IEN 187

Sax and Edmond

Bolt Beranek and Newman Inc.

HP3000 TCP DESIGM DOCUMENT
Jack Sax and Winston Edmond
Bolt Beranek and Newman Inc.

July 1980

July 1980

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.

July 1980
Table of Contents
1 Profact. rosasrnnssas e Bt N s Lns
2 Introduction....oveeanas ST e e R e
3 Current HP30O0OD Structure........--.. e e R R,
< | Processor Features..... e A o e Ao 7
3.2 Metwork Interface Hardware......... A e . 8
3.3 Operating System Software..... cemmme s EEE R DD A
3.4 Input/Output........ AR S seonano o oo nonate LW
3.5 Interprocess Cummun1cat1nn......... NGO nanT 2
3.6 Existing INP Software....... AL OOanm0 DD 0Banas Lt U
4 Protocol Software Architecture..... TR [
§ System Protocol GO EWAROE oo« et woree s iy ol s e b wigls S
6.1 Implemented FEALUFRBSccivsuirerarrnrrorerananncnns 20
5.2 Software Architecture Overview....... T T o T |
6.3 Control Structures......... et AT L R . 23
5.3.1 Network Resources Control Block............. A |
5.3.2 Foreign Host Control Blocks.........veeucunnnnnnn 25
5.3.3 Connection Control Block.....vovvnvnn Tt e i
5§.3.4 Network Buffer Resources L15t Structures.......“ 26
6 User Process/TCP Interface.....ccceviieanvaannnniiinn 29
6.1 Interface INEriNSICE. ... v s sncsensrcnnanssnnasssssny 30
6.2 Flow Control Across the Interface....... L D
6.3 Interface Control StructuUresS...ssceasrannsnssarseree 36
6.4 Interface Control Algorithms...... e R =t (O
6.5 Windowing, Acknowledgment, and
Retransmission

I A B e e L e s 6 b 0O § DO T O e 1
7 1822 Layer/INP Driver Communication................. . 5O
B Protocol Software Buffering Scheme.........coeenmevvnn 52
8.1 Netwark Buffer Pool......... e T e R T 54
8.1.1 Packet Compaction......ceoerunenronnsrrnnrnaannns 66
8.1.2 Buffer Recycling..... NasndE S O . e D b
8.2 User Process Buffer Pool..........cov0nnn i e N
9 Data Flow Through the Protocol Software......... |
9.1 ARPAMET to the User Level Data Flow.........oeovonvnn €1
g,2 User Level to the ARPANET Data Flow...... N D]

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

1 Preface

This report describes a design implementation of ARPANET
protocols on a Hewlett Packard HP3000 Series III computer system.
Specific protocols to be implemented dnclude a Transmission
Control Protocol (TCP), Internet Protocel (IP), File Transfer
Protocol (FTP), and TELNET Protocols. The reader is assumed to
be familiar with the purpose of these protocols. The protocol
software will run under the HP Multiprocessing Executive (MPE)

pperating system.

The designs reflect our current wunderstanding of the
environment and the tasks ahead and may be changed as we proceed

with implemantation.

1EN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

2 Introduction

The overall purpose of this project is to modify the Hewlett
Packard 3000/Series III computer system running the MPE operating

system so that it converses with the ARPANET.

A layered protocol approach will be used in our
implementation. Protocol 1layers one through four represent the
system layers which are responsible for moving a message reliably
from one Host to another. The next protocol layer consists of a
number of applications protocols which determine the content and

meaning of the messages exchanged.

Protocol levels one and two are X.25 LAP 1ink access
protocols. These protocols are implemented in microcode on the
Intelligent Network Processor (INP) interface available from
Hewlett Packard. Since the X.25 LAP protocols are different
from the standard 1822 IMP Host protocols, a special X.25 IMP
interface dis wused to 1link the HP3000 with the ARPANET. The
interface divides standard 1822 packets into a number of X.25
frames and transfers each frame separately. The diagram in
Appendix A shows the hardware configuration wused to Tink the

HP3000 to the ARPANET.

The next two protocoel layers consist of the DOD standard

Internet Protocol (IP) and the Transmission Control Protocol

IEN 167 : Sax and Edmond
Bolt Beranek and Newman Inc.

July 1980

(TCP). 1The Internet protocol provides communication between
Hosts on different networks via gateways between the networks,
The Transmission Control Protocol provides reliable transmission

between Hosts and performs some Host-to-Host flow control.

The initial implementation will dnclude +three application
layer protocols. One of these 1is the File Transfer Protocol
(FTP), which allows a user to move files from one computer system
to another. The second and third application layer protocols are
User and Server TELMET. User TELMET gives the wuser a remote
terminal capability by taking the characters from the local input
device and sending them to the foreign host, and returning
characters from the foreign host te +the local output device
{typically a terminal). The foreign host will have a Server
TELNET process which acts as a pseudo-Teletype, with incoming
network messages providing TTY input, and TTY output being sent
to the network, The operating system treats the Server TELNET

pseudo-Teletype 1ike an ordinary terminal.

" Most of the protocol software 4is new code, the major
exception being the INP microcode which is supplied by Hewlett
Packard, The programs will be written in HP's Systems
Programming Language (SPL), which resembles PASCAL and allows
intermixing of assembly code and compiled code. In addition to

new code, implementation will require changes to the MPE

Sax and Edmond

Bolt Beranek and Newman Inc.
July 1980

IEN 167

operating system code, which is also written in SPL.

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

3 Current HP3000 Structure

This section describes the HP3000 system with an emphasis on
the features that affect the network software design. The
description dincludes both the processor hardware and the
operating system. Some of +the operating system Teatures
described are not currently released by Hewlett Packard, but are
about to be released or are part of the planned MPE IV release

this fall.

3.1 Processor Features

The HP3000 CPU is a medium speed machine which uses a stack
architecture. It executes uncomplicated instructions in one to
two microseconds. Code and data are separate and thus all code
is re-entrant. There are approximately 38 hardware registers
which make up the state of the processor, most of which are
associated with the stack (data) and the current instruction

address (code).

Memory is divided into segments. A segment is a contiguous
block of memory of any desired length up to 32K words.
Individual segments are swapped in and out of memory as needed.
Memory paging, a scheme which uses fixed size memory chunks as

the basis for memory swapping, is not wused in the HP3000. A

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

segment may be designated as code or data by the operating

system.

3.2 MHNetwork Interface Hardware

The interface unit between the HP3000 computer and the
ARPANET machines will be HP's Intelligent Network Processor
(INP). This device consists of two boards located in the HP3000
main cabinet. It is a microprogrammed dinterface unit whose
microcode is down-1ine loaded by HP3000 software. HP will supply
the microcode to make the INP obey the X.25 LAP protocol and will

supply the device driver necessary to access the INP.

The INP will be connected to a BBN C/30 (MBB) computer.
This machine will convert the X.25 protocols from the INP into

suitable ARPANET protocols.

3.3 Operating System Software

The operating system for the HP3000 dis known as the
Multiprogramming Executive System (MPE). It offers both batch
and interactive job capabilities and allows multiple concurrent
users of either type. It offers a file system which manages
files on disk, magﬂetic tape andfor punched cards. Some I/0

devices, such as the line printer, have spooler programs built in

IEN 187 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

to the system.

User programs are run as processes within MPE. Each process
has asseciated with it a code segment and a stack (data) segment.
In privileged mode, it may run in "split-stack mode", where it is
allowed to have two data segments. The most common use of
split-stack mode is to access tables in the operating system

during system calls.

The design of MPE s greatly influenced by the HF3000
hardware architecture. MPE's organization relies heavily on
operations which incur 1ittle processor overhead while avoiding
operations which incur large amounts of processor overhead. The
most striking example of this is the MWPE's dependence on user
processes for a large number of what would ordinarily be
considered system functions. MPE avoids the use of "system"

processes to perform these functions.

The design organization is a direct result of the stack
architecture of the HP3000., The large number of status registers
which must be saved when a new process is invoked makes process
switching a very expensive operation. The time needed to perform
a procedure call intoc & new segment of system code 1is typically
less than the time to switch context from one process to another.
Writing efficient code for this machine has thus 1led to

organizing the system as vrelatively independent “"utility”

IER 167 Sax and Edmond
Bolt Beranek and Newman Inc.
JuTy 1980

routines callable by the user rather than as a collection of
separate processes which manage 1/0 devices and system utiTities.
These operating system calls, called Intrinsics, are implemenied
as subroutine c¢alls into system code segments. The program
segments which implement the Intrinsics run in a privileged mode
which allows them to directly access system tables and I/0 device

tables.

One notable side-effect of this design is that system
resources such as I/0 devices are assigned to only a single
program and aré not normally shared. This approach has allowed
the system programmers 1o create a complex operating system
without tackling the problems of interprocess communication and
resource sharing. As will be discussed later, it also has a

significant effect on protocol software design.

3.4 Input/Output

Input/Output operations typically consist of two steps. The
first step is initiation of the desired operation. This involves
checking to insure that access to the device is allowed (software
protection), and issuing I1/0 dnstructions to the dewvice to
initiate the desired action. This step wusually occurs as a
result of an intrinsic call to the device handler code and thus

is executed on the wuser's stack. The second step s the

_11:'-

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

operation completion handling. This may occur using either the
Interrupt Control Stack (IC5) eor the System Control Stack,
neither of which is the user's stack. The choice of which stack

to use depends on the specific device's function.

A consequence of this system design is that "system code"
tends to be executed using the data stack of the first user
process needing the function. If process 1 wants to do an I/0
operation, it invokes a system procedure which knows how to
manége that 1/0 device. If process 2 now wishes to invoke the
same device, and if the device is capable of supporting more than
one request concurrently, it invokes the same routine. To avoid
multiprocessing hazards im dssuing I/0 commands, the system
procedure first checks to see if it is the first invocation of
itself -- if not, it queues the request and exits; if it is, it
proceeds to issue the I/0 instructions. If the reguest was
queued, it 1is assumed that the first process will detect the
newly queued request and process it also. The first process s
thus performing system functions for the second, and all later,
processes, and will be charged run time for doing their work. In
practice, we do not expect this to be significant, but in theory,
the first process could run indefinitely, even if its own request

has long since completed.

-11-

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

3.5 Interprocess Communication

Interprocess communication under the current version of MPE
is a problem, Only two techniques are currently available and

neither of them is really satisfactory.

One technique that may be used is that of the Tlogical
device. It is chiefly used to accomplish multiplexing of
physical devices. This facility is implemented by creating a new
entry in the system's Device Information Table, and by creating a
set of procedures which act as a device handler. The handler

will be run in privileged mode.

Like other system device handlers, the procedures to manage
the device are invoked directly by the user process, and the
user's stack is used by the system code. This has the advantage

of speed, since it avoids some process context switching.

There are a number of drawbacks to this technique. First,
the Device Information Table entry must be maintained as if it
were a real hardware device. This requires knowledge of all the
MPE internal functions that might ACCess this table.
Furthermore, since these tables are system internal, they are
subject to change with each new release of MPE. Use of the table
requires Privileged Mode. Bugs in the code would have a greater

chance of crashing the system. The greatest drawback is that

-12_

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

logical gevices are s5till under development at HP, and are more

than usually likely to change over time,

A new operating system feature, not yet released officially,
that has been written for MPE is an interprocess communication
method known at HP as message files. These correspond to Unix
ports, and allow wunrelated processes to communicate with one
another. Each message file has one or more "reader" processes

and one or more "writer" processes. During use, these files act

as FIFO queues.

Message files are implemented using the file system. Read,
write, and query commands are all patterned after the file system
commands. The message file code is designed so that if readers
and writers stay more or l1ess in synchronization, disk I/70 will
not be needed. However, if the writers get far enough ahead of
the readers, the message file will start being spooled out onto

disk.

Message files are to be introduced as user level functions
by HPF, and, as such, their use will not change with new releases
of the operating system. Code for this feature has already been
implemented at HP and is available with both MPE III and the
future MPE IV. They appear to be relatively easy to use and do
not require knowledge of the internals of the operating system.

Their chief drawbacks are that a process context switch is

=13~

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc,
July 1980

required between writer and reader, and that some file system

overhead is incurred.

Timeouts, as seen in message files, are another new HP
function that will be available. The older version of timeouts
simply suspended the process for a fixed amount of time, but did
not allow the process to be awakened by the completion of an 170
event during its sleep. The new version is equivalent to setting
a timer whose alarm may be awaited with the same IOWAIT intrinsic
that awaits I/0 completion., It allows a process te wait fer
either some I/0 device operation completion or the passage of
some maximum amount of time, whichever occurs first.
H]tarnatiue13. a timeout could be used to insure that waiting for
a specific event will terminate if the expected event doas occur
soon enough. There will be both user level and system internal

ways of accomplishing timeouts.

3.6 Existing INP Software

The code to drive the INP is part of the C5/3000
Communications Software package from HP. It contains code to
send and receive packets via the INP and code to manipulate the
Device Information Tables. The code also allows the user to
down-1ine load microcode dinto the INP memory. It contains

intrinsics to open and close the Tine and to read and write

-14=

IEN 187 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

packets, The microcode allows the INP 1o support X.25 LAP
protocols and also allows the INP to buffer up to eight 128-byte
packets. These packets are read by CS/3000 as scon as possible
in order to keep the INP from losing packets due to a lack of
buffer space in the INP. This technique allows the INP to
function as a full duplex device, even though the MPE operating

system offers only a half duplex control mechanism 1in its

software.,

15

IEN 167 : Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

4 Protocol Software Architecture

The protocol software architecture is dictated by a set of
design requirements and MPE operating system constraints. These

requirements and constraints are summarized as follows:

- The new network software must be isolated from the
existing operating system as much as possible. The
isolation will allow any site to add or remove the network
software with a minimum of effort. It will alsc make the
network software less wulnerable to any changes HP makes

to MPE.

- Efficient high speed network communications are extremely
important because this TCP version will be used on a

production rather than an experimental basis.

- One of the problems with MPE is that, though the operating
system performs device assignment and access control for
its I/0 devices, the user process 1is vresponsible for
operating the I/0 device. MPE does offer intrinsics to
pperate common devices, but these are very Tlow level
pperations. This I/0 arrangement makes it difficult to
control an asynchronous network interface. The protocol
software architecture will therefore require at least one

process which has exclusive control of the INP interface.

-15_

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

- One of the properties of these network protocols is that
the message acknowledgments and retransmissions occur at a
relatively high Tlevel == 1in the Transmission Control
Frotocol in layer four., A moderate amount of time passes
from the time the originating TCP queues the message for
transmission and the receiving TCP gets the message. In
order to prevent acknowledgment delays which in turn cause
the Toreign host to retransmit data, the software
architecture should minimize the amount of time it takes
for incoming data to move through the 1822, IP, and TCP

protocols.

- With many network users and many connections concurrently
in wuse, the network software must be able to handle the
problems of multiplexing use of the network interface
hardware. The interface on which the multiplexing takes
place must support a number of simultaneous users in such
a way that the behavior of any individual user does not

affect data throughput of the other users.

In order to meet all of the design requirements and
constraints described above, the HP30O00 protocol software is
implemented in a set of processes (see diagram 1in Appendix B).
One process which will be called the system protocol process 1is

responsible for maintaining the INP interface as well as

'1?

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

supporting the 1822, 1IP and TCFP protocols. The rest of the
processes, called applications protocol processes, support the

user interactive network functions including FTP and TELNET.

The use of a single system protocol process is a key element
in the protocol design. The system protocol process provides
control over the INP interface by providing buffers and acting as
multiplexer and de-multiplexer of network traffic to and from the
INP. Use of a single process minimizes inter-protecol layer
communication delays which in turn minimize the acknowledgment
delays for incoming data. A single system protocol process makes
it possible to wuse interprocess communication primitives to
provide a uniform network interface for the applications Tlevel

protocel processes.

User TELNET and User FTP protocols are to be implemented as
ordinary user programs, They use the same system calls as any
other network accessing program, but are written to provide a
higher Tlevel command Tlanguage for the user. AS user programs,
they execute in the user's address space with the privileges
normally available to the wuser. The User TELNET and User FTP
programs are re-entrant, with as many processes running this code

as users wishing the service.

Server TELNET is a single process created as the system

starts up or whenever the first need for it arises. De-

IB

IEN 167 Sax and Edmond
BEolt Beranek and Newman Inc.
July 1880

multiplexing of Server TELNET dinputs dis accomplished wia a
pseudo-teletype driver. The driver acts as the interface between

the Server TELNET process and the Teletype handler.

The interface between application protocol processes and the
system protocol process is through a set of TCP intrinsics. The
intrinsics are designed to form a uniform interface between the
user and the TCP. Actual data communication between a user
process and the system protocol process 1is done with a
combination of message files and direct buffer-to-buffer
transfers. Message files are wused to pass flow control
information while the actual data transfer is made by copying
data between user buffers and system protocol buffers. The
combination of message files and buffer copy is used to take
advantage of the flexibility of message files and the data rates

achieved by direct data copy.

=10=

IEN 187 Sax and Edmond
Bolt Beranek and Mewman Inc.
July 1980

§ System Protocol Software

Since this TCP implementation is to be used on a production
rather than an experimental basis, the design effort has
concentrated on the efficiency rather than the sophistication of
the protocol software. This 1is especially true of the system
protocel software whose initial design dncludes only those

features needed to support the FTP and TELNET protecols,

At the same time, the software design does allow for the
future enhancement of +the protocol software, There are no
inherent design limitations which will prevent implementation of

the more sophisticated TCP and Internet features.

5.1 Implemented Features

The specific TCP and Internet features to be implemented

include the following:

-zn_

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc,
July 1980

- multiple connections to multiple hosts,

- flow control at the 1822, Internet, and TCP layers,
- @rror recovery,

- fair allocation of resources among all connections,
= handling of urgent data,

- surviving incorrect packets,

- datagram reassembly,

- routing,

- source quenching.

§.2 Software Architecture Overview

The system protocol software architecture reflects the need
to avoid packet processing delays rather than a strict hierarchy
between protocol layers. The system protocol software is
implemented as a single process to allow the system protocol
layers to share software resources for greater efficiency. The
shared resources include subroutines which perform functions
reguired by more than one protocol layer and a common buffer pool
to optimize storage resources and to allow efficient

communication between protocol layers,

Network traffic through the system protocol process takes
different forms including 1822 packets, datagrams, and TCP

segments. These various forms are generically referred to as

-21-

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

"packets”, Packets are passed into the system protocol process
from either an applications protocol process or the ARPANET
interface. Packets from the ARPANET are passed into the system
protocol process by intrinsic calls to the INP interface. User
generated network packets are passed to the system protocol
process by using a combination of message files and data buffers.
Message files are used to transfer control and status information
while data transfer is done with buffer-to-buffer copies between
the user protocol data segment and the system protocol data

segment.

A1l read and write commands are done without wait to allow
the system protocol process to simultaneously multiplex I1/0
channels and process network packets, I/0 multiplexing is
implemented through the IOWAIT intrinsic. The system protocol
process issues an IOWAIT intrinsic after it finishes processing a
data packet. The IOWAIT intrinsic returns the fife number of the

1/0 channel associated with an I/0 completion wakeup.

When the number of free buffers falls below a prescribed
Timit, an attempt is made to free buffers through data
compaction. The attempt begins with a search for datagram
fragments and wunacknowledged TCP segments which waste buffer
space by using only a fraction of the available space in each

buffer assigned to them. This 1lack of efficiency can be

_22-

IEN 187 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

particularly damaging because there is no guarantee that the data
contained din the buffers will ever be processed. Wherever
possible, datagram fragments are combined into a single datagram
fragment and TCP segments are combined into a single segment to
more efficiently utilize system buffers. Any buffers freed by

this compaction process are returned to the freelist.

Network packets from both the user prucesﬁ and the ARPANET
are processed along one of a number of data paths in the system
pruﬁucnl process. The actual data path taken depends on the type
of data packet and, in the case of TCP segments, the state of its
associated network connection. Packet processing is performed by
a series of function calls which act as processing steps along

the data path.

In order to avoid processing delays which can tie up system
resources, each arriving data packet is processed through as much
of the protocol software as possible. Processing of a packet s
suspended only whan the lack of some resource or some external

event prevents further processing.
5.3 Control Structures
A11 of the status information both for individual network

connections and for the system protocol software as a whole is

-23-

IEN 1B7 S5ax and Edmond
Bolt Beranek and Newman Inc.
July 1980

kept in a set of control blocks as well as in a number of buffer
1ist structures as shown din Appendix C. The control blocks
include a general network resources control block, a foreign host
control block for each foreign host connected to the Tocal host,
and send and receive control blocks for network connection. The
1ist structures include a network buffer free list, a TCP buffer

aging 1ist and an Internet buffer aging 1ist.

§.3.1 MNetwork Resources Control Block

The Network Resources Control Block contains the information
needed to maintain the network buffer free 1ists and aging lists.
This information includes pointers to the network buffer free
1ists and aging 1ists and a count of the buffers in each of the

Tists.

The information contained in the Network Resources Control
Block s used by the protocol software to control the
distribution of network buffers among the wvarious 1ists. The
information is scanned at wvarious times to determine the
allocation or disposition of a particular network buffer. The
determinations occur when new buffers are allocated from the free
1ist and when buffers containing TCP segments are about to be
acknowledged. Decisions are made based on the number of free

buffers available and the priority of the task requiring the

_24-

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.

July 1980

buffers.

6.3.2 Foreign Host Control Blocks

Foreign Host Control Blocks maintain flow control within the
1822 protococl layer. The block contains a counter for the number
of outstanding 1822 packets sent to a single host. The counter
includes all of the packets sent to the host on all sockets. The
counter is incremented when an 1822 packet 1is sent and is
decremented when either a RFNM or an Incomplete Transmission is

received from the host.

The counter is used to prevent transmission of too many 1822
packets to a single host. A11 transmission from the host is
blocked when the counter reaches the 1imit of eight outstanding

1822 packets for any foreign host.

The 1822 level flow control is actually implemented by the
send side of the TCP software. The TCP checks the RFNM count in
the ‘connection control block before it tries to +{transmit a

segment to the foredign host.

2:5

IEN 167 Sax and Edmond
Bolt Beranek and Mewman Inc.
July 1980

5§.3.3 Connection Control Block

Each TCP connection has an associated control block. The
control block contains data associated with the Transmission
Control Block (TCB) aleng with other connection related
information. specific information included in the control block

is as follows:

a connection state wvariable wused to maintain the
connection state,

- the local port number of the connection,

- the TCP interface control block number associated with
this connection,

- the file number of the private message file associated
with this connection,

- the TCB data associated with the receive side of this
connection,

- the TCB data associated with the send side of this
connection,

- A pointer to any buffers containing wunacknowledged data
received on this connection.

£.3.4 HNetwork Buffer Resources List Structures

Three 1ist structures are wused to maintain the network
buffer resources shared by all of the sockets. These list

structures include the free 1ist and the two buffer aging queues.

The network buffer free 1ist contains all of the network

buffers currently available for use by any socket. These buffers

_25-

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

are allocated when new data comes in from either the network or a

user protocol process.

The Internet Aging Queue s a 1ist of active buffars
assigned to blocked datagram fragments and complete datagrams.
These buffers are the first to be reclaimed when there are no
free buffers available. The Queue is sorted according to
datagram age. Al11 buffers which belong to the same datagram are
combined dinto a single 1ist structure. The datagram Tist
structures are linked into the Internet Aging Queue with the
least recently updated datagram always at the head of the queue.
When a new datagram fragment comes in it is moved to the end of
the queue along with all of the other fragments which belong to

the same datagram.

The TCP Aging Queue is a 1ist of buffers which contain at
least parts of unacknowledged TCP segments. These buffers can be
reclaimed when there are no free buffers and no buffers on the
Internet aging 1ist. The Queue is sorted by socket. A1l buffers
which contain data for the same socket are combined in a buffer
1ist and each buffer 1ist is linked into the gqueue. The queue is
sorted by the age of the data associated with each socket. Data
belonging to the socket which has been inactive for the longest
period of time is placed at the head of the gueue so it can be

recycled first. When & wuser process reads data from a

...2?_

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

connection, all the network buffers still waiting to be read on
that connection are moved to the end of the TCP aging 1ist. This
assures that data associated with an active TCP connection will
not be recycled ahead of data associated with an inactive TCP

connection.

-28-

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

6 User Frncess!TCP Interface

The user process/TCP interface is designed to meet two basic
requirements. First, the interface must allow for high speed
data transmission across the interface; this is especially
important since this interface invelves interprocess
communication which could be delayed by excessive system overhead
due to context switching and process scheduling. Second, the
interface must isolate the system protocel process from any
buffer overhead burdens caused by processing delays in the user
process, System protocol process buffers are too valuable a
resource to be locked into storing TCP segments which are waiting

for response from a user process.

High speed data transmission across tser process/TCP
interface is achieved by copying data directly from buffers in
the user process to buffers in the system protocol process. The
direct transfer is implemented with the move-to-data-segment and

move-from-data-segment instructions provided by the HP3000.

The system protocol process is isolated from delays 1in the
user process by making the user process responsible for buffering
TCP data segments. Acknowledged incoming TCP segments, and TCP
segments waiting to be transmitted over the ARPANET, are stored
in buffers in the user protocol process. This wuse of wuser

buffers serves two functions: it frees system protocol buffers

29

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

from being locked into storing TCP segments, and alse gives the
user process some control of network connection throughput.
Throughput control is accomplished by allowing each user process
te choose the amount of buffer resources it dedicates to each

connection,

6.1 Interface Intrinsics

The TCP/user interface is implemented through a set of TCP
intrinsics. These dintrinsics allow the user process to create
and use network connections with other processes on foreign

hosts.

Seven intrinsics, TCPWAIT, TCPOPEN, TCPCLOSE, TCPRECEIVE,
TCPSEND, TCPSTAT, and TCPABORT, provide the basic control
functions needed to transfer data through the user process/TCP
interface. Conceptually, the intrinsics allow the user to create
network connections with other processes on foreign hosts. Each
connection consists of a pair of sockets as defined in the TCP
protocol document. Connections are created with a TCPOPEN
intrinsic whose parameters define the sockets which make up the
connection. After a connection is c¢reated, the user process uses
the TCPSEND and TCPRECEIVE intrinsics to send or receive data.
The TCPSTAT intrinsic allows the user to check the status of a

connection.

-an-

IEN 187 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

Within the user process, connections are identified through
the combination of a connection file number and & connection
buffer. The connection file number is returned by a successful
TCPOPEN call. The connection buffer is an integer array
allocated by the user process. The buffer is initialized by the
TCPOPEN intrinsic and s then passed as the first parameter to
411 of the other TCP dintrinsics. It is the responsibility of the
user process to maintain the association between the connection

file number and the connection buffer.

The TCP I/0 interface is entirely asynchronous so that a
user process can gqueue any number of read or write requests to a
particular connection. The user process has three limitations in
this regard: first, it must provide the buffers associated with
gach TCP intrinsic call; second, the user process must keep track
of which buffers are associated with each 1/0 call; and third,
the user process cannot dequeue buffers until it has permission

to do so from the system protocol process.

The user process uses a combination of the IOWAIT ane
TCPWAIT dntrinsic calls to keep track of I/0 completion events.
The IOWAIT dntrinsic dis <dinvoked when the wuser process has
completed processing all of the current data. When the IOWAIT
intrinsic returns with a file number associated with a TCP

connection, the TCPWAIT dntrinsic 1is called to handle the I/0

=31=

IEN 187

Sax and Edmond
BEolt Beranek and Newman Inc.
July 1980

completion. The TCPWAIT dintrinsic uses the connection buffer to

determine

the cause of the I/0 completion and then performs the

appropriate I/0 cleanup task and returns an I/0 type code to the

user process.

The specific calling sequences of the TCP dntrinsics are

given below:

TCPOPEN(TCPCBUF ,,FHIA,FP,A/P,LP[,BADDR]) opens a TCP connection

TCPCBUF - TCP Connection Buffer - This 1is a pointer to an

FHIA

FP

integer array ten elements long which acts as the
control structure for all network connections. The
array is allocated by the user process before any

TCP dintrinsics are called.

Foreign Host Internet Address - 32 bit address.
This address may be obtained with the HOSTADDR
intrinsic which takes the host name text string as a
parameter and returns the 32 bit internet address.
In the case of a passive open a zero address

indicates a listen for any host.

Foreign Port - a 16 bit port address for this
connection at the foreign host. 1In the case of a
passive open a 0 port indicates a 1listen from any

port on a foreign host.

--32_

IEN 167

AP =

LP -

EADDR =

returns -

Sax and Edmond
BEolt Beranek and Newman Inc.
July 1980

Active/Passive - a boolean flag used to indicate if
this open is for a listen socket (passive) or for an

active connection.

Local Port - 16 bit lTocal port id. This parameter
is optional, If it is not specified, the TCP picks
a free local port id from a reserved part of the

name space.

Buffer Address - an optional buffer used to give the
foreign host a window for transmission. If the
buffer is not provided, the connection 1is opened
with a2 zero window size until the user process calls

the TCPRECEIVE intrinsic.

local connection name or error code of -1 if the
connection failed. The 1local connection name is
actually the file number of the private message file

associated with this connection.

TCPCLOSE(TCPCBUF) closes & TCP connection

TCPCBUF -

TCP Connection Buffer - same as in the TCPOPEN

intrinsic.

TCPABORT(TCPBUF ,BUFFTR) aborts a TCP connection

TCPCEBUF -

TCP Connection Buffer - same as in the TCPOPEN

-33_

IEN 187

BUFFTR

Sax and Edmond
Balt Beranek and Newman Inc.
July 1880

intrinsic.

Buffer Pointer - pointer to a 7ist of buffers
released by the TCPABORT call. A zero value

indicates that no buffers were released.

TCPRECEIVE({TCPCEUF ,BADDR,BCNT) reads data from a TCP connection

TCPCBUF

BADDR

BCNT

returns

TCP Connection Buffer - same as 1in the TCPOPEN

intrinsic.

Buffer Address - address of user buffer for receiv-

ing network data.

Byte Count - number of bytes to be transferred.

an error code of =1 if the TCPRECEIVE failed.

TCPSEND({TCPCBUF ,BADDR,BCNT,EOL) writes data to a TCP connection

TCPCBUF

BADDR

BCNT

EOL

TCP Connection Buffer - same as 1in the TCPOPEN

intrinsic.

Buffer Address - address of user buffer for sending

network data.

Byte Count - number of bytes to be transferred.

End Of Letter - a boolean flag to indicate that this

buffer is an end of letter.

34

IEN 187 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1380

TCPSTAT(TCPCBUF,SBADDR) gives TCP connection status

TCPCBUF - TCP Connection Buffer - same as in the TCPOPEN

intrinsic.

SBADDR - Status Buffer Address - address of user buffer for

receiving network data.

TCPWAIT(TCPCBUF ,BUFPTR,DATAPTR) returns the result of a previous

TCP dintrinsic call.

TCPCBUF - TCP Connection Buffer - Same as in the TCPOPEN
intrinsic.

BUFPTR - Buffer Pointer - used to return & pointer to a
buffer 1ist released by an I/0 event. A zero
pointer indicates that no buffers were released.

DATAPTR - Data Pointer - pointer to the first data element
within a - buffer returned by the intrinsic to a
TCPRECEIVE intrinsic.

returns - a code indicating the type of I/0 completed. A list

of the 1/0 codes is given in Appendix D.

-35-

IEN 187 y Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

6.2 Flow Control Across the Interface

Floew contrel across the user process/TCP interface is
implemented through the use of message files. The message files
act as control channels to transmit flow control and status
messages between the user process and the TCP. Each connection
makes use of two message files. A general input message file s
used to transmit control messages from user processes to the TCP.
A11 user processes share the same general dnput message file.
Each connection also uses a private message file to convey
control and status information from the system protocel process

to the user process.

The control messages passed between the user process and the
system protocol process are short data buffers. These buffers
contain the message type along with other information associated
with the particular command. The formats for each of the message

types is shown in Appendix D.

6.3 Interface Control Structures

Each network connection has an associated TCP interface
control block. These blocks include a set of pointers and data
segment numbers used to keep track of buffers within both the

user process and the system protocel process. The pointers

=31G6=

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc,
July 1980

contain buffer addresses relative to the beginning of the stack
data segment for each process. A diagram of the TCP interface

control block is given in Appendix E.

The control blocks are maintained in a separate data segment
shared by both the user and system protocol processes. The data
segment is initialized by the system protocel process when it
starts up. The initialization of the data segment divides it
inte a number of control blocks. Individual control blocks are
initialized by the TCPOPEN intrinsic. Responsibility for
releasing the control blocks s shared among the TCPCLOSE,

TCPABORT, and TCPWAIT intrinsics.

6.4 Interface Control Algorithms

The specific functions performed by esach of the network I/0

intrinsics are as follows:
TCPOPEN

1. The TCPOPEN dntrinsic software searches for a free TCP

connection interface control block and initializes it.

2. The TCPOPEN software creates a private message file with
a unigque file name. The unique file name is formed out

of the prefix "TCP" and the id number of the TCP

_3?-

TEN 167

Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

interface control block.

The TCPOPEN software sends an OPEN CONNECTION command
message to the TCP via the general input message file.
The message includes all of the TCPOPEN parameters and

the id number of the TCP interface control block,

The TCPOPEN software makes & read reguest with timeout
on the private message file. If the read times out, the
TCPOPEN software sends an ABORT CONNECTION command to
the TCP, deletes the TCP dinterface control block, and
returns an error code to the wuser process. The
connection buffer provided as a parameter to TCPOPEN is

used as the read buffer.

The TCP software reads the open command from the general
input message file and uses the information to create a
connection <¢ontrol block. The TCP ﬁuftwara also
initiates the connection protocols specified in the

command message.

The TCP software sends an OPEN CONFIRM message back to
the user process via the private message file created by
the TCPOPEN intrinsic software. The OPEN CONFIRM
message will fail if the user process is destroyed by a

user abort. If this occurs, the TCP software takes

-33_

IEN 167

Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

responsibility for cleaning up the TCP interface control

block as well the connection control blocks.

The TCPOPEN software reads the OPEN CONFIRM message from
the private message file. The TCPOPEN software
initiates & read without wait on the private message
file, The connection buffer is again used as the read

buffer.

If the user provides a read buffer as the last parameter
to the TCPOPEMN intrinsic, & read operation is initiated.
The TCPOPEN software attaches the buffer to the TCP
interface control structure and sends a RECEIVE message
to the TCP via the general input message file. The TCP
uses this message to set the size of the connection

window.

The TCPOPEN software returns the file number of the

private message file to the user process.

TCPCLOSE

The TCPCLOSE software marks the connection closed bit
for the send side in the TCP interface control block.
The TCPCLOSE software checks to see if there are any
data buffers waiting to be read by the TCP. If there

are no data buffers, the TCPCLOSE software sends a CLOSE

._39_

IEN 167

S5ax and Edmond
Bolt Beranek and Newman Inc.
July 1980

CONNECTION command to the TCP., If the receive side is
marked closed and there are no buffers waiting to be
read, the TCPCLOSE intrinsic software deletes the TCP

interface connection contrel block.
The TCPCLOSE software returns to the user process.

When the TCP receives a connection close command from
the wuser process it sends a FIN to the foreign host and
marks the send side of the connection as FINWAIT-1,
When the TCP receives an ACK of the close the foreign
host, it marks the send side of the connection as
FINWAIT-2, If - the receive side of the connection is
marked closed, the TCP deletes +the connection control

Block.

If the TCP receives a FIN from the foreign host, it
marks the receive side of its connection as closing.
When all data and the FIN sent by the foreign host are
ACKED, the TCP sends & MNETCLOSE command to the user
process and marks the receive side of the connection
closed, If the send side is also marked as closed, the
TCP deletes the connection control block. The close
message sSent to the wuser process is processed by the

TCPWAIT intrinsic.

qﬂ.

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

TCFABORT

1. The TCPABORT software sends an ABORT CONNECTION command
to the TCP via the general input command file. The
TCPABORT software releases the TCP interface control

block and deletes the connection's private message file.

2, The TCPABORT software returns to the user process. The
return dincludes a pointer to a 1ist of user buffers

which were assigned to the connection.

3. When the TCP receives an ABORT CONNECTION command from
the wuser process it sends a reset to the foreign host,
deletes any unacknowledged data it has for this

connection, and deletes the connection control block.

4, If the TCP receives a reset from the foreign host, it
deletes all of the data waiting to be transmitted to the
user process and sends a NETABORT message to the wuser
process via the private message file. The NETABORT

message is handled by the TCPWAIT dintrinsic.
TCPRECEIVE

1. The TCPRECEIVE software checks to see if the receive
side connection closed flag is set. If the flag is set,

the TCPRECEIVE software returns a connection closed

-41_

IEN 167

Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

indication to the wuser process. It is up to the user
process to close the send side of +the connection and

clean up the connection buffer if it has not done so.

If the connection 1is open, the TCPRECEIVE software
attaches 1its read buffer to the TCP interface control
block and sends a RECEIVE message to the TCP. The
message is used to indicate to the TCP that the user has
made a buffer available to the connection. The

TCPRECEIVE software returns to the user process.

When the TCP receives the user's read message, it checks
to see if it has any unacknowledged segments waiting to
be transferred to the user process. If it has no
segments, it wuses the RECEIVE message to increase its
receive window size, If the TCP has segments waiting
for transfer, it transfers as much of the data as
possible to tie user process. A1l transferred data is
immediately acknowledged to the foreign host. The TCP
sends a PENDING RECEIVE message to the user process to
advise it of the transfer of data. This message is

processed by the TCPWAIT intrinsic,

If the TCP receives data from the foreign host, it
checks to see if the user process has assigned any free

buffers te this connection. If there are free buffers,

=-42-

IEN 1&7

Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

the TCP copies as much of the data it receives as
possible into the wuser buffers and acknowledges the
copied data to the foreign host. Any data which is not
copied is maintained on the TCP aging Tist where it is
stored wuntil it is transferred to a user process buffer
or discarded. The user process is informed of the data
transfer through a PENDING RECEIVE command message via
the private message file. This message is received by

the TCPWAIT intrinsic.

TCPSEND

1.

The TCPSEND intrinsic checks to see if the connection is
5ti1l open. If the connection is marked closed, the

TCPSEND returns an error code to the user.

If the connection is still open, the intrinsic software
attaches the user supplied data buffer to the TCP
interface cunérnT block. The TCPSEND software sends a
SEND message to the TCP via the general input message
file. The TCPSEND software now returns to the wuser

process.

The TCP software, on receiving the data SEND message,
checks to see if it can send the data to the foreign

host. The decizion on whether to send the data is made

-A4%-

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 18BD

by checking the following conditions:
- the foreign host has advertised sufficient window
space,

- the number of outstanding RFNMs for all connections
to the foreign host is less than eight,

- the amount of data waiting to be sent is sufficient
to warrant a data packet. This condition prevents
single byte segments from being sent out over the
ARPANET. The TCP waits until it has at least 10
bytes of data before transmitting it out to the
ARPANET.

- the user has specified an EOL.

If the TCP decides to send the data, it prepares a
network packet and copies as much of the user data as it
can transmit into the network packet. The data transfer
is made directly from the 1ist of user buffers gueued by
the TCPSEND intrinsic to the message packet buffer. Al
buffers filled by the data transfer are marked as filled

and appended to the filled buffer list.

4. After the TCP has transferred all of the data from the
user buffers, it checks the TCP interface control block.
If the send side of the connection is marked closed, the
TCP sends a Fin to the foreign host. If the receive
side is also closed, the TCP sends a NETCLOSED command

to the user process.

5. After the data is transmitted, the TCP sets a

_qq-

IEN

167

Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

retransmission timer.

If the TCP receives an acknowledgment from the foreign
host, it wupdates the TCP interface control block to
reflect the acknowledgment, turns off the timer, and
sends a DATA SENT message to the user process via a
connection private message file. The message contains
the number of bytes acknowledged. This message is
processed by the TCPWAIT command. If only some of the
data 1is acknowledged, the TCP resets the timer for the

unacknowledged data.

If the TCP does not get an acknowledgment from the
foreign host and the connection times out, it again
reads &s much data as it can from the wuser buffer and

sends it out as a network packet.

TCPSTATUS

1.

The TCPSTATUS software checks to see if the connection
is still open. If it is closed, it returns a connection

closed code to the user process.

The TCPSTATUS command checks to see if there is an out-
standing status reqguest by the user process. If there

is, it returns an error code to the user process.

-45-

IEN 1&7

Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

3. If there is no pending status request, the TCPSTATUS
software attaches the status request buffer to the TCP
interface control block and sends a STATUS message tLo
the TCP wvia the general input message file. The
TCPSTATUS returns to the user process.

4. When the TCP receives the status request message, it
formulates a status message and copies it into the
user's status buffer attached to the connection buffer.
The TCP then sends a status complete message to the user
process via the connection private message file. The
message from the TCP is processed by the TCPWAIT
intrinsic.

TCPWAIT

1. The TCPWAIT software checks the message received from
the TCP,

2. If the message is a NETCLOSE command, the TCPWAIT

software checks if the send side of the connection is
closed and there is no data waiting to be sent to the
TCP. If the send side is closed and there is no pending
TCP data, the TCPWAIT software deletes the TCP interface
control block. If there is data waiting to be

transmitted, the TCPWAIT software marks the receive side

-46=

IEN 167

Sax and Edmond
Bolt Beransk and MNewman Inc.
July 1980

of the connection closed. In either case, TCPWAIT
returns a connection closed code to the user process.
It is up to the user process to decide when to close the
send side of the connection, if it has not already done
s0. If there are any user buffers still assigned to
this connection, they are returned to the user process

at this time.

If the message 1is a NETABORT command +the TCPWAIT
software deletes the TCP interface control block and
returns a connection abort code to the wuser process.
Any buffers associated with connection are also returned
in a 1ist structure through the buffer peointer
parameter, ;

If the message is a PENDING RECEIVE command, the TEPWAILIT
returns the pointer to the head of . the Tirst data
buffer, the first data byte, and a byte count. Since
the data may be returned in a number of linked buffers,
it is up to the user to follow the buffer 1inks. As the
user process reads the data it should check each
buffer's header. Completely filled buffers marked with
a zero in the in use field can be reclaimed by the user

process.

If the message is & DATASENT message, the TCPWAIT

4?

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

software checks the acknowledgment count and releases as
many buffers as it can from the send buffer Tist. The
released buffers are 1linked in a Tist and the buffer
pointer parameter is set to point to the first buffer in
the Tist. The TCPWAIT software returns a data

acknowledgment code to the user process.

6. If the message is a STATUS COMPLETE message, the TCPWAIT
software sets the buffer pointer parameter to point to
the status buffer and returns a status complete command

code to the user process.

6.5 Windowing, Acknowledgment, and Retransmission

The receive window size and data segment acknowledgment are
completely dependent on the number of buffers the user process
allocates to a connection. The receive window size of a
connection is always set to the amount of free buffer space the
user process allocates to the receive side of a connection.
Acknowledgments of incoming TCP segments are limited to those
segquence numbers which fit in the receive window.
Acknowledgments are sent as soon as data is copied from the

system protocol buffers to the user protocol buffers.

_qa-

IEN 167 S5ax and Edmond
Bolt Beranek and Newman Inc.
July 1880

The initial retransmission algorithm is extremely simple,

The first retransmission of unacknowledged data occurs 3 seconds

after the original transmission. The second retransmission
occurs 6 seconds after the first. The third and successive
retransmissions pccur 15 seconds after the previous

retransmissions.

_q_g_

IEN 167 Sax and Edmond
Bolt Beranek and Mewman Inc.
July 1980

7 1822 Layer/INP Driver Communication

Communication between the system protocol process and the
INP driver is implemented with four intrinsics: IOPEN, ICLOSE,
IREAD, and IWRITE. These intrinsics are modified forms of the
CS/3000 dntrinsics. Their function is to open a connection to
the INP network processor and to transmit data buffers to and
from the INP, The IREAD and IWRITE intrinsics are always done
without wait. The IOWAIT intrinsic is used to determine the

completion of an I/0 request.

Initialization of the INP interface begins with an IOPEN
call which initializes the interface software. This is followed
by four IREAD intrinsic calls to initialize buffers for incoming
network packets. Four pending buffers should allow enough
buffering to catch all of the incoming data without tying up too

many network buffers,

The following is a summary of the commands used 1o

communicate between the protocol process and the INP driver.
- IOPEN()

returns error code on failure. Possible failure modes
include failure to find the INP microcode file, failure to
l1oad the microcode file in the INP, and a hardware failure

in the INP.

-ED_

IEN 167 S5ax and Edmond
Bolt Beranek and Newman Inc.
July 1980

This command dnitializes the connection between the
protocol process and the INP., The initialization includes

activating the INP and loading its microcode.

- ICLOSE()

This command closes the connection between the INP and the
protocel process when the network software is brought

down.
- IREAD{buffer)

This intrinsic passes an empty buffer to the INP driver.
The buffer s gqueved to a DIT with an ATTACHIO command.

Control then returns to the protocol process.

- IMRITE({buffer)

This intrinsic passes a full buffer to the. INPF DIT with
the ATTACHIO command. Control 1is returned after the
buffer is attached to the DIT. The buffer dis released
when the calling process receives an interrupt indicating

I/0 completion,

51

IEW 167 : Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

B Protocol Software Buffering Scheme

Data buffer management is the most important component of
the network protocol software. Data buffers perform the key
functions of data storage and data communication within the
protocel software., These functions have complex and conflicting
requirements which must be balanced by the buffer management
scheme. An understanding of the buffer management scheme

therefore begins with an understanding of its requirements.

First, data buffers must be considered & Scarce resource
shared by a number of competing "interests"™ within the protocol
software. These "interests" dnclude the various protocol layers
as well as individual network connections within the TCP layer.
The major problem is how to effectively allocate buffer resources
among these interests. This problem becomes particularly

difficult when there is a shortage of buffers.

An examination of the buffer requirements shows that they
fall into two categories. The first category includes those
buffers used to support general network functions. This includes
buffers wused din the 1822 and Internet protocol layers. These
buffers are assigned to move and store data in these protocol
layers without regard to particular network connections. The
second category includes those buffers used by the TCP protocol

to support specific connections.

_52-

IEN 167 Sax and Edmond
Bolt Beranek and MNewman Inc.
July 1980

The distinction between the twdo buffer categories is
important because buffer use within each category is controlled
by a different set of events. The use of buffers assigned to the
general network functions can be controlled by the system
protocol software. Buffers are processed through the Internet
and 1B22 protocol layers without regard to the behavior of user
processes and their affect on individual connections. Buffers
assigned to the connection specific network functions in the TCP
and higher level protocol layers are greatly affected by events
which woccur 1in wuser processes. The rate at which data is
accepted from or transmitted to the ARPANET by user processes is
totally unpredictable. This unpredictability makes it difficult
for the system protocol process to effectively assign buffer

resources to individual network connections.

Two buffer pools are used 1o separate those buffering
functions shared by all network connections from the connection
specific buffering functions. A network buffer pool, maintained
by the system protocol process,., is used to support the 1B22 and
Internet and some TCP buffering functions. A user buffer pool,
meintained by each wuser protocol process is used to support
connection dependent buffering functions for the TCP and higher

Tevel protocols.

_53..

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

£.1 HNetwork Buffer Pool

The network buffer pool supports the following specific
functions.
- movement of network packets from the INP driver 1822 and
Internet protocol Tlayers:

- storage of Internet datagram fragments in the Internet
protocol layer;

- storage of unacknowledged TCP segments which do not fall
into the current window;

- movement of network packets from the TCP layer through the
Internet and 1822 layer to the INP driver.

The network buffer pool is maintained on the system protocol
process stack where it can be accessed gasily by the various
system protocol layers. A1l of the buffers in the pool are the
same size to minimize the amount of software overhead needed to
maintain the buffers. The buffer size is matched to the maximum
frame size (128 bytes) which may be transmitted over the X.25

1ink between the INP and the ARPANET IMP,

The size choice is the result of two constraints. First,
the buffers used to catch incoming data must be large enough for
the largest incoming network packet. The packets are transferred
directly into memory by the INP hardware making it impossible for
a packet to cross buffer boundaries. Second, the single size

buffer scheme 1imits the amount of software overhead needed to

-54-

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

maintain the buffer poal.

The single size buffer scheme does not waste buffer space
because the buffer size is well matched with the data it
processes. The 128 byte buffer size allows room for all of the
protocol headers and a small amount of data. Messages with more
data will use multiple buffers. The buffers are large enough to
hold a significant amount of data yet small enough to 1imit the

waste caused by partially filled buffers.

No attempt is made to assign network buffers to any
particular protocol layer or task. Buffers are allocated either
when data is read from the ARPANET or when the TCP Tlayer -sends

data out to the ARPANET.

8.1.1 Packet Compaction

When the total number of network buffers in the free 1ist
falls below a set value, a data compaction algorithm is invoked.
Thig algorithm searches for partially filled buffers used to
store Internet datagram fragments and unacknowledged TCP segments
waiting to be transferred to a user process., These buffers are
chosen because processing of the data in them is indefinitely
suspended. Compaction of the data in these buffers allows some

of the buffers to be released to the free list.

55

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

8.1.2 Buffer Recycling

A buffer recycling algorithm 1is invoked when the system
protocol process runs out of free network buffers. The algorithm
allows buffers to be reused even if they currently contain data.
The mechanism works by ddentifying which data buffers can be
reused without losing irreplaceable information. These buffers
are sorted in a priority scheme wallows the least important
buffers to be recycled first. The buffer recycling scheme
prevents one socket from tying up too much of the network buffer
resources. It also helps assure a supply of network buffers even

under heavy load conditions.

The buffer algorithm scheme divides network buffers idinto
three categories: free buffers, in-use buffers, and aging
buffers. Free buffers are available for immediate use by any
protocel layer and are maintained on a common free 1ist. In-use
buffers are buffers bound to messages currently being processed
and cannot be used for any other purpose. Aging buffers are used
in messages where processing 1is suspended for any number of
rezsons, These buffers are placed in one of two special lists
arranged in order of decreasing age. That 1is, message buffers
which have been blocked for the longest time are at the front of
the queue, while the message buffers which were most recently

blocked are at the end of the gueue.

55..

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

There are two points in the protocol software where messages
may be blocked. The first point is in the Internet Protocol
software. Fragmented datagrams cannot be passed on to the TCP
and can be blocked indefinitely if one or more of the fragments
which make up the datagram is lost. A duplicate datagram may
eventually be transmitted 1leaving the fragmented datagram in a
suspended state, The second blocking point is in the TCP
software. Unacknowledged segments sent by a foreign host remain
suspended in the TCP until they are transferred to a user process
buffer. Any segments which are not transferred to a user process

will remain blocked indefinitely.

Buffer recycling is implemented through buffer aging 1lists
which are adjuncts to the buffer free 1ist. When an incoming
message is blocked, its buffers are attached to the end of one of
two aging 1lists, Buffers bound to datagram fragments are
attached to one aging l1ists while buffers bound to TCP segments
waiting to be read by user processes are attached to the second

aging Tist.

The aging lists are periodically manipulated when a new
datagram fragment comes in or when a user process receives some
data Trom the TCP. Buffers associated with the particular
datagram fragments or TCP segments are moved to the end of their

respective aging lists. This helps assure that any data which

5?

1EM 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

has a chance of being used will not be thrown away.

The buffers bound to fragmented datagrams are recycled first
because they are the most expendable. Blocked datagram buffers
may be a part of datagrams which have been retransmitted and
passed on to the TCP. When the blocked datagram buffers are
exhausted the buffers bound to blocked TCP segments are wused.
These buffers contain the unacknowledged segments which have not
been claimed by a user process. The assumptions here are that
the wuser process will never claim these segments and that they

are expendable,

User Process Buffer Pool

The user process is responsible for maintaining a set of
fixed length buffers for passing the user data to the TCP. Each
buffer must include a four byte header along with 80 bytes of

data space.

The first element of the header is used as either a byte
count or a full buffer marker. The count is used by the TCPSEND
intrinsic to indicate the number of data bytes in the buffer.
The TCPRECEIVE intrinsic uses the buffer full marker to identify

buffers which may be reclaimed by the user process.

_EB-

IEN 167 : Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

The second element in the array header contains a 1ist
pointer. This pointer 1s maintained by the intrinsic software
and should not be altered by the user process until the buffer is

released.

_ﬁg-

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

8 Data Flow Through the Protocol Software

Data flow through the protocol software is effected through
a series of tests and function calls. The tests check the type
and processing state of each packet while the function calls
perform specific operations on each packet. These operations
include such things as creating or checking headers and queueing

or de-queueing packet buffers.

Whenever possible, network packets are processed through all
of the system protocol layers without interruption. This helps
increase throughput by minimizing two important parameters.
First, the amount of buffering required to process data is
decreased because all network buffers associated with a packet
are released when the packet has passed through the protocol
software. Second, the time between the receipt of a packet from

the ARPANET and the transmission of an ACK is reduced.

There are a number of instances when the processing of a
packet can be interrupted within the system protocol process.
This can occur when the lack of some resource or event prevents

further processing. Examples of this are as follows:

- Internet datagram fragments waiting for reassembly;

- TCP segments from a foreign host waiting to be read by a
user process;

- TCP segments from a user process waiting for window

-60-

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

allocation before being transmitted to the ARPANET;

- TCP segments from a wuser process already sent to the
ARPANET but waiting for an acknowledgment.

8.1 ARPANET to the User Level Data Flow

Data packets come in from the network via a DMA interface to
the INP network processor. Incoming data is first transferred
into the protocol process via network buffers passed to the IREAD
intrinsic which places a read request on the DIT queue of the
INP. An arriving network packet is placed in the network buffer
by the INP driver. The system protocol process is notified of

each I/0 completion through the IOWAIT intrinsic.

Frocessing of network packets begins when an IOWRIT call
returns on completion of amn IREAD dintrimnsic. The TfHirst
processing step is to 1ink the network buffers which contain the

pieces of an 1822 packet.

The next processing steps are performed by the 1822 proteocol
software. If this 1is a normal data packet the 1B22 headar is
removed and the data packet 1is passed as a datagram to the
Internet Software. The transfer is done by calling a sequence of

Internet protocol routines with the datagram as a parameter,

.-51_

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

The Internet software checks the datagram header for
integrity and then +tries to find the proper address for this
datagram. If the datagram is not for the local host it is routed
to the proper ARPANET Host and the network buffers are returned

to the free 1ist.

If the datagram is a fragment of a larger datagram it is_
linked to any existing fragments waiting to be processed. If the
new fragment does not complete the incoming datagram, the
fragment s placed in an aging buffer queue next to the youngest
buffer in the partially complete datagram. At this point all
processing on the incoming datagram is suspended until the rest

of the datagram fragments arrive.

A complete datagram is stripped of its Internet header and
sent to +the TCP software as a data segment. The TCP performs a
number of functions on incoming segments: first the segment
header is checked to see if it belongs to a known socket -- if it
does, any acknowledgment information from the header is taken to
update the socket status; next, the segment 1is checked to see if
it falls within a window -- if it is not within the window (or a
reasonable approximation thereof), the segment is discarded and

its buffers are returned to the free list.

Rccepted TCP segments are transferred into the user buffers.

The transfer 1is idnitiated by the user process which provides a

-EE_

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

buffer through the TCPOPEN or TCPRECEIVE intrinmsic. A command
message sent via the general input message file is used to inform
the system protocol process that a buffer 1is available. The
system protocol process transfers as much of its segment as
possible to the user buffer. The user process is then notified
of the data transfer via the connection's private message file.
Only the transferred portions of the segments are acknowledged to
the foreign host. Any portions of segments which do not fit in

the receive window are stored in the TCP aging queue.

The acknowledgment may be sent in a number of ways. If the
same network connection has an outgoing packet waiting for
transmission, the acknowledgment information 1is added to the
outgoing packet., If there is no pending outgoing packet, a check
is made to see if there 1is sufficient unacknowledged data to
warrant an acknowledgment packet. If there s enough
information, & separate acknowledgment packet is generated and
transmitted out to the ARPANET as if it were a normal message.
If the number of unacknowledged segments is insufficient to
justify an acknowledgment packet, the pending acknowledgment bit
in the TCB is set and a timer is started. If the timer runs out,
an acknowledgment packet 1is sent regardless of the number of

unacknowledged segmentis.

_53-

IEN 187 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1380

9.2 User Level to the ARPANET Data Flow

Transfer of data from the user process out to the ARPANET
begins with a NETSEND dntrinsic call. The intrinsic software
sends a message to the system protocol process to inform it that
it has data to send. The system protocol process tests the state
of the connection to see if data transmission is feasible. The
following are sufficient conditions for data transmission out to
the ARPANET:

- enough data has collected to justify transmitting it to

the foreign host;

- the user process has specified an EOL 1in the data
transmission;

- there are fewer than eight outstanding 1822 protocol
packets waiting for RFNMs to the foreign host;

- the waiting data falls within the foreign host's window.

If the state of the connection does not allow a transmission
to occur, a request-to-send data flag is set in the connection
control block. When the connection state changes due to some
external event, a check is made to see if the new state allows
the transmission of waiting data. An example of such an event is
the arrival of a RFNM from a foreign host; in this case all of
the connections to the foreign host are checked for data waiting
for transmission. The connection with data which has been

waiting for the longest time is processed first. An attempt is

-Fd-

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

made to combine as many of the waiting TCP segments as possible
into one data transfer to increase the amount of data

transmitted.

If there is nothing blocking transmission of the data, the
TCP software allocates a buffer, creates +the necessary TCP,
Internet, and 1822 headers, and copies the data to be transmitted
from the wuser buffer to the system's buffer. The TCP header will
include any acknowledgment information for data received on the

return socket associated with the connection.

In order to assure proper transmission of the TCP segment a
retransmission segquence 1is started. A retransmission timer is
started to wake up the protocol software when a retransmission is
nae&ed. If a timeout occurs, the segment is retransmitted as
soon as the state of the connection allows it. The necessary
conditions for a retransmission are the same as those for the
original transmission. If the segment is partially acknowledged,
the data 1Teft din the retransmission queue is only that data

represented by the unacknowledged sequence numbers.

-.-55_

IEN 167

Sax and Edmond

Bolt Beranek and Newman Inc.

APFPENDIX A - HP30D00 to ARPANET Link

.

-B6-

July 1980

IEN 167 Sax and Edmond

Bolt Beranek and Newman Inc.
July 1980

APPENDIX B - Protocol Software Organization

e +
| MBER |
o
T |
| w
e, T T
| |
pmmmmmmm—= +

| Driver |
= mfmg— =t

L
| v
r----+-+-----
High Priority / Device f
User Mode fInformation/
Process ! Table /
bmmmmpm = !
T
ATTACHIO
| v
Fm—=== e e
| 122 |
I _______ I LT o f i
| Internet [========= >/ Transmission
| =====- - |f==m=== / Control Block /
| TCP | M occooomoosoocoe k
e it s SR
L] [g
S S
Fommmmmmm e + [e +
I I I
| i manbocs ool on 16000 oo oo oo
1 : I : I
W 3 v : v :
fommfmmmmm 4o==4 fo=domanas t=d dmmpmm—deed
| Server Telnet| |User Telnet| |User FTP |
| Preogram | | Program | | Program |
T e L T T hmpmded=g=d
o] [l [|
| S |18 5| ol]
Pseudo-TTY ST USERS USERS

Logical Devices / PTY /
{one each user) '-+-+--°
|
| v
HF3000
Command Interpreter
~=== Private Message Files
.... General Input Message File

-67-

1EN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

APPENDIX C - Control Structures

[POINTER TO BUFFER FREELIST |

NETWORK RESOURCE CONTROL ELOCK

[HOST NUMBER [

I

|NUMBER OF OUTSTANDING 1822 |

| PACKETS WAITING FOR RFHMS |
|

1

FOREIGN HOST CONTROL BLOCK

Ea

IEN 167 %dax and Edmond
Bolt Beranek and Newman Inc.
July 1880

| CONNECTION STATE |

| LOCAL PORT NUMBER |

| TCP INTERFACE |
| CONTROL BLOCK NO. |
|CONNECTION PRIVATE |
|[MESSAGE FILE ID |

GENERAL INFORMATION SECTION
OF THE CONNECTION CONTROL
BLOCK

|RECEIVE SEQUENCE |

- - . S 5. -

|INITIAL RECEIVE |
| SEQUENCE NUMBER [

|PTR TO UN-ACKED TCP|
| SEGMENTS l

I |
CONNECTION RECEIVE DATA

-G8~

IEN 1G7 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1880

| SEND UN-ACKED |

I
| SEND SEQUENCE FOR |
|LAST WINDOW UPDATE |

|

|INITIAL SEND |

| SEQUENCE NUMBER |
1

1
CONNECTION SEND DATA

.-]I'U_

IEN 187

Sax and Edmond

Bolt Beranek and Newman Inc.

FREEBUFFER QUEUE --->|NEXT BUFFER |
[Satengzeee s iness
| |
| |

-->|NEXT BUFFER |

-->|NULL |
e |

NETWORK BUFFER FREELIST

=71~

July 1880

IEN 167 Sax and Edmond
Bolt Beranek and Mewman Inc.

July 1980
OLDEST DATAGRAM SECOND OLDEST
FRAGMENT DATAGRAM FRAGMENT
INTERNET
AGING ~--->|NEXT DATAGRAM |------- -»|NEXT DATAGRAM |--> FPTR TO
LIST |==—m———eeeeen- | = mse e | THIRD
|NEXT BUFFER | |NEXT BUFFER | OLDEST

| I
-->|NEXT BUFFER --»|NEXT BUFFER

——— —

INTERNET AGING LIST

-?2_

IEN 187 Sax and Edmond
Bolt Beranek and Newman Inc.

July 1980
CONNECTION 1 CONNECTION 2
OLDEST UN-ACKED SECOND OLDEST UN-ACKED
SEGMENT BUFFERS SEGMENT BUFFERS
TCP PTR TO
AGING ~--->|NEXT SEGMENT |-------- >TNEXT SEGMENT |--> THIRD
LIST e | B | OLDEST
[NEXT BUFFER | INEXT BUFFER |
[eoemamreomen [[Pt I~
| |t | =
| I
I [
I |
-->|NEXT BUFFER | -->TNEXT BUFFER |
oot = leseemcomnonee I
| BES | |
I). | -]
I | I |
I I
I |
I I
I I
-->TNULL ~->NULL |

TCP AGING LIST

_?3..

IEN 167 Sax and Edmond
Bolt Beranek and Newman Inc.
July 1980

APPENDIX D - Command Message Formats

General Message Format

| Command Type (2 bytes)

I
|
| TCP Interface Control |
| Block No. (2 bytes) |
I
I
I

I
| Data (10 bytes)

OPEN CONNECTION Data Area Format

Foreign Host Internet |
Address (4 bytes) |

Foreign Port (2 bytes)

Local Port (2 bytes)

Status Flag bits
(2 bytes)

|
|
I
I
|
I
I
|

SEND Command Data Area Format

| Send Byte Count |
| (2 bytes) |

-74-

IEN 167 Sax and Edmond
Boelt Beranek and MNewman Inc.
July 1980

Message File Command Codes

|User To TCP Command | TCP to User Command | Code |
i OPEN CONNECTION I OPENCONFIRM } 0 I
I CLOSE CONNECTION l NETCLOSE E 1 I
! ABORT CONNECTION]1 NETABORT I 2 1
{ SEND { DATASENT I 3 I
I RECEIVE I PENDING RECEIVE I 4 {
! STATUS i STATUS COMPLETE i 3] E

?5

1EN

167

Sax and Edmond
Bolt Beranek and Newman Inc.
July 18980

APPENDIX E - TCP Interface Control Block

GENERAL INFO SECTION OF THE
TCP INTERFACE CONNECTION BLOCK

| USER PROCESS STACK DATA [
| SEGMENT NUMBER [

SEND PORTION OF THE TCP
INTERFACE CONNECTION BLOCK

| Ptr to First Free Buffer |
| (user buffer whose data |
| has been read by TCP |

fommmmmmmmmmm— e mmmmmmmm=—-- +
| Ptr to Next Data Buffer |
| (user buffer whose data +
| not been read by TCP) |
et P e +
| Ptr to first UnAcked byte

B e e L E L L C +

| Offset in Next Data Buffer |

|{offset in next data buffer +-+-

| to first unread data byte) |

_?E-

USER BUFFERS USED
TO TRANSMIT DATA

TO THE TCP

ommmmmmm———— e +

——————————— >| Data Count |

|(no data bytes|

| in buffer) |

oo mmmmm—— e +

| Link to next |

————— + +--+ Buffer |

| [e e e +

| | | DATA |

+ [e +
| 1 |
I I
il 1

il] smmemmemmes +

| #---»>-+->| Data Count |

| Fmmmmm———————— +

I +--] LINK |

| frmmmmm———————— +

oo > |

———————— >|->| DATA |

[e e e +

e ;

+->| Data Count |

dommmmmmmmm—— - +

| LINK |

Hmmmmmmm e +

| DATA |

hmmmm e —————— +

IEN 167 i Sax and Edmond
Bolt Beranek and Newman Inc.

July 1980
ReCEIVE PORTION OF THE TCP USER BUFFERS USED
INTERFACE CONNECTION BLOCK FROM THE TCP
TO TRANSMIT DATA
o mmm e + D ettt +
| Ptr to First Filled Buffer |------—------ >|Full/Filling |
| (user buffer which has been| |True indicates|
| filled by TCP) | |buffer is full]
L T P + e -+
| Ptr to Next Data byte to be| +=-=+ Link to next |
| read by user process = + | | Buffer |
dommmmmmmmmemmmem=mmmmm———————— + | | e +
| Ptr to First Partially Full] | | | DATA |
| Buffer (buffer not yet f————— e |
| filled by TCP) | | [S e o +
e e e o O O e s e + | |
| Offset in Partially Full | | |
| Buffer {(next free byte for +--+ | |
| TcP) [| #eoeomcoemeee- +
B co] | e +->| Full/Filling |
| e +
| +--] LINK |
| | T +
tmmmmmm- >+->| DATA |
| e +
|
i
|
I e e e e +
+-»| Ful1/Filling |
fmmmm e +
| LINK |
e +
| DATA |
fommmmmmm————— +

]':I'

