, binding their
sum to be 60 sec might be reasonable. Then assuming
a given host might have 600 connections per hour,
there will be on average about 10 to 30 inactive con-
nection records waiting to timeout for each protocol.
In a local network transaction environment there will
be considerably more connections per hour, but now
the lifetime sum above will be much smaller. There-
fore the connection record time product should be
about the same,

One of Delta-t’s design goals was to remove con-
nection management as a user interface issue. That is,
connection opening and closing primitives aré not
required at the interface as, we believe, they provide
no essential user service. Their main function is to aid
the underlying implementation manage connection
record, buffer, or identifier resources. Delta-t’s
connection management mechanism allows an
implementation to simply reclaim inactive connection
record or buffer space when timeouts occur due 1o
lags in the conversation. If there are lags in the con-
versation, TCP could also reclaim space, but the
required fin and syn exchange overheads to close and
start up again probably discourage this, particularly if
connection opening and closing are visible at the
interface. Therefore, TCP may actually use more
connection record resources than Delta-t.

6. Bounding MPL, R, and A

The lifetime of a packet can be strictly controlled
to any desired value by including a lifetime field in
the packet header initialized by the origin and
counted down by the intermediate and end nodes.
For a TCP environment this field is glready in the
Internet Protocol header, but is, we understand,
currently used for a hop count rather than actual life-
time [5]. As packets pass through each node, includ-
ing the origin and destination protocol modules, they
must count down the lifetime at least once, more if

they hold the packet longer than one time unit (tick).
Retransmissions can enter the network preaged if the
sum (MPL + R + A) is bound. The packet is discarded
when the lifetime field reaches zero before the packet
is accepted or Acked. This mechanism requires nodes
to know how long they hold a packet and how long a
packet has spent on the previous link. Knowing the
latter may be useful for routing, congestion avoid-
ance, or other reasons as well as for assurance. Nodes
are assumed to destroy all packets on recovery from a
crash as part of the lifetime bounding process.

Nodes can easily compute the time they hold a
packet, and computing a packet’s time on the
previous link is also simply accomplished [8]. If the
link is a physical link without buffering, it is calculated
easily based on transmission speed and packet size. If
the link is a logical link, such as a network with an
advertised guaranteed bound on MPL, this value can
be used if small enough.

If the link is a link that can hold a packet for an
indefinite time period, then the lower level protocols
used on the link can be layered with a Link Transit
Time Protocol (LTTP) that, as its only service,
guarantees a conservative estimate of the logical link
transit time. A LTTP can also be layered on a
physical link level protocol (e.g., HDLC) if it does not
report the above times or they cannot be safely esti.
mated. The basic idea is that each link frame is time
stamped by the sender so that the transit time can
be computed by the receiver. Conce ptually, each
LTTP end of a full duplex link has a link-send and a
link-receive timer (not to be confused with the timers
needed in TCP or Delta-t). On link initialization each
LTTP receiver module sends its link-receive time value
to the other end's sender link module, which uses this
value to initialize its link-send timer. (No other
synchronization is required, although the clocks at
each end are assumed to run at approximately the
same rate.) The sender places its current link-send
timer value in each LTTP logical link frame. The
receiver subtracts this value from its link-receive timer
value 1o estimate time on the link. This mechanism
assures that the transit times are always overesti-
mated, never underestimated, because of the frame
delay in the original initialization exchange.

The initialization exchange above assumed that the
logical link, while introducing frame delays, was error
free, In practice this initialization must be accomp-
lished in the face of lost, damaged, and duplicated
frames and end node crashes. The exact details of an
LTTP link-connection management procedure depend
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on the assumptions that can be made about the link’s
error characteristics. Sloan presents an LTTP for a
link in which frames cannot be missequenced and can
be flushed [6]. Sloan estimates that with the drift
specification common on most current line frequency
clocks, reinitialization every 30 min is a conserva-
tively safe interval [6]. If we assume the link transit
time is measured to the nearest 1/30 sec, then a 16-
bit LTTP time field is sufficient,

If the link cannot be flushed and all types of frame
errors can occur, then a more careful initialization
procedure is required. Initialization must take into
account the possible existence of initialization and
other frames from previous instances of link connec-
tions. To deal with this problem we need each
instance of a link connection to have a unique identi-
fier. In other words, link identifiers cannot be reused
while any frames or their Acks from a previous link
connection with the same identifier are still alive. An
B-bit field would provide over a 4-h interval for such
a framefAck maximum lifetime assuming that link
connections were not generated faster than once a
minute. Normally we would expect to generate new
link connections about every 30 min to correct for
clock drift, and therefore this worst case of one link
connection every minute would only happen in a long
sequence of crashes and restarts. One would hardly
expect such a sequence for the time interval assumed.
Therefore, protection extends to tens of hours. For
the identifiers to be unique across crashes, the
previous identifier must be stored safely on some
medium across a crash, such as a digk, or it could be
generated from a clock that continues to function
across a crash. Nodes would have to wait 1 min after
each crash before LTTP link initialization with the
above assumption. This unique link-connection
identifier would be sent along with the time value in
both LTTP link-connection management and data
frames. Thus on the order of 24 bits of frame over-
head are required, 8 bit for the identifier and 16 bits
for the time value as mentioned above to achieve
MFL bounding on an arbitrary network.

When a link is to be reinitialized during normal
operation, reinitialization frames must include the
current link-connection identifier as well as the new
one, to be acceptable and distinguishable from old
duplicates. Alternatively, the link could be first
explicitly closed using a reliable message exchange
before reinitialization. However, a graceful close is
not required at this level, as any frames lost can be
recovered at the mext level. In effect, many of the

features of the TCP connection-management proce-
dures are needed to initialize an LTTP connection in
the case of a link where no special error control
assumptions are possible. There are, however,
simplifications because data delivery assurance is not
provided and there is not the same hazard at crash
recovery time. The question reasonably asked is, why
provide any such mechanism like the above at this
level? The answer is that a number of gains are
achieved:

* Only nodes attached to links requiring a LTTP need
implement the mechanism. The amount of mecha-
nism required depends on the link characteristics.

» LTTP connection management is simpler and more
reliable than that at higher levels because the service
provided is simpler.

+ The frequency of link initializa.ion is far lower than
that for process-to-process transport connection ini-
tialization, therefore reducing network traffic and
allowing the higher level assurance protocol to have
a transaction orientation.

* The higher level protocol, required on all nodes, can
be simplified and made more reliable.

= Small MPLs can be guaranteed at the higher level.

» Knowledge of link-transit time may be useful for
routing, congestion avoidance, or other network
control services as well as error control at higher
levels.

7. Connection Management and the Out-of-Band
Channel

There are a number of applications such as
terminal handling where there is a need for the com-
munication of control information not blockable by
the flow-control mechanisms on the normal data
channel [4]. In many such applications, the program
handling the control information is logically a
separate process from that handling the data and, in
the general case, may reside on a separate host. Even
if the control program is in the same process as that
handling the data, a separate port number could be
used. This suggests that the control channel be a
separate association or connection. The control
address could be known a priori, by convention, or be
obtained at application start up, or when first needed.

Most transport protocol designs do nmot use a
separate association for this expedited data channel
and instead, like TCP, incorporate two channels for
each connection. This is because the cost of support-
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ing a simple separate out-of-band channel is quite low
when compared to that for setting up, maintaining,
and tearing down a separate control connection,
either dynamically only when needed, or statically
during the life of the data connection. This cost
differential, we believe, results primarily because of
the use of message exchange connection management
mechanisms, such as TCP's. Again like the TCF syn,
fin, reset, or ISN selection mechanism, this second
channel is not difficult to support but does add one
more set of conditions to check at packet acceptance
time and adds specification and documentation com-
plexity.

Because Delta-t's connection management mecha-
nism efficiently supports the low-delay, transaction
type exchanges needed by the expedited control
application, it does not need to support a separate
control channel for each association. When an appli-
cation needs an expedited control channel, a separate
association is used,

8, Summary

We showed that even a protocol (TCP) that started
out to achieve transport-connection-management
reliability strictly with message exchanges had to have
timer-based and other mechanisms added to deal with
the hazards introduced becauss packets or their Acks
can live for periods determined by the MPL, R, and 4
factors. The result, for TCP we believe, is a protocol
more complicated than Delta-t, which was designed
from the beginning to explicitly deal with these
issues, Delta-t without explicit lower level suppont
bounding MPL, R, and A may be somewhat more
hazardous than TCP at connection opening,

For normal data exchange, during multipacket
connection conversations, Delta-t packet-acceptance
should be simpler than TCP's, yielding less packet
processing overhead, Both protocols require keeping
connection records under timer control, but we do
not think in practice this is a serious resource manage-
ment issue for either of them.

We believe that a careful analysis of connection
management mechanisms in other protocols will show
that they are making implicit assumptions about
bounds on the information unit lifetime factors, or
they contain some of the hazards TCP and Delta-t
have reduced or eliminated, or they will have possible
performance or service limitations. An example is the
European Computer Manufacturers Association

Transport Protocol (ECMA) [11] which we believe,
with the procedures in the version referenced, could
not operate sefely in a general network environment
[10]. An extension of the EMCA protocol, based in
part of the timer considerations raised here, has been
designed to operate reliably in a general network
environment [10,13]. It supports two conversation
modes, transaction and extended conversation
(explicit connection opening and closing). No mode
distinction is required in Delta-t. Because of the way
it utilizes timers in its connection management, it can
support a reliable two message transaction service. It
logically treats each transaction as a separately identi-
fied connection and therefore will use more connec-
tion record resources than Delta-t (one connection
record timing out per transaction). It optionally sup-
ports a three message exchange transaction or connec-
tion opening procedure for use in environments
where MPL, R, are only approximately bounded.
Transport protocols, such as ECMA, designed pri-
marily for an X.25 environment assume these issues
do not exist, when in fact even there it appears
some of them may [12]. An examination of link-
level protocols and network level protocols such as
X.25 show that they also are making assumptions
dealing with these issues. For example, most initiali-
zation mechanisms of link-level protocols assume
(often not clearly stated) that the link itself will not
minsequence or duplicate frames and that frames
have a bounded known lifetime. Also, they assume
that each end bounds 4 and R or T, and the SNs
cannot be recycled until previous frames and Acks
with a given SN no longer can exist or be emitted.

The X.25 protocol assumes that after a Reset,
Restart, or Clear procedure, no packets from a
previous connection or phase can exist within the net-
work. In othe words, connection flushing is guaran-
teed. At the interface this is guaranteed by the X.25
link level mechanisms; across the network, DCE-to-
DCE mechanisms and assumptions such as those
described here must support this guarantee.

Because of the fundamental nature of MPL, R, and
A time-interval-based  connection-management
hazards, we recommend that mechanisms be sup-
ported in transport and lower level services to expli-
citly bound them or their sum. We suggested how
such a bounding mechanism could be implemented
[8].

We briefly examined the need for a transaction-
oriented reliable protocol and found that the three
message TCP exchange procedure is more hazardous
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than Delta-t’s two message or TCP's five-message
procedures, Delta-t seems most efficient for this type
of vse. The implications of good transaction char-
scteriztics for supporting an out-of-band control
chaisz] wese discussed.

We showed that to achiesc a given type and level
of connection-management service at one level, trade-
offs 2xisi hetween: (1) the number and frequency of
overhcad messages exchanged, (2) the amount of
overhead control information in frame or packet
herders, and (3) the state-informetiontime product
of sintz intormation retzined at sach node. We saw
that these tredeoffs cen span architvctural levels to
achieve owevall sysiern connection management or
other global optimizaticn design goals.
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