TEN 199

Notes on the "Worm'" programs -- some early
experience with a distributed computation

by John F. Shoch and Jon A. Hupp
ESL-BO-3and IEN 159 May 1980, revised September 1880

© Xerox Corporation 1880

Abstract: The "Worm" programs were an experiment in the development of distributed
computations -- programs that would span machine boundaries, and also replicate themselves
in idle machines. A "worm" is composed of multiple "segments" each running on a different
machine. The underlying worm maintenance mechanisms were responsible for maintaining
the worm -- finding free machines when needed, and replicating the program for each
additional segment. The worm control procedures require some careful design, but this
mechanism made each worm a very dynamic and robust program.

These techniques were then used to support several real applications, ranging from a simple
multi-machine test program to a more sophisticated real-time animation system harnessing
multiple machines.

The worm programs have helped to demonstrate that the tools are at hand for experimenting
with distributed computations.

CR Categories: 3.81.

Key words and phrases: Distributed computations, distributed computing, multi-machine
programs, Ethernet local network, Pup internetwork architecture.

This paper is to be presented at the Workshop on Fundamental Issues in Distributed
Computing, ACM/SIGOPS and ACM/SIGPLAN, Pala Mesa Resort, December 1580.

XEROX

PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo Alto / California 94204

Notes on the "Worm" programs -- some early experience with a distributed computation 1

“I guess you all know abour tapeworms..? Good. Well, what I turned loose in the net yesterday was
the .. father and mother of all tapeworms.”..

"My newes! — my masterpiece — breeds by itself"...

"By now I don’t know exactly what there is in the worm. More bils are being added automatically as
it works its way to places I never dared guess existed"..

“And = no, it can't be killed It's indefinitely self perpeiuating so long as the net exists. Even if one
segment of it is inactivated, a counterpart of the missing portion will remain in store at some other
station and the worm will automatically subdivide and send a duplicate head to collect the spare groups
and resiore them lo their proper place.”

John Brunner, The Shockwave Rider, Ballantine, 1975, pp. 249-251.

1. Imtroduction

In his book The Shockwave Rider, John Brunner developed the notion of an omnipotent
“tapeworm” program running loose through a metwork of computers -~ an idea which may seem
rather disturbing, but which is also quite beyond our current capabilities. Yet the basic model is a
very provocative one: a program or a computation that can move from machine to machine,
harnessing resources as needed, and replicating itself when necessary.

In a similar vein, we once described a computational model based upon the classic science
fiction film, The Blob: a program could start out running on one machine, but as its appetite for
computing cycles grew it could reach out, find unused machines, and grow to encompass those
resources. In the middle of the night such a program could mobilize hundreds of machines in one
building: in the morning, as users reclaimed their machines, the "blob™ would have to retreat in an
orderly manner, gathering up the intermediate results of its computation. Holed up in one or two
machines during the day, the program could emerge again later as resources became available, again
expanding the computation. (This affinity for night-time exploration lead one listener to describe
these as "vampire programs.”) ;

These kinds of programs represent one of the most interesting and challenging forms of what
we once called distributed computing. Unfortunately, that particular phrase has already been co-
opted by those who market fairly ordinary terminal systems; thus, we prefer to characterize these as
programs which span machine boundaries, or as distributed computations.

In recent years we've seen the emergence of a rich computing environment in which one might
pursue these ideas: large numbers of powerful computers, connected with a local computer network
and a full architecture of internetwork protocols, and supported by a diverse set of specialized
network servers. Against this background, we have undertaken the development and operation of
several real multi-machine "worm" programs, this paper is a report on those efforts.

Notes on the "Worm™ programs -- some early experience with a distributed computation 2

In the sections which follow, we describe the model for the worm programs, how they can be
controlled, and how they were implemented. We then briefly describe five specific applications
which have been built upon these multi-machine worms.

It's worth noting here that the primary focus of this effort has been on getting some real
experience with these programs. The work did not start by specifically addressing formal
conceptual models, verifiable control algorithms, nor language features for distributed computation;
but the experience provides some interesting insights into these questions, and helps to focus our
attention on some fruitful areas for further work.

2. Building a worm

A worm is simply a computation which lives on one or more machines. The programs on
individual computers are described as the segmenis of a worm; in the simplest model each segment
carries a number indicating how many total machines should be part of the overall worm. The
segments in a worm remain in communication with each other; should one of those segments fail,
the remaining pieces have the task of finding another free machine, initializing it, and adding it to
the worm. As segments (machines) join and then leave the computation, the worm itself seems to
move through the network. [In computing we frequently refer to both machines and programs in
anthropomorphic terms. In working with »worms” there has been a natural tendency to employ
biological terms (albeit rather loosely); thus, a newly-created segment is sometimes referred to as a
clone.]

It's important to understand that the worm mechanism is used to gather and maintain the
segments of the worm, while actual user programs are then built on top of this mechanism.

Initial construction of the worm programs was simplified by the use of a rich but fairly
homogeneous computing environment at the Xerox Palo Alto Research Center. This includes over
100 Alto computers [Thacker, et al., 1979], each connected to an Ethernet local network [Metcalfe &
Boges, 1976; Shoch, in press]. In addition, there is a diverse set of specialized network servers,
including file systems, printers, boot-servers, name-lookup servers, and other utilities. The whole
system is glued together with the Pup architecture of internetwork protocols [Boggs, ef al., 1980].

Many of the machines remain idle for lengthy periods, especially at night, when they regularly
run a memory diagnostic. Instead of viewing this as 100 independent machines connected to a
network, though, it can be viewed as a 100-element multi-processor, in search of a program to run.
There is a fairly straightforward set of steps involved in building and running a worm on this set of
Tesources.

2.1. General issues in construcling a worm program

Almost any program can be modified to incorporate the worm mechanisms; all of the
examples described below were written in BCPL for the Alto. There is, however, one very

Notes on the "Worm" programs - some early experience with a distributed computation 3

Important condition: since the worm may arrive through the Ethernet on to a host with no disk
mounted in the drive, the program better not try to access the disk! More importantly, a user may
have left a disk spinning in an otherwise idle machine; writing on such a disk would be viewed as
a profoundly anti-social act.

Running a worm depends upon the cooperation of many different machine users, who must
have some confidence in the judgement of anyone who writes a program which may enter their
machines. In our work with the Alto we have been able 1o assure users that there is not even a
disk driver included within any of the worm programs; thus, the risk to any spinning disk is no
worse then the risk associated with leaving the disk in place while the memory diagnostic runs. We
have never identified a case in which a worm program tried to write on a local disk.

It is feasible, of course, for a program to access secondary storage available through the
network, on one of the file servers.

2.2. Starting a worm

A worm program is generally organized with several components: some initialization code to
run when it starts on the first machine, some initialization when it starts on any subsequent
machine, and the main program. The inital program can be started in a machine by any of the
standard methods, including loading via the operating system, or booting from a network boot-
SETVer.

2.3. Locating other idle machines

The first task of a worm is to fill out its full complement of segments; to do that, it must find
some number of idle machines. To aid in this process, a very simple protocol was defined: a
special packet format is used to inquire if a host is free. If it is, the idle host merely returns a
positive reply. These inquides could be broadcast to all hosts, or transmitted to specific
destinations. Since multiple worms might be competing for the same idle machines we have tried
to reduce confusion by using a series of specific probes, addressed to individual machines.

As mentioned above, many of the Altos run a memory diagnostic when otherwise unused; this
program gives a positive reply when asked if it is idle.

Various alternative schemes could be used to determine which possible host to probe next when
looking for an additional segment. In practice, we've employed a very simple procedure: a
segment begins with its own local host number, and simply works its way up through the address
space. Figure 1 shows the evidence of this procedure on an Ethemet source-destination traffic
matrix (similar to the one in [Shoch & Hupp, in press]). The migrating worm shows up against the
other network traffic as the "stair-case™ effect. A segment sends packets to successive hosts until
finding one that is idle; at that point the program is copied to the new segment, and this host
begins probing for the mext sepment,

MNotes on the “Worm" programs —- some early experience with a distributed computation 4

2.4. Booting an idle machine

Having located an idle machine, there is still no way in which an Alto can unilaterally be
booted through the network. By design, it is not possible to reach in and wrench control away from
a running program; instead, the machine must willingly accept a request to restart, gither by
booting from its local disk or by booting through the network.

After finding an idle machine, a worm segment then asks it to go through the standard network
boot procedure. In this case, however, the specified source for the new program is the worm
segment itself. Thus, we have this sequence:

1. Existing segment asks if a host is idle. ("Are you willing to become a clone?)

2. The host answers that it is. ("Yes, I'm willing.")

3. The existing segment asks the new host to boot through the network, from the segment.
("Good. Ask to be made inw a copy of me.")

4. The newcomer uses the standard Pup procedures for requesting a boot file [Boggs, ef
al, 1980). ("Please make me into a clone.")

5. The Easy File Transfer Protocol (EFTP) is used to transfer the worm program to the
newcomer. ("Here comes the genetic material.")

In general, the program sent to a new segment is just a copy of the program currently running
in the worm: this makes it easy to transfer any dynamic state information into new segments. But
the new segment first executes a bit of initialization code, allowing it to re-establish any important
machine-dependent state (for example, the number of the host on which it is running).

2.5. Intra-worm communication -- the need for multi-destination addressing

All segments of the worm must stay in communication, in order to know when one of their
members has departed. In these experiments, each segment had a full model of its parent worm -
a list of all other segments.

This is a classic situation in which one host wants to send some information to a specified
collection of hosts — what is known as multi-destination addressing, or multicasting (also called group
addressing) [Dalal, 1977; Shoch, 1978]. Unfortunately, the experimental Ethernet design does not
directly support any explicit form of multicasting. There are, however, several alternatives available
[Shoch, in press].

One could use a pseudo-multicast ID, where an unused physical host number can be set aside as
a special Jogical group address, and all participants in the group set their host ID to this value. This
is a workable approach (used in some existing programs), but does require advance coordination.
In addition, it would consume one host ID for each worm.

Instead, one could use a brute force multicast, where a copy of the information is sent to each
of the other members of the group. This is one of the techniques which was used with the worms:
each segment periodically sends its status to all other segments. This approach does require sending
n*(n-1) packets for each update; other techniques reduce the total number of packets which must

Notes on the "Worm" programs -- some early experience with a distributed computation 5

be sent. Many of the worms, however, were actually quite small, needing only 3 or 4 machines -
to ensure that they would not die when one machine was lost. In these cases, the explicit multicast
was very satisfactory. When an application needs a large number of machines, they can be obtained
with one large worm, or with a set of cooperating smaller worms. For example, a program needing
21 hosts can be configured as one 21 segment worm, or as seven 3 segment worms, Using the brute
force multicast, the one large worm requires 420 packets for a complete update (21*20), while the
second collection of worms requires only 42 packets for an update (7*(3*2)).

This state information being exchanged is used by each segment 1o independently run an
algorithm similar to the one used in updating routing tables in store-and-forward packet switched
networks and internetworks: if a host is not heard from after some period of time it is presumed
dead, and eliminated from the table. The remaining segments then cooperate to identify one of
their number as the parent of the next clone, and the process continues.

2.6. Releasing a machine

When a segment of a worm is done with a machine it needs to return it to the idle state, This
is very straightforward: the segment invokes the standard network boot procedure to re-load the
memory diagnostic program, that test is resumed, and the machine is again available as an idle
machine for later re-use,

This approach does have some unfortunate behavior should a machine crash, either while
running the segment or while trying to re-boot. With no program running, the machine cannot
access the network and, as we saw, there is no way to reach in from the net to make it restart. The
result is to leave the machine stopped, inaccessible to the worm. The machine is still available, of
course, to the first user who walks up to it

3. One of the key problems: controlling a worm

"No, Mr. Sullivan, we can't stop it! There’s never been a worm with that tough a head or that long a

tail! It's building itself, don't you understand? Already it’s passed a billion bits and it's still growing.

It’s the exact inverse of a phage -- whatever it takes in, it adds 1o itself instead of wiping ... Yes, sir!

I'm guite aware that a worm of that type is theoretically impossible! But the fact stands, he's done it,

and now it’s so goddamn comprehensive that it can't be killed Not short of demolishing the net!™
John Brunner, The Shockwave Rider, Ballantine, 1975, p. 247.

The previous section provided only a brief mention of the hardest problem associated with
worm management: controlling its growth, and maintaining stable behavior.

Early on in these experiments, we encountered a rather puzzling situation. A small worm was
left running one night, just exercising the worm control mechanism, and using a small number of
machines. When we returned the next morning, we found dozens of machines dead, apparently

Notes on the "Worm" programs = some early experience with a distributed computation 6

crashed. If one re-started the regular memory diagnostic it would run very ﬁrieﬂy, then get seized
by the worm. The worm would quickly load its program into this new segment; the program
would start to run and promptly crash, leaving the worm incomplete -- and still hungrily looking for
new Segments.

We speculate that a copy of the program became corrupted at some point in its migration, so
that the initialization code would not run properly; this made it impossible for the worm to spawn
a healthy clone. (This event took place a few days after the Three Mile Island accident -- but we
doubt that radiation could induce genetic damage in this kind of work.) In any case, some number
of worm segments were hidden away, desperately trying to replicate; every machine they touched,
however, would crash. But the building is quite large, and there was no hint as to which machines
were still running; to complicate matters, some machines available for worm running were
physically located in rooms which happened to be locked that moming — so we had no way to
abort them.

At this point, one begins to get visions derived from Brunner’s novel -- running around the
building, fruitlessly trying to chase the worm and stop it before it moves somewhere else.

Fortunately, the situation was not really that grim. Based upon an ill-formed but very real
concern about such an occurrence, we had included an emergency escape within the worm
mechanism. Using an independent control program, we were able to inject a very special antibody-
packet into the network, whose sole job was to tell every running worm to stop -- no matter what
else it was doing. This inoculation proved successful, and all worm behavior ceased. Unfortunately,
the embarassing results were left for all to see: 100 dead machines scattered around the building.

This anecdote highlights the need to pay particular attention to the control algorithm used to
maintain the worm. In general, this distributed algorithm is processing incoming segment status
reports, and trying to take actions based upon them. On the one hand, you may have a "high
strung worm": at the least disturbance or with one lost packet it may declare a segment gone and
seek a new one. If the old segment is still there, it must later be expunged.

Alternatively, some control procedures were too slow to respond to changes, and were
constantly at less than full strength. Some worms just withered and died, unable to take prompt
action to rebuild their resources.

Even worse, however, were the unstable worms, which suddenly would seem to grow out of
control -- like the one described above. This mechanism is not yet fully understood, but we have
identified some circumstances that can make a worm improperly grow. One factor is a classic
failure mode in computer communications systems: the halfup link (or one-way path), where host
A can communicate with host B, but not the other way around. When exchanging information
about the state of the worm, this may leave two segments with inconsistent information. One host
may think everything is fine, while another one insists that a new segment is necessary, and goes off
to find it %

Should a network get partitioned for some time, a worm may also start to grow. Consider a
two-segment worm, with the two segments running on hosts at opposite ends of an Ethernet cable,

Notes on the “Worm" programs - some early experience with a distributed computation 7

which has a repeater in the middle. If someone temporarily disconnects the repeater, each segment
will assume that the other has died, and will seek a new partner. Thus, one two-part worm
suddenly becomes two two-part worms. When the repeater is turned back on, the whole system
suddenly has too many hosts committed to worm programs

Similarly, a worm which spans different networks may become partitioned if the intermediate
gateway goes down for a while, and then comes back up.

In general, stability of the worm control algorithms was improved by exchanging more
information, and by using further checks and error detection as the programs evaluated the
information they were receiving. For example, if a segment found that it continually had a lot of
trouble receiving status reports from other segments, it would conclude that it was the cause of the
trouble, and it would self-destruct.

Furthermore, a special program was developed to serve as a "worm watcher" monitoring the
local network. If a worm were to suddenly start growing beyond certain limits, the worm watcher
could automatically take steps to limit the size of the worm, or shut it down altogether. In addition,
the worm watcher maintained a running log recording changes in the state of individual segments.
This information was invaluable in later analyzing what might have gone wrong with a worm, when,
and why. :

It should be evident from these comments that the development of distributed worm control
algorithms with low delay and stable behavior is a challenging area. These efforts to understand the
control procedures paid off, however:” after the initial test period the worms ran flawlessly, until
they were deliberately stopped. Some ran for weeks, and one was allowed o run for over a month.

4. -Applications using the worms

Until now, we have described the pmcedum- used for starting and maintaining worms. In this
section, we look at some of the real worm programs and applications which have been built.

4.1. The Existential worm

The simplest worm to build is one which just runs a null program - it's scle purpose in life is
to stay alive, even in the face of lost machines. There is no substantive application program being
run; as a slight embellishment, though, a worm segment might display a message on the machine
where it was currently running -- "I'm a worm, kill me if you can!”

This was the first worm constructed, however, and was used extensively as the test vehicle for
the underlying control mechanisms, After the first segment was started, it would reach out, find
additional free machines, copy itself into them, and then just rest Users were always free to
reclaim their machines by booting them; when that happened, the customary worm procedure
would find and incorporate a new segment

Nofes on the "Worm" programs == some early experience with a distributed computation B

As a rule, though, this would only force the worm to change machines at very infrequent
intervals. Thus, the program was equipped with an independent self-destruct timer: after a
segment ran for some random interval on one machine, it would just allow itself to expire, returning
the machine to the idle state. This dramatically increased the segment death rate, and therefore
exercised the worm recovery and replication procedures.

4.2. The Billboard worm (or the town crier)

With the fundamental worm mechanism well in hand, we tried to enhance its impact. As we
saw, the Existential worm could display a small message for people to see; the "Billboard worm"
pushed this idea one step further: a worm could be used to distribute a full-size graphics image to
many different machines.

Several of the available graphics programs made use of a standard representation for an
image -- pictures either produced from a program, or read in with a scanner. These images could
then be stored on a network file server, and read back through the network for display on a user's
machine,

Thus, the initial worm program was modified so that -- when first started -- it could be asked
to obtain an image from one of the file servers. From then on, the worm would spread this image,
displaying it on screens throughout the building. Two versions of the worm used different methods
to obtain the image in each new segment: the full image could be included in the program as it
moved, or the segment could be instructed to read it directly from one of the network servers.

With the use of a mechanical scanner to capture an image, the Billboard worm was then used
to distribute the “cartoon of the day" - greeting people on their Altos as they came in.

4.3 The Alann clock worm

The two examples described above required no application-specific communication among the
segments of a worm; with more confidence in the system, we wanted to test this capability,
particularly with an application that required high reliability. As a motivating example, we chose
the development of a computer-based alarm clock which was not tied to a particular machine. This
would be a program that would accept simple requests through the network, and signal a user at
some subsequent time; it was important that the service not make a mistake if a single machine
should fail.

The alarm clock was built on top of a multi-machine worm. A separate user program was
written to make contact with a segment of the worm, and set the time for a subsequent wake-up.
The signalling mechanism from the worm-based alarm clock was a bit convoluted, but effective:
the worm would reach out through the network to a server normally used for out-going terminal
connections, and would then place a call to the user’s telephonel

Notes on the "Worm" programs -- some early experience with a distributed computation 9

What makes this an interesting application is the peed 10 maintain in each segment of the
worm a copy of the data base - the list of wake-up calls to be placed. The strategy employed was
quite simple: each segment was given the current list when it first came up. When a new'rtquest
came in, one machine took responsibility for accepting the request and then propagating it to the
other segments. When placing the call, one machine notified the others that it was about to make
the czll, then made the call, and finally notified the others that they could delete the entry.

This was, however, primarily a demonstration of a mult-machine application, and was not an
attempt to fully explore the double-commit protocols, nor other algorithms to maintain the
consistency of duplicate data bases, 3

Note also that this is the first application in which it is important for a separate user program
to have the ability to find the worm, in order to schedule a wake-up. In the absence of an effective
group-addressing technique, we used two methods: the user program could solicit a response by
broadcasting to a well-known socket on all possible machines, or it could monitor all traffic looking
for an appropriate stats report from a worm segment.

4.4. Multi-machine animation using a worm

So far, the examples described have made use of a distributed worm, with no central control.
One alternative way to use a worm, however, is as a robust set of machines supporting a particular
application - an application that may itself be tied to a designated machine.

An example which we have explored is the development of a multi-machine system for real
time animation. In this case, there is a single control node or master which is controlling the
computation, and playing back the animation: the multiple machines in the worm are used in
parallel to produce successive frames in the sequence, returning them to the control node for
display.

The master node initially uses the worm mechanisms to acquire a set of machines. The master
would first determine how many machines are desired, and could then recruit them with one large
worm. As discussed above, though, a single large worm may be slow to get started as it sequentially
looks for idle machines, and it may be unwieldly to maintain. Instead of using one large worm to
support the animation, the master spawns one worm with instructions on how many other worms to
gather. This starting worm launches some number of secondary worms, which in turn acquire their
full complement of segments (typically, three segments per worm). Thus, one can very rapidly
collect a set of machines responding to the master; this collection of machines is still maintained by
the individual wonm procedures.

Each worm segment then becomes a “graphics machine” with a pointer back to the master, and
each reports in with an "I'm alive" message afier it is created; the master itself is not part of any
worm. The master maintains the basic model of the three-dimensional image, and controls the steps
in the animation. To actually produce each frame, though, it need only send the coordinates for
each object; the "worker” machine then performs the hidden-line elimination and half-tone

Motes on the "Worm™ programs -- some early experience with a distributed computation 10

shading, computing the finished frame. With this approach, all of the worm segments can be
working in parallel, performing the computationally intensive tasks. The master hands out
descriptions of the image to the segments, and later calls upon them to return their result for
display as the next image.

The underlying worm mechanism is used to maintain the collection of graphics workers; if one
of the machines disappears, the worm will find a new one, and update the list held by the control
program. The worm machines run a fairly simple program, that has no specific knowledge about
the animation itself. The system was tested with several examples, including a walk through a cave,
and a collection of bouncing and rotating cubes.

4.5. A diagnostic worm for the Ethernet

This combination of a central control machine and a multi-part worm is also a useful way to
run distributed diagnostics on many machines. We knew, for example, that Alto Ethernet interfaces
showed some pair-wise variation in the error rates experienced when communicating with certain
other machines. To fully test this, however, would require running a test program in all available
machines -- a terribly awkward task to start manually.

The worm was the obvious tool. A control program was used to spawn a three-segment worm,
which would then find all available machines, and load them with a test program; these machines
would then check in with the central controller, and prepare to run the specified measurements.
Tests were conducted with as many as 80, 90, or even 120 machines.

In the particular test of pair-wise error rates, each machine would have a list of all other
participants which had been loaded by the worm and registered with the control program. Each
host would simply try to exchange packets which each other machine thought to be a part of the
test. At the end of the test each machine would report its results to the control host -- thus
indicating which pairs seemed to have error-prone (or broken) interfaces.

Figure 2 shows the Ethernet source-destination traffic matrix produced during this kind of
worm-based test. To speed the process of gathering all available machines, a three-segment worm
would be spawned, and these segments could then work in parallel. Host 217 was the control Alto,
and it found the three segments for its worm on hosts between 0 and 20. Those three segments
then located and initialized all of the other participants. As described earlier, a simple linear search
through the host address space is used by each segment to identify idle machines. To keep the
multiple segments from initially pinging the same hosts, however, the starting point for each
segment could be selected at intervals in the address space. Each segment does make a complete
cycle through the address space, however, looking carefully for any idle machines.

To avoid any unusual effects during the course of the test itself, the worm maintenance
mechanism was turned off during this period. If hosts had died, however, the worm could later be
re-enabled, in an effort to re-build the collection of hosts for a subsequent test

Notes on the “Worm" programs -- some early experience with a distributed computation 11

At the conclusion of the tests, all of the machines would be released, and allowed to return to
their previous idle state -- generally running the memory diagnostic. These machines would boot
that diagnostic through the network, from one of the network boot file servers; 120 machines trying
to do this at once, however, can cause severe problems. In particular, the boot server becomes a
scarce resource that may not be able to handle all of the requests right away, and the error recovery
in this very simple network-boot procedure is not fool-proof. Thus, all of the participants in the
measurements would coordinate their departure at the end of a test — each host waits for a quasi-
random period before actually attempting to re-boot from the network boot server.

5. Some history: multi-machine programs on the Arpanet

The worm programs, of course, were not the first multi-machine experiments. Indeed, some of
the worm facilities were suggested by the mechanisms used within the Arpanet, or demonstrations
built on top of the Arpanet:

1. The Arpanet routing algorithm itself is a large, multi-machine distributed computation,
as the IMPs continually exchange information among themselves. The computation
continues to run, adapting to the loss or arrival of new IMPs, (Indeed, this is probably
one of the longest-running distributed computations.)

2. In a separate procedure, the Atpanet IMPs can be individually re-loaded through the
network, from a neighboring IMP. Thus, the IMP program migrates through the
Arpanet, as needed.

3. One of the earliest multi-machine applications using the Arpanet took place in late
1970, sharing resources at Harvard and MIT to support an aircraft carrier landing
simulation. A PDP-10 at Harvard was used to produce the basic simulation program
and 3-D graphics data. This material was then shipped to an MIT PDP-10, where the
programs could be run using the Evans & Sutherland display processor available at
MIT. Final 2-D images produced there were shipped to a PDP-1 at Harvard, for
display on a graphics terminal. (All of this was done in the days before the regular
Network Control Program was running; one participant has remarked that "it was
several years before the NCPs were surmounted and we were again able to conduct a
similar network graphics experiment.")

4. "McRoss" was a later multi-machine simulation built on top of the NCP, spanning
machine boundaries. This one simulated air traffic control, with each host running one
part of the simulated air space. As planes moved in the simulation, they were handed
from one host to another.

5. One of the first programs to move by itself through the Arpanet was the "Creeper"
built by Bob Thomas of BBN. It was a demonstration program under Tenex that
would start to print a file, but then stop, find another Tenex, open a connection, pick

Notes on the "Worm"™ programs - some early experience with a distributed computation 12

itself up and transfer to the other machine (along with its external state, files, etc.), and
then start running on the new machine. 5o this was a relocatable program, using one
machine at a time.

6. The Creeper program led to further work, including a version done by Ray Tomlinson
that not only moved through the net, but also replicated itself at times. To complement
this enhanced Creeper, the "Reaper” program moved through the net, trying to find
copies of Creeper and log them out

7. The idea of moving processes from Creeper was added to the McRoss simulation to
make "relocatable McRoss." Not only were planes transferred among air spaces, but
entire air space simulators could be moved from one machine to another. Once on the
new machine, the simulator had to re-establish communication with the other pars of
the simulation. During the move this part of the simulator would be suspended, but
there was no loss of simulator functionality.

This summary is probably not complete nor 100% accurate, but it is an impressive collection of
distributed computations, produced within or on top of the Arpanet. Much of this work, however,
was done in the early 1970s; one participant recently commented that "It’s hard for me to believe
that this all happened 7 years ago.” Since that time, we have not seen the anticipated blossoming of
many distributed applications using the long-haul capabilities of the Arpanet

6. Conclusions

We have the tools at hand to experiment with distributed computations in their fullest form:
dynamically allocating resources and moving from machine to machine. Furthermore, local
networks supporting relatively large numbers of hosts now provide a rich environment for this kind
of experimentation.

The basic worm programs described here demonstrate the ease with which these mechanisms
can be explored; they also highlight many areas for further research.

7. Acknowledgements

This work grew out of some early efforts to control multi-machine measurements of Ethernet
performance [Shoch & Hupp, 1979, in press; Shoch, in press]. Ed Taft and David Boggs produced
much of the underlying software that made all of these efforts possible. In addition, Joe Maleson
implemented most of the graphics software needed for the multi-machine animation; his
imagination helped greatly to focus our effort on a very real, useful, and impressive application. As
we first experimented with multi-machine migratory programs, it was Steve Weyer who pointed out
the relevance of John Brunner's novel describing the “"tapeworm” programs. Finally, our thanks to
the many friends within the Arpanet community who helped piece together our brief review of

Notes on the "Worm" programs -- some early experience with a distributed computation 13

Arpanet-related experiments.

B. Bibliography

[Boggs, er al, 1980]
D. R. Boggs, I. F. Shoch, E. A. Taft. and R. M. Metcalfe, "PUP: An internetwork
architecture," IEEE Transactions on Communications, com-28:4, April 1980,

[Dalal, 1977]
Y. K. Dalal, Broadeast protocols in packet switched compuler networks, Stanford Digital Systems
Laboratory, Technical Report 128, April 1977,

[Meicalfe & Bogps, 1976]
R. M. Meicalfe and D. R. Boggs, "Ethernet: Distributed packet switching for local computer
networks,” Communications of the ACM, 19:7, July 1976.

[Shoch, 1978]
J. F. Shoch, "Internetwork naming, addressing, and routing," Proc. of the 17th IEEE Comp.
Soc. Int. Conf (Compcon Fall '78), Washington, September 1978.

[Shoch, in press]
J. F. Shoch, Local Computer Networks, McGraw-Hill, in press.

[Shoch & Hupp, 1979]
J. F. Shoch and J. A. Hupp, "Performance of an Ethernet local network -- a preliminary
repert,” Local Area Communications Network Symposium, Boston, May 1979. Reprinted in the
Proc. of the 20th IEEE Comp. Soc. In. Conf (Compcon Spring '80), San Francisco, February
1980,

[Shoch & Hupp, in press]
J. F. Shoch and J. A. Hupp, "Measured performance of an Ethernet local network,” to appear
in the Communications of the ACM.

[Thacker, et al, 1979]
C. P. Thacker, E. M. McCreight, B. W. Lampson, R. F. Sproull, and D. R. Boggs, Alte: A
personal computer, Xerox Parc Technical Report CSL-79-11, August 1979, To appear in
Siewiorek, Bell, and Newell (Eds.), Computer Structures: Readings and examples, 2nd edition.

Notes on the "Worm” programs — some early experience with a distributed computation 14

Source host number (octal)

58]

ki I i i : . L |
360 _ == — " - P ————— ;- —-:— = o - — i — e g n -:- -
QAL - . n H . = » - H P
- i-l T] a ema " = L] : - R i L] Fll';'l L] = e 5'"\ an i --E
o - | H]
u ‘ I - = L l’ I . :Lq—i—-_ t I
r* C "] s o 11
300 =
H1 i o . Fiots Sl i)
o650 —~ T wifn it ; ' . E i
[: . : E E . II : . . ‘:—— = f
240 = ki : g | :
H - | o -]
F z 1 .
220 bt t l ! - : - l- - —-. i
i o i] 3
ED-D — L‘---- - . = ———— i - - ‘_i__l qh—'-l-—'ri; -—— ' —— . - J-—
Iil= i A tEt .§ |
160 = t I = - l. |=|:- -‘-—I---. .oE m = mEw = : I
‘- | T PRCTaR T - - S - ms sfer g s m— T T 1] - o= L
140 — LI - - I | . il
11 e R |- . IR
121]] .—: R - L) - - = :- - e R . - : L] L] :r —.
.-] - e — L (] L] . [] ; ;
L] . - LT 1 ¥ - = 1]
100 = ri — s R) e 1]
m =l - . - L) -
40 = - . - -
20 - H s 1 |
L : el : P
L"ﬁ---- " . [——————— ol LR L LIl - — . "t —=
Pl cs = - TR T Ul BT = m® e somm hose o= mme sess wom w B e I ==

1 | 1
40 &0

| |
100 120

I I I | P B |
140 160 200 220 240 260 300 320 340

Destination host number (octal)

Figure 1: Ethernet source-destination traffic matrix with a "worm™ running.
(Note the "stair-case™ effect as each segment seeks the next one.)

Notes on the "Worm" programs -- some early experience with a distributed computation

Source host number (octal)

400

250

340

320

300

280

240

220

15

e nLneInDomoE L ney e
118 | i GsiEooooiEE G D
JHEB | B0} 00 IDICIDENEI o i) iiifgi
LM L T L 7 A e 1o DERTEY
JdMNME | IGC BUB NEICYSIDICHIETI B diiE i [TRRL*]
< | s o O
148 | By DB RIS DIRETE G Wi i
e R T e S
PiE R == AT
) Lim | la.u_l__ml_n_u_g_mmum gIE Lo u LLEIET
[]] 1]] 1 1 | 1 1 | I 1 i [| |
D2D4DED1M12U14DTEDEGD2202402603&D3203403604W

Destination host number (octal)

Total number of source-destination pairs = 11,396
Figure 2: Ethernet source-destination traffic matrix when testing Ethernet connectivity.

