
The labelcas package∗

Ulrich Diez

August 14, 2006

Abstract

This LATEX2ε-package provides macros \eachlabelcase and \lotlabelcase

as a means of forking depending on whether specific labels are defined in the
current document.

Contents

1 Introduction 2
1.1 Space notation . 2

2 Package-loading 2

3 The macros 3
3.1 Basic usage . 3

3.1.1 Possible problems . 3
3.1.2 Examples . 5

3.2 Advanced usage (brace-matching, \if... , defining macros) 6

4 Package option—Different spaces, different separators 7

5 Thanks, Acknowledgements 9

6 Legal Notes 9

7 Implementation 10
7.1 A note about removing leading and trailing spaces 10
7.2 Flow of work . 11
7.3 Code . 12

Change History 18

Index 18

∗This document corresponds to labelcas v1.12, dated 2006/08/14.
Usage and distribution under LPPL-conditions. See 6 Legal Notes for more details.

1

1 Introduction

The package’s name labelcas is an eight-letter abbreviation for the phrases “label”
and “case”.

There are rare occasions where the author of a document would like to have
detected whether specific labels are defined/in use within the document so that
proper forking/referencing can take place. This package provides the macros
\eachlabelcase and \lotlabelcase which might facilitate this task.

A mechanism for branching depending on whether referencing-labels exist,
might be handy, e.g., when extracting a “snippet” from a large document: In
case that within the snippet a label/document-part is referenced which is outside
the snippet’s scope, ugly ‘??’ will intersperse the resulting output-file and warnings
about undefined references will accumulate within the log-file.

By testing the label’s existence, you can catch up the error and either change
the way of referencing (e.g., refer to the snippet’s bibliography instead) or com-
pletely suppress referencing for those cases. (By using David Carlisle’s xr- or
xr-hyper-package, you can make available labels of the large document to the snip-
pet also. A label not defined in the snippet can be picked up from the large
document. . .)

1.1 Space notation

When listing some piece of TEX-source-code, you may need to visibly distinguish
word-separation from single space-characters. The symbol is chosen whenever it
is important to give a visible impression of a space-character in a (possibly ASCII-
encoded) TEX-input-file. x does not represent a character of an input-file but a
token which occurs after tokenizing the input. The token’s category-code is x, the
character-number usually is 32, which is the ASCII-number of the space-character.

2 Package-loading

The package is to be loaded in the document-preamble by \usepackage.

\usepackage{labelcas} or
\usepackage[DefineLabelcase]{labelcas}.

The only package-option is DefineLabelcase. Its usage is described in sec-
tion 4 Package option—Different spaces, different separators.

2

3 The macros

3.1 Basic usage

The macro \eachlabelcase iterates on a comma-separated list of “argument-\eachlabelcase

triplets”, whereby each triplet specifies: 1. a label,
2. action if the label is defined,
3. action if the label is undefined.

During the iteration, an “action-queue” is gathered up from these specifications.
After iterating, the “action-queue” will be executed. You can also specify a new
macro-name within an optional argument. If you do so, the “action-queue” will
not be executed but the macro will be defined to perform the actions specified in
the queue:

\eachlabelcase[\macro]{ {〈label 1 〉}{〈action if label 1 defined〉}{〈action if label 1 undefined〉},
{〈label 2 〉}{〈action if label 2 defined〉}{〈action if label 2 undefined〉} ,

...

{〈label n〉}{〈action if label n defined〉}{〈action if label n undefined〉} }

Space-tokens which might surround the comma-separated triplets will be gobbled.

The macro \lotlabelcase iterates on a comma-separated list of label-names and\lotlabelcase

tests for each name if the corresponding label is defined. Within the arguments you
can specify actions for the cases: 1. all labels are defined,

2. none of the labels is defined,
3. some labels are defined/some are undefined,
4. the list does not contain any label.

Like in \eachlabelcase, you can also specify a new macro-name within an op-
tional argument. If you do so, the action will not be executed but the macro will
be defined to perform the action:

\lotlabelcase[\macro]{〈label 1 〉,〈label 2 〉,...,〈label n〉}
{〈actions if all labels are defined〉}
{〈actions if all labels are undefined〉}
{〈actions if some labels are defined and some labels are undefined〉}
{〈actions if list is empty〉}

Space-tokens which might surround the label-names will be gobbled. One level of
braces will also be gobbled so that you can also test for labels the names of which
start or end by a space or contain some comma.

3.1.1 Possible problems

• Testing for labels which are not definable according to the syntax-rules
will lead to TEX-internal error-messages and deliver unexpected/unwanted
results!

• “Label- and referencing management” in LATEX2ε is done by means of
the aux-file, the content of which is gathered and corrected during several
LATEX-runs, and which does not yet exist in the first run. So, in the first
run, all labels from the current document are undefined—when applying
\...labelcase to labels of the current document, it will in any case take
at least two LATEX-runs until everything matches out correctly.

3

• It was mentioned that, in the macros \eachlabelcase and \lotlabelcase,
space-tokens which surround the argument-triplets/label-names, will be gob-
bled. There are situations where the category-code of the input-character
 is changed—e.g., due to a preceding \obeyspaces or when using some
package where the encoding of TEX-input-files is played around with. In
such cases, the input-character does not get tokenized as space-token any
more but as some 6=10-token, so that in such cases, triplets/labels in these
macros may, in the input-file, not be surrounded by -characters.
If you want to have these 6=10-tokens gobbled anyway, you can easily achieve
this by defining another set of these macros where the appropriate token,
e.g., 13 (active-space) instead of 10 (space-token), is taken into account.
How this is done, is described in section 4 Package option—Different spaces,
different separators.

• In the very unlikely case1 that you wish \lotlabelcase (or variants
thereof 2)to scan for the label \@nil, \@nil has to be put in braces and/or
has to be surrounded by space-tokens. This is because the internal iterator-
macros terminate on \@nil.

• Internally token-registers are used and temporary-macros get defined. So
the macros \eachlabelcase and \lotlabelcase (and all variants2) are not
“full-expandable”. This means, \edef or \write or control-sequences the
like which evaluate their arguments fully, cannot be applied to them.3 There-
fore they are declared robust.

• \lotlabelcase and \eachlabelcase can be nested. Inner instances will be
gathered into the action-queues of outer instances.

• If the optional argument for defining a 〈macro〉 rather than having the ac-
tion(s) executed immediately, is used, 〈macro〉 will only be defined within
the group where the \...labelcase-command occurred.
\@ifdefinable is involved into the assignment-process, so that an “already-
defined”-error is forced whenever an existing macro is about to be overridden.
If you need it global, you can achieve this—after having 〈macro〉 defined—by
something like \global\let\macro=\macro.
If you need a “long”-macro, you can achieve this—after having 〈macro〉
defined—by something like:
\expandafter\renewcommand\expandafter\macro\expandafter{\macro}.
But think about it. These macros don’t take arguments!

• If you use the arguments of \lotlabelcase/\eachlabelcase for defining
other referencing-labels, things can easily get very confusing. . .

1The case is very unlikely because it is a convention in LATEX2ε to leave \@nil undefined.
If labels are defined in terms of macros, these macros are to expand to something that can be
evaluated by a \csname...\endcsname-construct. If they are to expand to something, they must
be defined. . .

2→4 Package option—Different spaces, different separators.
3In any case it cannot be ensured that all arguments supplied are “full-expandable”. . .

4

3.1.2 Examples

Within this document, only the labels sec1, sec2, sec3, sec4, sec5 and sec6 are
defined.

\lotlabelcase{sec1, sec2 , {sec3} ,sec4}
{All labels are defined.}
{None of the labels is defined.}
{Some labels are defined, some not.}
{The list is empty.}

yields: All labels are defined.

\lotlabelcase{sec1, sec2 , UNDEFINED ,sec3}
{All labels are defined.}
{None of the labels is defined.}
{Some labels are defined, some not.}
{The list is empty.}

yields: Some labels are defined, some not.

\lotlabelcase{UNDEF1, UNDEF2 , {UNDEF3} ,UNDEF4}
{All labels are defined.}
{None of the labels is defined.}
{Some labels are defined, some not.}
{The list is empty.}

yields: None of the labels is defined.

\lotlabelcase{ ,, ,}
{All labels are defined.}
{None of the labels is defined.}
{Some labels are defined, some not.}
{The list is empty.}

yields: The list is empty.

\lotlabelcase[\test]{sec1, sec2 , UNDEFINED ,sec3}
{All labels are defined.}
{None of the labels is defined.}
{Some labels are defined, some not.}
{The list is empty.}

defines: \test: macro:->Some labels are defined, some not.

\eachlabelcase{ {sec1}{sec1 defined/}{sec1 undefined/},
{sec2}{sec2 defined/}{sec2 undefined/} ,
{UNDEF}{UNDEF defined/}{UNDEF undefined/} ,
{sec3}{sec3 defined.}{sec3 undefined.} }

yields: sec1 defined/sec2 defined/UNDEF undefined/sec3 defined.

\eachlabelcase[\test]{ {sec1}{sec1 defined/}{sec1 undefined/},
{sec2}{sec2 defined/}{sec2 undefined/} ,
{UNDEF}{UNDEF defined/}{UNDEF undefined/} ,
{sec3}{sec3 defined.}{sec3 undefined.} }

defines: \test:
macro:->sec1 defined/sec2 defined/UNDEF undefined/sec3 defined.

5

3.2 Advanced usage (brace-matching, \if... , defining macros)

• Braces within the arguments/comma-separated items must be balanced.

• Within the “action-parts” of \eachlabelcase’s argument-triplets from
which the action-queue is formed, balancing \if...\else...\fi-constructs
is not required. But ensured must be, that in the resulting action-queue
everything is balanced correctly in any case.

\eachlabelcase{ {sec1} {\if aa} {\if ab},
{sec2} {a is a\else} {a is b\else} ,
{sec3}{a is not a\fi.}{a is not b\fi.} }

is gathered to: \if aaa is a\else a is not a\fi.
Executing the queue yields: a is a.

\eachlabelcase{ {sec1} {\if aa} {\if ab},
{UNDEF} {a is a\else} {a is b\else} ,
{sec3} {a is not a\fi.}{a is not b\fi.} }

is gathered to: \if aaa is b\else a is not a\fi.
Executing the queue yields: a is b.

When trying such obscure things, you must be aware that brace/group-
nesting is independent from conditional-nesting! You might easily end up
with a “forgotten-endgroup”-error or some “extra \else. . . ”-error when
placing such things into other \if...\else...\fi-constructs!

• If you wish to use the arguments/comma-separated items for defining
macros, no extra #-level is needed as everything is accumulated within/pro-
cessed by means of token-registers.

\eachlabelcase{ {sec1}{\def\testA#1#2#3}{\def\testB#1#2#3},
{sec2} {{#1,#2,#3}} {{#3,#2,#1}} }

is gathered to: \def\testA#1#2#3{#1,#2,#3} .
Executing the queue defines: \testA: macro:#1#2#3->#1,#2,#3

\testB: undefined .

\eachlabelcase{ {sec1}{\def\testA#1#2#3}{\def\testB#1#2#3},
{UNDEF} {{#1,#2,#3}} {{#3,#2,#1}} }

is gathered to: \def\testA#1#2#3{#3,#2,#1} .
Executing the queue defines: \testA: macro:#1#2#3->#3,#2,#1

\testB: undefined .

6

4 Package option—Different spaces, different se-
parators

Above was said that space-tokens (10-tokens) which surround the comma-list-
arguments of \eachlabelcase and \lotlabelcase are gobbled.

There are circumstances where the category-code which gets assigned to
the input-character during the tokenizing-process is changed, and thus the
gobbling-mechanism is broken for these input-characters. E.g., due to a preceding
\obeyspaces or when using some package where the encoding of TEX-input-files
is played around with. This is because space-gobbling internally is implemented
by means of macros with 10-token-delimited arguments.

In normal circumstances, -characters in the input-file which trail a control-
word do not get tokenized when TEX “reads” an input. So it’s kind of a problem
to get space-tokens right behind the name of a control-word, e.g., as first items
of the parameter-text when defining macros. A space within braces { } does get
tokenized as it is not preceded by a control-word, but by a brace-character. So a
solution to the problem is: Define a macro which takes an (en-braced) argument
and use this macro for defining the desired control-word whereby the argument is
placed right behind the name of the control-word which is about to be defined.
(Henceforth the term definer-macro is applied in order to call special attention to
the fact that defining other control-sequences is the only purpose of such a macro.)
A as the definer-macro’s argument gets tokenized while this argument is used
as the first item of the desired control-word’s parameter-text → the first item of
the desired control-word’s parameter-text will be a space-token.

In case of the labelcas-package, the problem of getting space-tokens as de-\DefineLabelcase

limiters right behind control-words, is also solved by implementing such a
definer-macro. It is called \DefineLabelcase and used for defining both the
user-level-macros \eachlabelcase and \lotlabelcase and the internal-macros
\lc@iterate, \lc@remtrailspace and \lc@remleadspace. Usually it is dis-
carded/destroyed when defining these macros has taken place. But you can spec-
ify the package-option DefineLabelcase. When you do so, \DefineLabelcase
does not get destroyed, and you can use it for creating “new variants” of
\eachlabelcase and \lotlabelcase plus internals while specifying proper space-
tokens and separators. \DefineLabelcase takes four mandatory arguments:

\DefineLabelcase{〈space〉}{〈delimiter〉}{〈prefix 〉}{〈global-indicator〉}

〈space〉 specifies the argument-surrounding token that is to be removed. Usually
surrounding space-tokens shall be discarded. Usually: 10 (space).

〈delimiter〉 specifies the delimiter/separator. Usually the argument-triplets or
label-lists are comma-separated. Usually: ,12 (comma).

〈prefix 〉 specifies the macro-name-prefix. You cannot assign the same name at
the same time to different control-sequences. Therefore, when creating new
variants of \eachlabelcase and \lotlabelcase, you have to specify a pre-
fix which gets inserted at the beginning of the macro-name. E.g., specifying
the prefix FOO leads to defining the macro-set:
\FOOeachlabelcase, \FOOlotlabelcase (user-macros) and
\FOOlc@iterate, \FOOlc@remtrailspace, \FOOlc@remleadspace (inter-
nal).
The original versions are just called \eachlabelcase, \lotlabelcase,
\lc@iterate. . . (without a prefix in the macro-name). Usually: (empty).

7

〈global-indicator〉: In case that this argument contains only the token \global,
defining the new macro-set takes place in terms of \global. Otherwise the
scope is restricted to the current grouping-level. Usually: \global.

Don’t try weird things like specifying the same token both for 〈space〉 and
〈delimiter〉, or leaving any of those empty, or specifying any of those to \@nil
(, which is reserved for terminating the recursion)—unless you like error-messages!
Please only specify tokens which may be used for separating parameters from each
other within the parameter-text of a definition! Also please specify the 〈prefix 〉
only in terms of letter-character-tokens! There is no extra error-checking
implemented on these things!

\begingroup
\obeyspaces
\endlinechar=-1\relax%
\DefineLabelcase{ }{/}{SPACEOBEYED}{local}%
\SPACEOBEYEDlotlabelcase[\test]{sec1/ sec2 / UNDEF /sec3}%
{All labels are defined.}%
{None of the labels is defined.}%
{Some labels are defined, some not.}%
{The list is empty.}%
\global\let\test\test%
\endgroup

defines: \test: macro:->Some labels are defined, some not.

\begingroup
\endlinechar=-1\relax
\DefineLabelcase{-}{/}{BAR}{local}%
\BARlotlabelcase[\test]{sec1/-sec2----/--%

---/sec3}%
{All labels are defined.}%
{None of the labels is defined.}%
{Some labels are defined, some not.}%
{The list is empty.}%
\global\let\test\test
\endgroup

defines: \test: macro:->All labels are defined.

\begingroup
\endlinechar=-1\relax
\DefineLabelcase{.}{/}{DOT}{local}%
\DOTeachlabelcase{.{sec1}..{sec1 defined/}{sec1 undefined/}/%
..................{sec2}...{sec2 defined/}...{sec2 undefined/}./..%
..................{UNDEF}{UNDEF defined/}...{UNDEF undefined/}./%
..................{sec3}{sec3 defined.}{sec3 undefined.}..}
\endgroup

yields: sec1 defined/sec2 defined/UNDEF undefined/sec3 defined.

8

5 Thanks, Acknowledgements

• Many thanks to all who encouraged me in making the attempt of getting
things in this package less error-prone.

• Thanks to everybody who took the macro-writing challenges presented in
the INFO-TEX-‘Around the bend’-department which was initiated back in
the early 90’s by Michael Downes and regularly took place under his guid-
ance. His summaries of the solutions are archived and online available
at http://www.tug.org/tex-archive/info/aro-bend/. The information therein
helps a great deal in understanding TEX in general and in learning about
basic problem-solving-strategies—e.g., the removal of leading- and trailing
spaces from an (almost) arbitrary token-sequence (exercise.015/answer.015).

• Thanks to everybody who provides valuable information at the TEX-news-
groups and mailing-lists. I received great help especially at comp.text.tex,
where my—often trivial—questions were answered patiently again and again.

• Thanks to the LATEX-package authors, not only for providing means of
achieving special typesetting-goals, but also for hereby delivering informative
programming-examples. labelcas actually was inspired by David Carlisle’s
xr- and xr-hyper-packages which make available the labels of other LATEX-
documents to the current one.

6 Legal Notes

labelcas—Copyright (C) 2006 by Ulrich Diez (ulrich.diez@alumni.uni-tuebingen.de)

labelcas may be distributed and/or modified under the conditions of the LATEX
Project Public Licence (LPPL), either version 1.3 of this license or (at your option)
any later version.4 The author and Current Maintainer of this Work is Ulrich Diez.
This Work has the LPPL maintenance status ‘author-maintained’ and consists of
the files labelcas.dtx, labelcas.ins, README and the derived files labelcas.sty and
labelcas.pdf.

Usage of the labelcas-package is at your own risk. There is no warranty—
neither for the documentation nor for any other part of the labelcas-package. If
something breaks, you usually may keep the pieces.

4The latest version of this license is in http://www.latex-project.org/lppl.txt and version 1.3 or
later is part of all distributions of LATEX version 2003/12/01 or later.

9

http://www.tug.org/tex-archive/info/aro-bend/
mailto:ulrich.diez@alumni.uni-tuebingen.de
http://www.latex-project.org/lppl.txt

7 Implementation

7.1 A note about removing leading and trailing spaces

The matter of removing trailing spaces from an (almost) arbitrary token-sequence
is elaborated in detail by Michael Downes, ‘Around the Bend #15, answers’, a
summary of internet-discussion which took place under his guidance primar-
ily at the INFO-TEX list, but also at comp.text.tex (usenet) and via private e-
mail; December 1993. Online archived at http://www.tug.org/tex-archive/info/aro-
bend/answer.015.

One basic approach suggested therein is using TEX’s scanning of delimited
parameters in order to detect and discard the ending space of an argument:

. . . scan for a pair of tokens: a space-token and some well-chosen bizarre
token that can’t possibly occur in the scanned text. If you put the
bizarre token at the end of the text, and if the text has a trailing
space, then TEX’s delimiter matching will match at that point and not
before, because the earlier occurrences of space don’t have the requisite
other member of the pair.

Next consider the possibility that the trailing space is absent: TEX
will keep on scanning ahead for the pair 〈space〉〈bizarre〉 until either it
finds them or it decides to give up and signal a ‘Runaway argument?’
error. So you must add a stop pair to catch the runaway argument
possibility: a second instance of the bizarre token, preceded by a space.
If TEX doesn’t find a match at the first bizarre token, it will at the
second one.

(Look up the macros \KV@@sp@def, \KV@@sp@b, \KV@@sp@c and \KV@@sp@d in
David Carlisle’s keyval-package for an interesting variation on this approach.)

When scanning for parameters ##1〈space〉〈bizarre〉##2〈B1 〉 the sequence:
〈stuff where to remove trail-space〉〈bizarre〉〈space〉〈bizarre〉〈B1 〉
, you can fork two cases:

1. Trailing-space:
##1=〈stuff where to remove trail-space〉, but with removed space. (And
possibly one removed brace-level!)
##2 = 〈space〉〈bizarre〉.

2. No trailing-space:
##1=〈stuff where to remove trail-space〉〈bizarre〉.
##2 is empty.

So forking can be implemented depending on the emptiness of ##2.
You can easily prevent the brace-removal in the first case, e.g., by adding (and

later removing) something (e.g., a space-token) in front of the 〈stuff where to
remove trail-space〉.

You can choose 〈B1 〉=〈bizarre〉〈space〉.
‘Around the Bend #15, answers’ also presents a similar way for the removal of

leading spaces from an (almost) arbitrary token-sequence:

The latter method is perhaps most straightforwardly done as a mirror-
image of the method for removing a trailing space: make the delimiter
〈bizarre〉〈space〉, and call the macro [. . .] by putting 〈bizarre〉 before
the scanned text and a stop pair 〈bizarre〉〈space〉 after it, in case a
leading space is not present

10

http://www.tug.org/tex-archive/info/aro-bend/answer.015
http://www.tug.org/tex-archive/info/aro-bend/answer.015

When scanning for parameters ##1〈bizarre〉〈space〉##2〈B2 〉 the sequence:
〈bizarre〉〈stuff where to remove lead-space〉〈bizarre〉〈space〉〈B2 〉
, you can fork two cases:

1. Leading space:
##1= is empty.
##2 = 〈stuff where to remove lead-space〉〈bizarre〉〈space〉 (but with a leading-
space removed from 〈stuff where to remove lead-space〉).

2. No leading space:
##1=〈bizarre〉〈stuff where to remove lead-space〉.
##2 is empty.

Thus forking can be implemented depending on the emptiness of either of the
two arguments.

You can choose 〈B2 〉=〈bizarre〉〈bizarre〉.

7.2 Flow of work

Both \〈prefix 〉eachlabelcase and \〈prefix 〉lotlabelcase iterate on (e.g.,
comma-) separated lists:

1. The list is passed as an argument to the user-macro.
2. The list is passed from the user-macro to \〈prefix 〉lc@iterate whereby a

leading 〈space〉 is added for brace-removal-protection.
3. \〈prefix 〉lc@iterate recursively iterates on the list-items until the item

〈space〉\@nil occurs:
a) The item will be passed to \〈prefix 〉lc@remtrailspace. Here trailing

〈space〉 is removed recursively. If after removing trailing-space the result
is empty, you can conclude that everything (incl the previously inserted
“brace-removal-protection-〈space〉” was removed as either the item was
empty or consisted of a sequence of 〈space〉. If the result does not imply
an empty item, it will be passed to

b) \〈prefix 〉lc@remleadspace where leading 〈space〉 (also the previously in-
serted one) is removed recursively. After that \〈prefix 〉lc@remleadspace
passes the item to the macro

c) \@tempa for further processing. \@tempa at this stage will be locally
defined within the user-macro. \@tempa initiates the actual work which
(hopefully!) results in adding the appropriate action-sequence to the
queue which is represented by \@temptokena.

d) Before processing the next item in the next iteration-round, a leading
〈space〉 for brace-removal-protection will be added in front of the remain-
ing list by \〈prefix 〉lc@iterate.

4. After iterating the list within the user-macro, the routine
\lc@macrodefiner will check for the user-macro’s optional argument
and, in case that it is present, modify the action-queue-register, so that,
when “flushing” it, a macro will be produced instead of queue-execution.

5. The final step within the user-macro is “flushing” the action-queue-register.

11

7.3 Code

\DefineLabelcase \DefineLabelcase is used for providing parameters during the definition of the
macros \〈prefix 〉eachlabelcase, \〈prefix 〉lotlabelcase (user),

\〈prefix 〉lc@iterate, \〈prefix 〉lc@remtrailspace,
\〈prefix 〉lc@remleadspace (internal).

Parameters are: #1=〈space〉; #2=〈delimiter〉; #3=〈prefix 〉; #4=〈global-indicator〉.
Defining of \DefineLabelcase takes place within a group, so that after closing

the group it gets discarded. Package-options will also be evaluated within that
group, right after defining \DefineLabelcase. By the option DefineLabelcase,
\DefineLabelcase can be “globalized” before closing the group:

1 \begingroup

2 \DeclareOption{DefineLabelcase}%

3 {\global\let\DefineLabelcase\DefineLabelcase}%

4 \newcommand\DefineLabelcase[4]{%

\〈prefix〉lc@remtrailspace It is assured that 〈delimiter〉 does not occur in the top-level of the 〈stuff where
to remove trail-space〉, for 〈delimiter〉 is used in the list for separating the single
items of 〈stuff where to remove trail-space〉 from each other. Therefore you can
choose 〈bizarre〉=〈delimiter〉 and 〈B1 〉=〈bizarre〉〈space〉=〈delimiter〉〈space〉:

5 \expandafter\@ifdefinable\csname#3lc@remtrailspace\endcsname{%

6 \expandafter\long

7 \expandafter\def

8 \csname#3lc@remtrailspace\endcsname##1#1#2##2#2#1{%

Above was said that forking can take place depending on emptiness of the second
argument. The arguments come from the items of the comma-separated list—thus
they might contain macro-definitions and/or unbalanced \if...\else...\fi-
constructs. So put the second argument into a macro \@tempa by means of a
token-register in order to prevent errors related to parameter-numbering:

9 \begingroup

10 \toks@{##2}%

11 \edef\@tempa{\the\toks@}%

When forking takes place, the content of the arguments might—when placed into
the corresponding \if- or \else-branches directly—erroneously match up those
constructs. In order to prevent this, the action related to the different branches
is handled by means of \@firstoftwo and \@secondoftwo which get expanded
when “choosing the forking-route” is already accomplished:
12 \expandafter\endgroup

13 \ifx\@tempa\@empty

14 \expandafter\@firstoftwo

15 \else

16 \expandafter\@secondoftwo

17 \fi

The appropriate action in case of no more trailing 〈space〉 is checking if the item
is not empty and if so, initiating the removal of leading 〈space〉. In this case
##1 is terminated by 〈bizarre〉. If the item is empty, the leading 〈space〉 in-
serted by the iterator for brace-protection is also removed so that ##1 equals
〈bizarre〉. If the item is not empty, start leading-〈space〉-removal, but add only
〈space〉〈B2 〉 at the end instead of 〈bizarre〉〈space〉〈B2 〉—above was said that
〈B2 〉=〈bizarre〉〈bizarre〉=〈delimiter〉〈delimiter〉 in \〈prefix 〉lc@remleadspace:
18 {%

19 {\toks@{##1}\edef\@tempa{\the\toks@}%

12

20 \toks@{#2}\edef\@tempb{\the\toks@}%

21 \expandafter}%

22 \ifx\@tempa\@tempb

23 \expandafter\@gobble

24 \else

25 \expandafter\@firstofone

26 \fi

27 {\csname#3lc@remleadspace\endcsname#2##1#1#2#2}%

28 }%

The appropriate action in case of trailing 〈space〉 is checking and possibly removing
more thereof:
29 {\csname#3lc@remtrailspace\endcsname##1#2#1#2#2#1}%

30 }%

31 }%

\〈prefix〉lc@remleadspace \〈prefix 〉lc@remleadspace is similar to \〈prefix 〉lc@remtrailspace, but with
〈B2 〉=〈bizarre〉〈bizarre〉=〈delimiter〉〈delimiter〉:
32 \expandafter\@ifdefinable\csname#3lc@remleadspace\endcsname{%

33 \expandafter\long

34 \expandafter\def

35 \csname#3lc@remleadspace\endcsname##1#2#1##2#2#2{%

Above was said that forking can take place e.g., depending on emptiness of the first
argument. Arguments still come from the list-items, so let’s use token-registers
for the same reasons as in \〈prefix 〉lc@remtrailspace:
36 \begingroup

37 \toks@{##1}%

38 \edef\@tempa{\the\toks@}%

The single list-items might still contain macro-definitions, \if-forking and the
like, therefore again choose the forking-route in terms of \@firstoftwo and
\@secondoftwo:
39 \expandafter\endgroup

40 \ifx\@tempa\@empty

41 \expandafter\@firstoftwo

42 \else

43 \expandafter\@secondoftwo

44 \fi

The appropriate action in case of leading 〈space〉 is checking and possibly removing
more thereof:
45 {\csname#3lc@remleadspace\endcsname#2##2#2#2}%

In case of no more leading 〈space〉, the actual work, which is defined in user-macro’s
\@tempa, can be done:
46 {\@tempa##1#2}%

47 }%

48 }%

\〈prefix〉lc@iterate \〈prefix 〉lc@iterate iterates on arguments which are delimited by 〈delimiter〉.
49 \expandafter\@ifdefinable\csname#3lc@iterate\endcsname{%

50 \expandafter\long

51 \expandafter\def

52 \csname#3lc@iterate\endcsname##1#2{%

13

Make locally available the arguments as macros:
\@tempa=current argument
\@tempb=recursion-stop-item:
53 \begingroup

54 \toks@{##1}%

55 \edef\@tempa{\the\toks@}%

56 \toks@{#1\@nil}%

57 \edef\@tempb{\the\toks@}%

End the group and test if the current argument equals the recursion-stop-item:
58 \expandafter\endgroup\ifx\@tempa\@tempb

59 \expandafter\@gobble

60 \else

61 \expandafter\@firstofone

62 \fi

If not: Start trailing-space-removal. . . , then continue iterating the list and hereby
add a preceding 〈space〉 to the next item for brace-protection during trailing-
〈space〉-removal in the next run:
63 {%

64 \csname#3lc@remtrailspace\endcsname##1#2#1#2#2#1%

65 \csname#3lc@iterate\endcsname#1%

66 }%

67 }%

68 }%

\〈prefix〉eachlabelcase \〈prefix 〉eachlabelcase’s optional argument is the possibly-to-be-defined control-
sequence. The mandatory-argument contains the argument-triplet-list.
69 \expandafter\@ifdefinable\csname#3eachlabelcase\endcsname{%

70 \expandafter\DeclareRobustCommand

71 \csname#3eachlabelcase\endcsname[2][]{%

Locally define \@tempa—it is called by \〈prefix 〉lc@remleadspace for working on
a list-item when all surrounding 〈space〉 has been removed:
72 {%

The stuff that results from 〈space〉-removing is surrounded by 〈delimiter〉. It
cannot be processed at this place, as first the triplet needs to be split into its
components by \@tempb:
73 \long\def\@tempa#2####1#2{%

74 \@tempb####1#2#1#2#2%

75 }%

\@tempb is used for splitting the triplet and removing 〈space〉 between the triplet’s
components. In this process it redefines itself several times. In case that no label
is defined the name thereof corresponds to the first component, add the third
component to \@temptokena, otherwise add the second:
76 \long\def\@tempb####1{%

77 \begingroup

78 \long\def\@tempb########1########2########3{%

79 \expandafter\expandafter

80 \expandafter\endgroup

81 \expandafter\ifx

82 \csname r@########1\endcsname\relax

83 \expandafter\@firstoftwo

84 \else

85 \expandafter\@secondoftwo

14

86 \fi

87 {\@temptokena\expandafter{\the\@temptokena########3}}%

88 {\@temptokena\expandafter{\the\@temptokena########2}}%

89 }%

90 \begingroup

91 \toks@{}%

92 \long\def\@tempb########1{%

93 \long\def\@tempa#2################1#2{%

94 \toks@\expandafter{\the\toks@{################1}}%

95 \expandafter\endgroup\expandafter\@tempb\the\toks@

96 }%

97 \toks@\expandafter{\the\toks@{########1}}%

98 \csname#3lc@remleadspace\endcsname#2%

99 }%

100 \toks@{{####1}}\csname#3lc@remleadspace\endcsname#2%

101 }%

Let’s clear the register where the action-queue is accumulated:
102 \@temptokena{}%

Let’s iterate on the list:
103 \csname#3lc@iterate\endcsname#1##2#2\@nil#2%

In case that the optional argument is specified, the routine \lc@macrodefiner
will modify the register to define a macro:
104 \lc@macrodefiner{##1}%

Close the group and “flush” the register:
105 \expandafter}\the\@temptokena

106 }%

107 }%

\〈prefix〉lotlabelcase \〈prefix 〉lotlabelcase’s optional argument is the possibly-to-be-defined control-
sequence. The five mandatory-arguments contain the label-list and the actions
that shall take place in the cases: All of the labels are defined / none are defined /
just some are defined / list is empty:
108 \expandafter\@ifdefinable\csname#3lotlabelcase\endcsname{%

109 \expandafter\DeclareRobustCommand

110 \csname#3lotlabelcase\endcsname[6][]{%

Locally define \@tempa—it is called by \〈prefix 〉lc@remleadspace for working on
a list-item when all surrounding 〈space〉 has been removed:
111 {%

112 \long\def\@tempa#2####1#2{%

The list item is a label. In case that it is undefined, have the helper-macro \@tempb
defined/switched to \relax, otherwise do the same but use \@tempc instead:
113 {\expandafter\expandafter\expandafter}\expandafter

114 \ifx\csname r@####1\endcsname\relax

115 \let\@tempb\relax

116 \else

117 \let\@tempc\relax

118 \fi

119 }%

Define \@tempb and \@tempc to empty. They may be “switched” to \relax when
\@tempa is called during iteration.
120 \def\@tempb{}%

121 \def\@tempc{}%

15

Let’s iterate on the list:
122 \csname#3lc@iterate\endcsname#1##2#2\@nil#2%

Assign the register according to the label-defining-cases which are now represented
by the definitions of \@tempb and \@tempc which are defined either \relax or
empty:
123 \ifx\@tempb\@empty

124 \ifx\@tempc\@empty

125 \@temptokena{##6}%

126 \else

127 \@temptokena{##3}%

128 \fi

129 \else

130 \ifx\@tempc\@empty

131 \@temptokena{##4}%

132 \else

133 \@temptokena{##5}%

134 \fi

135 \fi

In case that the optional argument is specified, the routine \lc@macrodefiner
will modify the register to define a macro:
136 \lc@macrodefiner{##1}%

Close the group and “flush” the register:
137 \expandafter}\the\@temptokena

138 }%

139 }%

If the 〈global-indicator〉-argument equals \global, the above definitions need to
be made \global:
140 {\toks@{#4}\edef\@tempa{\the\toks@}\def\@tempb{\global}\expandafter}%

141 \ifx\@tempa\@tempb

142 \expandafter\global\expandafter\let

143 \csname#3lc@remtrailspace\expandafter\endcsname

144 \csname#3lc@remtrailspace\endcsname

145 \expandafter\global\expandafter\let

146 \csname#3lc@remleadspace\expandafter\endcsname

147 \csname#3lc@remleadspace\endcsname

148 \expandafter\global\expandafter\let

149 \csname#3lc@iterate\expandafter\endcsname

150 \csname#3lc@iterate\endcsname

151 \expandafter\global\expandafter\let

152 \csname#3eachlabelcase\expandafter\endcsname

153 \csname#3eachlabelcase\endcsname

154 \expandafter\global\expandafter\let

155 \csname#3lotlabelase\expandafter\endcsname

156 \csname#3lotlabelcase\endcsname

157 \fi

Now the definition of \DefineLabelcase is complete:
158 }%

Remember that a group was started for performing \DefineLabelcase’s defin-
ition and that \DefineLabelcase will be gone when that group gets closed—
unless some “globalizing” takes place before. So this is the time for checking if
\DefineLabelcase shall be available to the user and in this case for making it
global:

16

159 \ProcessOptions\relax

Now the group which was started for defining \DefineLabelcase can be closed—
right after using it for defining the basic-usage-macros:
160 \expandafter\endgroup\DefineLabelcase{ }{,}{}{\global}%

\lc@macrodefiner There is still the routine left which is applied by the user-macros for having the
action-queue-register modified, so that when “flushing” it, a macro will be pro-
duced instead of queue-execution. \lc@macrodefiner takes as its argument the
optional argument of a user-macro. In case that the argument is not empty,
the action-queue-register is modified, so that “flushing” it yields the attempt of
defining a macro from the argument which expands to the former content of the
register:
161 \newcommand\lc@macrodefiner[1]{%

162 {\def\@tempa{#1}\expandafter}%

163 \ifx\@tempa\@empty

164 \else

165 \@temptokena\expandafter{%

166 \expandafter\begingroup

167 \expandafter\toks@

168 \expandafter\expandafter

169 \expandafter {%

170 \expandafter\expandafter

171 \expandafter \@temptokena

172 \expandafter\expandafter

173 \expandafter {%

174 \expandafter\the

175 \expandafter\@temptokena

176 \expandafter}%

177 \expandafter}%

178 \expandafter\@temptokena

179 \expandafter{%

180 \expandafter\@temptokena

181 \expandafter{%

182 \the\@temptokena}%

183 \@ifdefinable#1{\edef#1{\the\@temptokena}}}%

184 \expandafter\endgroup

185 \the\expandafter\@temptokena

186 \the\toks@

187 }%

188 \fi

189 }%

17

Change History

v1.0

General: Initial public release.

v1.01

\〈prefix 〉lc@remleadspace:
〈B2 〉=〈bizarre〉〈bizarre〉. 13

\〈prefix 〉lc@remtrailspace:
〈B1 〉=〈bizarre〉〈space〉. 12

General: Fixed documentation-
inaccuracies.

v1.02

General: Fixed documentation-
inaccuracies.

v1.03

\〈prefix 〉eachlabelcase: Chan-
ged forking-mechanism to
\@firstoftwo/\@secondoftwo. 14

\〈prefix 〉lc@remleadspace: Chan-
ged forking-mechanism to
\@firstoftwo/\@secondoftwo. 13

\〈prefix 〉lc@remtrailspace: Chan-
ged forking-mechanism to
\@firstoftwo/\@secondoftwo. 12

v1.04, v1.05

General: Fixed documentation-
inaccuracies.

v1.06

\〈prefix 〉eachlabelcase: \@ifdefinable
instead of \newcommand. 14

\〈prefix 〉lc@iterate: \@ifdefinable
instead of \newcommand. 13

\〈prefix 〉lc@remleadspace:
\@ifdefinable instead of
\newcommand. 13

\〈prefix 〉lc@remtrailspace:
\@ifdefinable instead of
\newcommand. 12

\〈prefix 〉lotlabelcase: \@ifdefinable
instead of \newcommand. 15

\lc@macrodefiner: \@ifdefinable
instead of \newcommand. 17

v1.07
\〈prefix 〉lc@iterate: Define

\@tempa in terms of \long. . . 13
v1.08

\〈prefix 〉lc@iterate: Chan-
ged forking-mechanism to
\@firstoftwo/\@secondoftwo. 13

General: DefineLabelcase-option
declared within group for
hyperref-compatibility.

v1.09
\〈prefix 〉lc@iterate: Changed

forking-mechanism so that two
temporary macros suffice. . . . 13

General: Hyperlinks in documenta-
tion.

v1.10
\〈prefix 〉lc@iterate: Empty-

argument-check removed. . . . 13
\〈prefix 〉lc@remtrailspace:

Empty-argument-check added. 12
v1.11

\lc@macrodefiner: Unnecessary
\expandafter removed. 17

v1.12
General: Fixed documentation-

inaccuracies.

Index

Numbers written in italics refer to the page where the corresponding entry is
described; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols

\〈prefix 〉eachlabelcase
7 , 69, 71, 152, 153

\〈prefix 〉lc@iterate 7 ,
11 , 49, 52, 65,
103, 122, 149, 150

\〈prefix 〉lc@remleadspace
. 7 ,
11 , 27, 32, 35,
45, 98, 100, 146, 147

\〈prefix 〉lc@remtrailspace
. 5, 7 , 8,

11 , 29, 64, 143, 144

\〈prefix 〉lotlabelcase
. 7 ,
108, 110, 155, 156

\@tempa 11, 13, 19, 22,
38, 40, 46, 55,
58, 73, 93, 112,
140, 141, 162, 163

\@tempb 20, 22,
57, 58, 74, 76,
78, 92, 95, 115,
120, 123, 140, 141

\@tempc 117, 121, 124, 130

D
\DefineLabelcase . .

. 1, 7 , 160

E
\eachlabelcase 3

L
\lc@macrodefiner . .

. 11 , 104, 136, 161
\lotlabelcase 3

18

	Contents
	Introduction
	Space notation

	Package-loading
	The macros
	Basic usage
	Possible problems
	Examples

	Advanced usage (brace-matching, \if…, defining macros)

	Package option—Different spaces, different separators
	Thanks, Acknowledgements
	Legal Notes
	Implementation
	A note about removing leading and trailing spaces
	Flow of work
	Code

	Change History
	Index
	Symbols
	D
	E
	L

