
Automatically Removing Widows and Orphans
with lua-widow-control

Max Chernoff

The lua-widow-control package, for plain LuaTEX/LuaLATEX/ConTEXt/OpTEX,
removes widows and orphans without any user intervention. Using the power of
LuaTEX, it does so without stretching any vertical glue or shortening any pages
or columns. Instead, lua-widow-control automatically lengthens a paragraph on
a page or column where a widow or orphan would otherwise occur.

To use the lua-widow-control package, all that most LATEX users need do is
place \usepackage{lua-widow-control} in their preamble. No further changes
are required.

Keywords: LuaTEX, widows, orphans

1. Motivation

TEX provides top-notch typesetting: even 40 years after its first release, no other
program produces higher quality mathematical typesetting, and its paragraph-
-breaking algorithm is still state-of-the-art. However, its page breaking is not quite
as sophisticated as its paragraph breaking and thus suffers from some minor issues.

Unmodified TEX has only two familiar ways of dealing with widows and
orphans: it can either shorten a page by one line, or it can stretch vertical
whitespace. TEX was designed for mathematical and scientific typesetting, where
a typical page has multiple section headings, tables, figures, and equations. For
this style of document, TEX’s default behaviour works quite well, since the
slight stretching of whitespace between the various document elements is nearly
imperceptible; however, for prose or other documents composed almost entirely
of paragraphs, there is little vertical whitespace to stretch.

Since no ready-made, fully-automated solution to remove widows and orphans
from all types of documents was available, I decided to create lua-widow-control.

2. What are widows and orphans?

2.1. Widows
A “widow” occurs when the majority of a paragraph is on one page or column,
but the last line is on the following page or column. It not only looks quite odd

First published in TUGboat 43:1 (Chernoff, 2022), pp. 28–39. Reprinted, with additions
and corrections, with permission.

doi: 10.5300/2022-1-4/49 49

Widow Orphan
A widow is when a paragraph’s

last line is placed on a different page An orphan is when the first
than where it begins. line of a paragraph occurs on the page

before all the other lines.

Figure 1: The difference between widows and orphans. If we imagine that each box
is a different page, then this roughly simulates how widows and orphans appear.

for a lone line to be at the start of the page, but it makes a paragraph harder
to read since the separation of a paragraph and its last line disconnects the two,
causing the reader to lose context for the widowed line.

2.2. Orphans
An “orphan” occurs when the first line of a paragraph is at the end of the page
or column preceding the remainder of the paragraph. They are not as distracting
for the reader, but they are still not ideal. Visually, widows and orphans are
about equally disruptive; however, orphans tend not to decrease the legibility of
a text as much as widows, so many authors choose to ignore them.

See Figure 1 for a visual reference.

2.3. Broken hyphens
“Broken” hyphens occur whenever a page break occurs in a hyphenated word.
These are not related to widows and orphans; however, breaking a word across
two pages is at least as disruptive for the reader as widows and orphans. TEX
identifies broken hyphens in the same ways as widows and orphans, so lua-widow-
control treats broken hyphens in the same way.

3. History and etymology

The concept of widows and orphans is nearly as old as printing itself. In Mechanick
exercises (Moxon, 1683), a printers manual from 1683, we have:

Nor do good Compoſiters account it good Workmanſhip to begin a
Page with a Break-line, unleſs it be a very ſhort Break, and cannot
be gotten in the foregoing Page ; but if it be a long Break, he will let
it be the Direction-line of the fore-going Page, and Set his Direction
at the end of it. (p. 226)

However, the terms “widow” and “orphan” are much newer.

50

3.1. Widows
The earliest published source that I could find referencing “widows” in typography
is Webster’s New International Dictionary from 1934. However, no one—not
even the editors of the dictionary (Brown, 1948a)—seems to know how it got
there. Even then, the definition is somewhat different than it is now:

widow, n. c. Print. A short line or single word carried over from the
foot of one column or page to the head of a succeeding column or
page. (Brown, 1948a)

Contrast this with the modern definition:
The stub-ends left when paragraphs end on the first line of a page
are called widows. They have a past but not a future, and they look
foreshortened and forlorn. (Bringhurst, 2004)

which includes a single lone line of any length.

3.2. Orphans
The term “orphan” is even more confusing. Its initial usage seems to have occurred
some time after “widow” (Brown, 1948a), and it is given many contradictory
definitions. Most sources define an orphan as a first line at the bottom of the
page and a widow as the last line at the top (Bringhurst, 2004; Brown, 1948a;
Brown, 1948b; Isambert, 2010; Knuth, 2021; Mittelbach, 2021; Oxford English
Dictionary, 2021b; Oxford English Dictionary, 2021c); however, some sources
define these two terms as exact opposites of each other, with a widow as a first
line at the bottom of the page and an orphan as the last line! (Ambrose; Harris,
2007; Brown, 1948a; Hunt, 2020; Oxford English Dictionary, 2021b; Saltz, 2019)
This usage is plain wrong; nevertheless, it is sufficiently common that you need
to be careful when you see the terms “widow” and “orphan”.

Similarly to the term “widow”, The Elements of Typographic Style (Bringhurst,
2004) provides a succinct definition of the term “club”, along with a helpful
mnemonic:

Isolated lines created when paragraphs begin on the last line of a
page are known as orphans. They have no past, but they do have a
future. (Bringhurst, 2004)

3.3. Clubs
The TEXbook never refers to “orphans” as such; rather, it refers to them as “clubs”.
This term is remarkably rare: I could only find a single source published before
The TEXbook —a compilation article about the definition of “widow”—that
mentions a “club line”:

The Dictionary staff informs me that they have no example of the
use of the word widow in the typographical sense. […]

51

Mr. Watson of the technical staff says that the Edinburgh printing
houses referred to it as a “clubline”. (Brown, 1948a, p. 4)

To my knowledge, a ‘widow’, or ‘widow-line,’ is a short line, forming
the end of a paragraph, which is carried over from the foot of a page
or column to the top of the succeeding one. […]

To my personal knowledge, in typographical parlance in Edinburgh,
Scotland, the ‘widow’ is called a ‘club-line.’ (Brown, 1948a, p. 23)

Both quotes above are from separate authors, and they each define a “club”
like we define “widow”, not an “orphan”. In addition, they both mention that
the term is only used in Scotland. Even the extensive oed—which lists 17 full
definitions and 103 subdefinitions for the noun “club”—doesn’t recognize the
phrase. (Oxford English Dictionary, 2021a)

I spent a few hours searching through Google Books and my university li-
brary catalogue, but I could not find a single additional source. However, Don
Knuth—the creator of TEX—read the original article (Chernoff, 2022) and sent
me this reply:

I cannot remember where I found the term “club line”. Evidently
the books that I scoured in 1977 and 1978 had taught me only that
an isolated line, caused by breaking between pages in the midst of a
paragraph, was called a “widow”; hence TEX78 had only “\chpar4”
to change the “widowpenalty”. Sometime between then and TEX82
I must have come across what appeared to be an authoritative source
that distinguished between widows at the beginning of a paragraph
and orphans or club lines at the end. I may have felt that the term
“orphan” was somewhat pejorative, who knows?1

So this (somewhat) resolves the question of where the term “club” came from.

4. Pagination in TEX

Let’s move on to looking at how TEX treats these widows and orphans.

4.1. Algorithm
It is tricky to understand how lua-widow-control works if you aren’t familiar with
how TEX breaks pages and columns. For a full description, you should consult
Chapter 15 of The TEXbook (Knuth, 2021) (“How TEX Makes Lines into Pages”);

1Note that this definition is somewhat mistaken. Widows are located either at the end of
a paragraph, or the beginning of a page or column. Likewise, orphans/clubs appear at the
beginning of a paragraph or at the end of a page or column.

52

however, this goes into much more detail than most users require, so here is a
very simplified summary of TEX’s page breaking algorithm:

TEX fills the page with lines and other objects until the next object will no
longer fit. Once no more objects will fit, TEX will align the bottom of the last
line with the bottom of the page by stretching any available vertical spaces if
(in LATEX) \flushbottom is set; otherwise, it will break the page and leave the
bottom empty.

However, some objects have penalties attached. Penalties encourage or dis-
courage page breaks from occurring at specific places. For example, LATEX sets
a negative penalty before section headings to encourage a page break there;
conversely, it sets a positive penalty after section headings to discourage breaking.

To reduce widows and orphans, TEX sets weakly-positive penalties between
the first and second lines of a paragraph to prevent orphans, and between the
penultimate and final lines to prevent widows.

One important note: once TEX begins breaking a page, it never goes back to
modify any content on the page. Page breaking is a localized algorithm, without
any backtracking.

4.2. Behaviour
Merely describing the algorithm doesn’t allow us to intuitively understand how
TEX deals with widows and orphans.

Due to the penalties attached to widows and orphans, TEX tries to avoid them.
Widows and orphans with small penalties attached—like LATEX’s default values
of 150—are only lightly coupled to the rest of the paragraph, while widows and
orphans with large penalties—values of 10 000 or more—are treated as infinitely
bad and are thus unbreakable. Intermediate values behave just as you would
expect, discouraging page breaks proportional to their value.

When TEX goes to break a page, it tries to avoid breaking at a location with
a high penalty. How it does so depends on a few settings:

4.2.1. \flushbottom and \normalbottom
With the settings \normalbottom (Plain TEX) or \flushbottom (LATEX), TEX is
willing to stretch any glue on the page by an amount roughly commensurate to the
magnitude of the penalty: for small \clubpenalty and \widowpenalty values,
TEX will only slightly stretch the glue on the page before creating a widow or or-
phan; for very large penalties, TEX will stretch the glue by a near-infinite amount.

This corresponds to the “Stretch” column in Figure 2. It is the default
behaviour of Plain TEX, and of the standard LATEX classes when the twocolumn
option is given.

53

4.2.2. \raggedbottom
When \raggedbottom is set, TEX won’t stretch any glue. Instead, for sufficiently
high \clubpenalty and \widowpenalty values, TEX will shorten the page or
column by one line in order to prevent the widow or orphan from being created.

This corresponds to the “Shorten” column in Figure 2 and is the default
behaviour of the LATEX classes when the twocolumn option is not given.

5. \looseness

Before we can continue further, we need to discuss one more TEX command:
\looseness. The following is excerpted from Chapter 14 of The TEXbook (Knuth,
2021) (“How TEX Breaks Paragraphs into Lines”):

If you set \looseness=1, TEX will try to make the current paragraph
one line longer than its optimum length, provided that there is a way
to choose such breakpoints without exceeding the tolerance you have
specified for the badnesses of individual lines. Similarly, if you set
\looseness=2, TEX will try to make the paragraph two lines longer;
and \looseness=-1 causes an attempt to make it shorter. […]

For example, you can set \looseness=1 if you want to avoid a
lonely “club line” or “widow line” on some page that does not have
sufficiently flexible glue, or if you want the total number of lines in
some two-column document to come out to be an even number.

It’s usually best to choose a paragraph that is already pretty
“full”, i.e., one whose last line doesn’t have much white space, since
such paragraphs can generally be loosened without much harm. You
might also want to insert a tie between the last two words of that
paragraph, so that the loosened version will not end with only one
“widow word” on the orphans line; this tie will cover your tracks,
so that people will find it hard to detect the fact that you have
tampered with the spacing. On the other hand, TEX can take al-
most any sufficiently long paragraph and stretch it a bit, without
substantial harm.

The widow and orphan removal strategy suggested in the second paragraph
works quite well; however, it requires manual editing each and every time a page
or paragraph is rewritten or repositioned.

6. Alternate removal strategies

There have been a few previous attempts to improve upon TEX’s previously
discussed widow and orphan-handling abilities; however, none of these have been

54

Ignore Shorten Stretch lua-widow-control
lua-widow-control can remove most

widows and orphans from a document,
without stretching any glue or shortening
any pages.

It does so by automatically length­
ening a paragraph on a page where a
widow or orphan would otherwise occur.
While TEX breaks paragraphs into their
natural length, lua-widow-control is break­
ing the paragraph 1 line longer than its
natural length. TEX's paragraph is out­
put to the page, but lua-widow-control's
paragraph is just stored for later. When a
widow or orphan occurs, lua-widow-control
can take over. It selects the previously-
saved paragraph with the least badness;
then, it replaces TEX's paragraph with its
saved paragraph. This increases the text
block height of the page by 1 line.

Now, the last line of the current page
can be pushed to the top of the next page.

lua-widow-control can remove most
widows and orphans from a document,
without stretching any glue or shortening
any pages.

It does so by automatically length­
ening a paragraph on a page where a
widow or orphan would otherwise occur.
While TEX breaks paragraphs into their
natural length, lua-widow-control is break­
ing the paragraph 1 line longer than its
natural length. TEX's paragraph is out­
put to the page, but lua-widow-control's
paragraph is just stored for later. When a
widow or orphan occurs, lua-widow-control
can take over. It selects the previously-
saved paragraph with the least badness;
then, it replaces TEX's paragraph with its
saved paragraph. This increases the text
block height of the page by 1 line.

Now, the last line of the current page
can be pushed to the top of the next page.

lua-widow-control can remove most
widows and orphans from a document,
without stretching any glue or shortening
any pages.

It does so by automatically length­
ening a paragraph on a page where a
widow or orphan would otherwise occur.
While TEX breaks paragraphs into their
natural length, lua-widow-control is break­
ing the paragraph 1 line longer than its
natural length. TEX's paragraph is out­
put to the page, but lua-widow-control's
paragraph is just stored for later. When a
widow or orphan occurs, lua-widow-control
can take over. It selects the previously-
saved paragraph with the least badness;
then, it replaces TEX's paragraph with its
saved paragraph. This increases the text
block height of the page by 1 line.

Now, the last line of the current page
can be pushed to the top of the next page.

lua-widow-control can remove most
widows and orphans from a document,
without stretching any glue or shortening
any pages.

It does so by automatically length­
ening a paragraph on a page where a
widow or orphan would otherwise occur.
While TEX breaks paragraphs into their
natural length, lua-widow-control is break­
ing the paragraph 1 line longer than its
natural length. TEX's paragraph is out­
put to the page, but lua-widow-control's
paragraph is just stored for later. When
a widow or orphan occurs, lua-widow-
control can take over. It selects the previ­
ously-saved paragraph with the least bad­
ness; then, it replaces TEX's paragraph
with its saved paragraph. This increases
the text block height of the page by
1 line.

This removes the widow or the orphan
without creating any additional work.

This removes the widow or the orphan
without creating any additional work.

This removes the widow or the orphan
without creating any additional work.

Now, the last line of the current page
can be pushed to the top of the next page.
This removes the widow or the orphan
without creating any additional work.

\parskip=0pt
\clubpenalty=0
\widowpenalty=0

\parskip=0pt
\clubpenalty=10000
\widowpenalty=10000

\parskip=0pt plus 1fill
\clubpenalty=10000
\widowpenalty=10000

\usepackage
{lua-widow-control}

Figure 2: A visual comparison of various automated widow-handling techniques.

55

able to automatically remove widows and orphans without stretching any vertical
glue or shortening any pages.

The articles “Strategies against widows” (Isambert, 2010) and “Managing
forlorn paragraph lines (a.k.a. widows and orphans) in LATEX” (Mittelbach, 2018b)
both begin with comprehensive discussions of the methods of preventing widows
and orphans. They agree that widows and orphans are bad and ought to be
avoided; however, they differ in their solutions. Strategies proposes an output
routine that reduces the length of facing pages by one line when necessary to
remove widows and orphans, while Managing proposes that the author manually
rewrites or adjusts \looseness when needed.

The post Paragraph callback to help with widows/orphans hand tuning (jeremie,
2017) contains a file widow-assist.lua that automatically detects which para-
graphs can be safely shortened or lengthened by one line. The widows-and-orphans
package (Mittelbach, 2021) alerts the author to the pages that contain widows
or orphans. Combined, these packages make it simple for the author to quickly
remove widows and orphans by adjusting the values of \looseness; however, it
still requires the author to make manual source changes after each revision.

Another article suggests a fully-automated solution to remove widows and
orphans (Mittelbach, 2018a). This would seem to offer a complete solution;
however, it requires multiple passes, an external tool, and has not yet been
publicly released.

lua-widow-control is essentially a combination of widow-assist.lua (jeremie,
2017) and widows-and-orphans (Mittelbach, 2021), although its implementation is
independent of both: when the \outputpenalty value indicates that a widow or
orphan has occurred, Lua is used to find a stretchable paragraph. What lua-widow-
control mainly adds on top of these packages is automation: it eliminates the
requirement for any manual adjustments or changes to your document’s source.

7. Visual comparison

Although TEX’s page breaking algorithm is reasonably straightforward, it can
lead to complex behaviour when widows and orphans are involved. The usual
choices, when rewriting is not possible, are to ignore them, stretch some glue, or
shorten the page. Figure 2 has a visual comparison of these options, which we’ll
discuss in the following:

7.1. Ignore
As you can see, the last line of the page is on a separate page from the rest of its
paragraph, creating a widow. This is usually highly distracting for the reader, so
it is best avoided for the reasons previously discussed.

56

7.2. Shorten
This page did not leave any widows, but it did shorten the previous page
by one line. Sometimes this is acceptable, but usually it looks bad because
pages will then have different text-block heights. This can make the pages look
quite uneven, especially when typesetting with columns or in a book with fac-
ing pages.

7.3. Stretch
This page also has no widows and it has a flush bottom margin. However, the
space between each pair of paragraphs had to be stretched.

If this page had many equations, headings, and other elements with natural
space between them, the stretched out space would be much less noticeable. TEX
was designed for mathematical typesetting, so it makes sense that this is its
default behaviour. However, in a page with mostly text, these paragraph gaps
look unsightly.

Also, this method is incompatible with grid typesetting, where all vertical
glue stretching must be quantised to the height of a line.

7.4. lua-widow-control
lua-widow-control has none of these issues: it eliminates the widows in a document
while keeping a flush bottom margin and constant paragraph spacing.

To do so, lua-widow-control lengthened the second paragraph in Figure 2 by
one line. If you look closely, you can see that this stretched the interword spaces.
This stretching is noticeable when typesetting in a narrow text block, but is
mostly imperceptible with larger widths.

lua-widow-control automatically finds the “best” paragraph to stretch, so the
increase in interword spaces should almost always be minimal.

8. Installation and standard usage

The lua-widow-control package was first released in October 2021. It is available
in the default installations of both MiKTEX and TEX Live, although you will
need recent versions of either.

You may also download lua-widow-control manually from either ctan,2 the
ConTEXt Garden,3 or GitHub,4 although it is best if you can install it through
your TEX distribution.

2ctan.org/pkg/lua-widow-control
3modules.contextgarden.net/cgi-bin/module.cgi/action=view/id=127
4github.com/gucci-on-fleek/lua-widow-control/releases/latest/

57

https://ctan.org/pkg/lua-widow-control
https://modules.contextgarden.net/cgi-bin/module.cgi/action=view/id=127
https://github.com/gucci-on-fleek/lua-widow-control/releases/latest/
https://ctan.org/pkg/lua-widow-control
https://modules.contextgarden.net/cgi-bin/module.cgi/action=view/id=127
https://github.com/gucci-on-fleek/lua-widow-control/releases/latest/

As its name may suggest, lua-widow-control requires LuaTEX or LuaMetaTEX
regardless of the format used. With that in mind, using lua-widow-control is quite
simple:

Plain TEX \input lua-widow-control
OpTEX \load[lua-widow-control]

LATEX \usepackage{lua-widow-control}
ConTEXt \usemodule[lua-widow-control]

And that’s usually enough. Most users won’t need to do anything else since
lua-widow-control comes preconfigured and ready-to-go.

9. Options

Nevertheless, lua-widow-control does have a few options.
lua-widow-control tries very hard to have a “natural” user interface with each

format, so how you set an option heavily depends on how you are running lua-
widow-control. Also note that not every option is available in every format.

Some general guidelines:

Plain TEX/OpTEX Specially-named \lwc〈option〉 commands and registers
are provided for all options.

LATEX Options can be set either as package options or at any
point in the document with \lwcsetup.

ConTEXt Always use \setuplwc.

9.1. Disabling
You may want to disable lua-widow-control for certain portions of your document.
You can do so with the following commands:

Plain TEX/OpTEX \lwcdisable
LATEX \lwcsetup{disable}

ConTEXt \setuplwc[state=stop]

This prevents lua-widow-control from stretching any paragraphs that follow.
If a page has earlier paragraphs where lua-widow-control was still enabled and a
widow or orphan is detected, lua-widow-control will still attempt to remove the
widow or orphan.

58

9.2. Enabling
lua-widow-control is enabled as soon as the package is loaded. If you have previ-
ously disabled it, you will need to re-enable it to save new paragraphs.

Plain TEX/OpTEX \lwcenable
LATEX \lwcsetup{enable}

ConTEXt \setuplwc[state=start]

9.3. Automatically disabling
You may want to disable lua-widow-control for certain commands where stretching
is undesirable such as section headings. Of course, manually disabling and
then enabling lua-widow-control multiple times throughout a document would
quickly become tedious, so lua-widow-control provides some options to do this
automatically for you.

lua-widow-control automatically patches the default LATEX, ConTEXt, Plain
TEX, OpTEX, memoir, KOMA-Script, and titlesec section commands, so you don’t
need to patch these. Any others, though, you’ll need to patch yourself.

Plain TEX/OpTEX \lwcdisablecmd{〈\macro〉}

LATEX \lwcsetup{disablecmds={〈csnameone〉,〈csnametwo〉}}

ConTEXt \prependtoks\lwc@patch@pre\to\everybefore〈hook〉
\prependtoks\lwc@patch@post\to\everyafter〈hook〉

9.4. \emergencystretch
lua-widow-control defaults to an \emergencystretch value of 3 em for stretched
paragraphs, but you can configure this.

lua-widow-control will only use the \emergencystretch when it cannot extend
a paragraph in any other way, so it is fairly safe to set this to a large value. TEX
accumulates badness when \emergencystretch is used (Knuth, 1989), so it’s
pretty rare that a paragraph that requires any \emergencystretch will actually
be used on the page.

Plain TEX/OpTEX \lwcemergencystretch=〈dimension〉
LATEX \lwcsetup{emergencystretch=〈dimension〉}

ConTEXt \setuplwc[emergencystretch=〈dimension〉]

9.5. Penalties
You can also manually adjust the penalties that TEX assigns to widows and
orphans. Usually, the defaults are fine, but there are a few circumstances where
you may want to change them.

59

Plain TEX/OpTEX \widowpenalty=〈integer〉
\clubpenalty=〈integer〉

\brokenpenalty=〈integer〉

LATEX \lwcsetup{ widowpenalty=〈integer〉}
\lwcsetup{orphanpenalty=〈integer〉}
\lwcsetup{brokenpenalty=〈integer〉}

ConTEXt \setuplwc[widowpenalty=〈integer〉]
\setuplwc[orphanpenalty=〈integer〉]
\setuplwc[brokenpenalty=〈integer〉]

The value of these penalties determines how much TEX should attempt to
stretch glue before passing the widow or orphan to lua-widow-control. If you set
the values to 1 (default), TEX will stretch nothing and immediately trigger lua-
widow-control; if you set the values to 10 000, TEX will stretch infinitely and lua-
widow-control will never be triggered. If you set the value to some intermediate
number, TEX will first attempt to stretch some glue to remove the widow or
orphan; only if it fails will lua-widow-control come in and lengthen a paragraph.
As a special case, if you set the values to 0, both TEX and lua-widow-control will
completely ignore the widow or orphan.

lua-widow-control will pick up on the values of \widowpenalty, \clubpenalty,
and \brokenpenalty regardless of how you set them, so the use of these dedicated
keys is entirely optional.

9.6. \nobreak behaviour
When lua-widow-control encounters an orphan, it removes it by moving the
orphaned line to the next page. The majority of the time, this is an appropriate
solution. However, if the orphan is immediately preceded by a section heading (or
\nobreak/\penalty 10000), lua-widow-control would naïvely separate a section
heading from the paragraph that follows. This is almost always undesirable, so
lua-widow-control provides some options to configure this.

Plain TEX/OpTEX \lwcnobreak{〈value〉}
LATEX \lwcsetup{nobreak=〈value〉}

ConTEXt \setuplwc[nobreak=〈value〉]
The default value, keep, keeps the section heading with the orphan by moving

both to the next page. The advantage to this option is that it removes the orphan
and retains any \nobreaks; the disadvantage is that moving the section heading
can create a large blank space at the end of the page. The value split splits up
the section heading and the orphan by moving the orphan to the next page while

60

keep split warn
Heading

Heading The very first line
Heading The very first line text text text text
The very first line text text text text last line.
text text text text last line.

Figure 3: A visual comparison of the nobreak option values.

leaving the heading behind. This is usually a bad idea, but exists for the sake of
flexibility. The value warn causes lua-widow-control to give up on the page and
do nothing, leaving an orphaned line. lua-widow-control warns the user so that
they can manually remove the orphan.

See Figure 3 for a visual reference.

9.7. Maximum cost
lua-widow-control ranks each paragraph on the page by how much it would “cost”
to lengthen that paragraph. By default, lua-widow-control selects the paragraph
on the page with the lowest cost; however, you can configure it to only select
paragraphs below a selected cost.

If there aren’t any paragraphs below the set threshold, then lua-widow-control
won’t remove the widow or orphan and will instead issue a warning.

Plain TEX/OpTEX \lwcmaxcost=〈integer〉
LATEX \lwcsetup{max-cost=〈integer〉}

ConTEXt \setuplwc[maxcost=〈integer〉]
Based on my testing, max-cost values less than 1 000 cause completely imper-

ceptible changes in interword spacing; values less than 5 000 are only noticeable
if you are specifically trying to pick out the expanded paragraph on the page;
values less than 15 000 are typically acceptable; and larger values may become
distracting. lua-widow-control defaults to an infinite max-cost, although the
“strict” and “balanced” modes sets the values to 5 000 and 10 000, respectively.

9.8. Draft mode
lua-widow-control has a “draft mode” which shows how lua-widow-control processes
pages.

Plain TEX/OpTEX \lwcdraft 1
LATEX \lwcsetup{draft}

ConTEXt \setuplwc[draft=start]

61

The draft mode has two main features:
First, it colours lines in the document according to their status. Any remaining

widows and orphans will be coloured red, any expanded paragraphs will be
coloured green, and any lines moved to the next page will be coloured blue.

Second, this draft mode shows the paragraph costs at the end of each para-
graph, in the margin.

This draft mode leads to a neat trick: if you don’t quite trust lua-widow-control,
or you’re writing a document whose final version will need to be compilable by
both pdfLATEX and LuaLATEX, you can load the package with:

\usepackage[draft, disable]{lua-widow-control}
This way, all the widows and orphans will be coloured red and listed in your
log file. When you go through the document to try and manually remove the
widows and orphans—whether through the \looseness trick or by rewriting
certain lines—you can easily find the best paragraphs to modify by looking at
the paragraph costs in the margins. If you’re less cautious, you can compile your
document with lua-widow-control enabled as normal and inspect all the green
paragraphs to see if they look acceptable to you.

You can also toggle the paragraph colouring and the cost displays individually:
Plain TEX/OpTEX \lwcshowcosts 1

\lwcshowcolours 0

LATEX \lwcsetup{showcosts=true}
\lwcsetup{showcolours=false}

ConTEXt \setuplwc[showcosts=start]
\setuplwc[showcolours=stop]

10. Presets

As you can see, lua-widow-control provides quite a few options. Luckily, there are
a few presets that you can use to set multiple options at once. These presets are
a good starting point for most documents, and you can always manually override
individual options.

These presets are only available for LATEX and ConTEXt.
LATEX \lwcsetup{〈preset〉}

ConTEXt \setuplwc[〈preset〉]

10.1. default
If you use lua-widow-control without any options, it defaults to this preset. In
default mode, lua-widow-control takes all possible measures to remove widows

62

and orphans and will not attempt to stretch any vertical glue. This usually
removes > 95% of all possible widows and orphans. The catch here is that this
mode is quite aggressive, so it often leaves behind some fairly “spacey” paragraphs.

This mode is good if you want to remove (nearly) all widows and orphans
from your document, without fine-tuning the results.

10.2. strict
lua-widow-control also offers a strict mode. This greatly restricts lua-widow-
control’s tolerance and makes it so that it will only lengthen paragraphs where
the change will be imperceptible.

The caveat with strict mode is that—depending on the document— lua-widow-
control will be able to remove less than a third of the widows and orphans. For
the widows and orphans that can’t be automatically removed, a warning will
be printed to your terminal and log file so that a human can manually fix the
situation.

This mode is good if you want the best possible typesetting and are willing
to do some manual editing.

10.3. balanced
Balanced mode sits somewhere between default mode and strict mode. This mode
first lets TEX stretch a little glue to remove the widow or orphan; only if that fails
will it then trigger lua-widow-control. Even then, the maximum paragraph cost is
capped. Here, lua-widow-control can usually remove 90% of a document’s potential
widows and orphans, and it does so while making a minimal visual impact.

This mode is recommended for most users who care about their document’s
typography. This mode is not the default since it doesn’t remove all widows and
orphans: it still requires a little manual intervention.

11. Compatibility

The lua-widow-control implementation is almost entirely in Lua, with only a
minimal TEX footprint. It doesn’t modify the output routine or \everypar and
it doesn’t insert any whatsits. This means that it should be compatible with
nearly any TEX package, class, and format. Most changes that lua-widow-control
makes are not observable on the TEX side.

However, on the Lua side, lua-widow-control modifies much of a page’s internal
structure. This should not affect any TEX code; however, it may surprise Lua
code that modifies or depends on the page’s low-level structure. This does not
affect Plain TEX or LATEX where even most Lua-based packages don’t depend on

63

Table 2: lua-widow-control options set by each mode.

Option default balanced strict

max-cost ∞ 10000 5000
emergencystretch 3em 1em 0pt
nobreak keep keep warn
widowpenalty 1 500 1
orphanpenalty 1 500 1
brokenpenalty 1 500 1

the node list structure. ConTEXt does depend on this internal node structure;
however, I have carefully tested the package to ensure that this causes no issues.

Finally, keep in mind that adding lua-widow-control to a document will almost
certainly change its page break locations.

11.1. Formats
lua-widow-control runs on all known LuaTEX-based formats: Plain LuaTEX,
LuaLATEX, ConTEXt Mkiv, and OpTEX. Unless otherwise documented, all fea-
tures should work equally well in all formats.

lua-widow-control is also fully-compatible with the LuaMetaTEX-based for-
mats: ConTEXt Mkxl/lmtx, LuaMetaLATEX, and LuaMetaPlain (Krüger, 2022).
ConTEXt Mkxl works equally well as ConTEXt Mkiv and LuaLATEX; however,
LuaMetaLATEX and LuaMetaPlain support is still quite early. All features should
work, although there are still a few minor bugs.

All told, lua-widow-control supports 7 different format/engine combinations.

11.2. Columns
Since TEX and the formats implement column breaking and page breaking through
the same internal mechanisms, lua-widow-control removes widows and orphans
between columns just as it does with widows and orphans between pages.

lua-widow-control is known to work with the LATEX class option twocolumn and
the two-column output routine from Chapter 23 of The TEXbook (Knuth, 2021).

11.3. Performance
lua-widow-control runs entirely in a single pass, without depending on any .aux
files or the like. Thus, it shouldn’t meaningfully increase compile times. Although

64

lua-widow-control internally breaks each paragraph twice, modern computers break
paragraphs near-instantaneously, so you are not likely to notice any slowdown.

lua-widow-control has been carefully tested to ensure that there are no memory
leaks, so lua-widow-control can now easily compile documents > 10 000 pages long.

11.4. ε-TEX penalties
Knuth’s original TEX has three basic line penalties: \interlinepenalty, which is
inserted between all lines; \clubpenalty, which is inserted after the first line; and
\widowpenalty, which is inserted before the last line. The ε-TEX extensions (The
NTS Team, 1998) generalize these commands with a syntax similar to \parshape:
with \widowpenalties you can set the penalty between the last, second last,
and nth last lines of a paragraph; \interlinepenalties and \clubpenalties
behave similarly.

The lua-widow-control package makes no explicit attempts to support these
new -penalties commands. Specifically, if you give a line a penalty that matches
either \widowpenalty or \clubpenalty, lua-widow-control will treat the lines
exactly as it would a widow or orphan. So while these commands won’t break
lua-widow-control, they are likely to lead to some unexpected behaviour.

12. Short last lines
When lengthening a paragraph with \looseness, it is common advice to insert
ties (~) between the last few words of the paragraph to avoid overly-short last lines
(Knuth, 2021). lua-widow-control does this automatically, but instead of using
ties or \hboxes, it uses the \parfillskip parameter (Knuth, 2021; Wermuth,
2018; Olšák, 1997). When lengthening a paragraph (and only when lengthening
a paragraph—remember, lua-widow-control doesn’t interfere with TEX’s output
unless it detects a widow or orphan), lua-widow-control sets \parfillskip to
0.75\hsize plus 0.05\hsize minus 0.75\hsize. This normally makes the
last line of a paragraph be at least 20% of the overall paragraph’s width, thus
preventing ultra-short lines.

13. How it works
lua-widow-control uses a fairly simple algorithm to eliminate widows and orphans,
but there are a few subtleties.

13.1. Setup
lua-widow-control sets the \clubpenalty, \widowpenalty, and \brokenpenalty
parameters to sentinel values of 1. This will signal to lua-widow-control when a
widow or orphan occurs, yet it is small enough that it won’t stretch any glue.

65

lua-widow-control also enables LuaTEX’s microtypographic extensions (Thành,
2001). This isn’t strictly necessary; however, it significantly increases the number
of paragraphs that can be acceptably “loosened”.

That is all that happens on the TEX end. The rest of lua-widow-control is
pure Lua.

13.2. Paragraph breaking
First, lua-widow-control hooks into the paragraph breaking process, before any
output routines or page breaking.

Before a paragraph is broken by TEX, lua-widow-control grabs the unbroken
paragraph. Then lua-widow-control breaks the paragraph one line longer than
its natural length and stores it for later. It does this in the background, without
interfering with how TEX breaks paragraphs into their natural length.

After TEX has broken its paragraph into its natural length, lua-widow-control
appears again. Before the broken paragraph is added to the main vertical list,
lua-widow-control “tags” the first and last nodes of the paragraph using a LuaTEX
attribute. These attributes associate the previously-saved lengthened paragraph
with the naturally-typeset paragraph on the page.

13.3. Page breaking
lua-widow-control intercepts \box255 (the \vbox output by TEX) immediately
before the output routine runs, after all the paragraphs have been typeset.

First, lua-widow-control looks at the \outputpenalty of the page or column.
If the page was broken at a widow or orphan, the \outputpenalty will be equal
to either the \widowpenalty or the \clubpenalty. If the \outputpenalty does
not indicate a widow or orphan, lua-widow-control will stop and return \box255
unmodified to the output routine, and TEX continues as normal.

Otherwise, we assume that we have a widow or orphan on the page, meaning
that we should lengthen the page by 1 line. We iterate through the list of saved
paragraphs to find the lengthened paragraph with the least cost. After we’ve
selected a good paragraph, we traverse through the page to find the original ver-
sion of this paragraph—the one that unmodified TEX originally typeset. Having
found the original paragraph, we splice in the lengthened paragraph in place of
the original.

Since the page is now 1 line longer than it was before, we pull the last line off
the page to bring it back to its original length, and place that line onto the top
of TEX’s “recent contributions” list. When the next page begins, this line will be
inserted before all other paragraphs, right at the top. Now, we can return the
new, widow-free page (updated \box255) to the output routine, which proceeds
as normal.

66

13.4. Footnotes
Earlier versions of lua-widow-control completely ignored inserts. This meant
that if a moved line had associated footnotes, lua-widow-control would move the
“footnote mark” but not the associated “footnote text”. lua-widow-control now
handles footnotes correctly through the mechanism detailed in the next section.

13.4.1. Inserts
Before we go into the details of how lua-widow-control handles footnotes, we
need to look at what footnotes actually are to TEX. Every \footnote command
ultimately expands to something like \insert〈class〉{〈content〉}, where 〈class〉
is an insertion class number, defined as \footins in this case (in Plain TEX and
LATEX). Inserts can be found in horizontal mode (footnotes) or in vertical mode
(\topins in Plain TEX and floats in LATEX), but they cannot be inside boxes.
Each of these insert types is assigned a different class number, but the mechanism
is otherwise identical. lua-widow-control treats all inserts identically, although
it safely ignores vertical mode inserts since they are only ever found between
paragraphs.

But what does \insert do exactly? When TEX sees an \insert primitive
in horizontal mode (when typesetting a paragraph), it does two things: first,
it processes the insert’s content and saves it invisibly just below the current
line. Second, it effectively adds the insert content’s height to the height of
the material on the current page. Also, for the first insert on a page, the
glue in \skip〈class〉 is added to the current height. All this is done to ensure
that there is sufficient room for the insert on the page whenever the line is
output onto the page.

If there is absolutely no way to make the insert fit on the page—say, if you
placed an entire paragraph in a footnote on the last line of a page—then TEX
will begrudgingly “split” the insert, placing the first part on the current page and
“holding over” the second part until the next page.

There are some other TEXnicalities involving \count〈class〉 and \dimen〈class〉,
but they mostly don’t affect lua-widow-control. See Chapter 15 in The TEXbook
or another reference for all the details.

After TEX has chosen the breakpoints for a paragraph, it adds the chosen
lines one by one to the current page. Whenever the accumulated page height is
“close enough” to the target page height (normally \vsize) the \output token
list (often called the “output routine”) is expanded.

But before \output is called, TEX goes through the page contents and moves
the contents of any saved inserts into \vboxes corresponding to the inserts’ classes,
namely \box〈class〉, so \output can work with them.

And that’s pretty much it on the engine side. Actually placing the inserts on
the page is reserved for the output routine, which is defined by the format. This

67

too is a complicated process, although thankfully not one that lua-widow-control
needs to worry about.

13.4.2. LuaMetaTEX
The LuaMetaTEX engine treats inserts slightly differently than traditional TEX
engines. The first major difference is that insertions have dedicated regis-
ters; so instead of \box〈class〉, LuaMetaTEX has \insertbox〈class〉; instead
of \count〈class〉, LuaMetaTEX has \insertmultiplier〈class〉; etc. The second
major difference is that LuaMetaTEX will pick up inserts that are inside of boxes,
meaning that placing footnotes in things like tables or frames should mostly just
work as expected.

There are also a few new parameters and other minor changes, but the overall
mechanism is still quite similar to traditional TEX.

13.4.3. Paragraph breaking
As stated in the original article (Chernoff, 2022), lua-widow-control intercepts
TEX’s output immediately before the output routine. However, this is after all
the inserts on the page have been processed and boxed. This is a bit of a problem
because if we move a line to the next page, we need to move the associated insert;
however, the insert is already gone.

To solve this problem, immediately after TEX has naturally broken a paragraph,
lua-widow-control copies and stores all its inserts. Then, lua-widow-control tags
the first element of each line (usually a glyph) with a LuaTEX attribute that
contains the indices for the first and last associated insert. lua-widow-control also
tags each line inside the insert’s content with its corresponding index so that it
can be found later.

13.4.4. Page breaking
Here, we follow the same algorithm as in the original article (Chernoff, 2022).
However, when we move the last line of the page to the next page, we first need
to inspect the line to see if any of its contents have been marked with an insert
index. If so, we need to move the corresponding insert to the next page. To do
so, we unpack the attributes value to get all the inserts associated with this line.

Using the stored insert indices and class, we can iterate through \box〈class〉
and delete any lines that match one of the current line’s indices. We also need to
iterate through the internal TEX box hold_head—the box that holds any inserts
split onto the next page—and delete any matching lines. We can safely delete
any of these lines since they are still stored in the original \insert nodes that
we copied earlier.

68

Now, we can retrieve all of our previously-stored inserts and add them to the
next page, immediately after the moved line. Then, when TEX builds that page,
it will find these inserts and move their contents to the appropriate boxes

14. Choosing the “best” paragraph

As we discussed previously, lua-widow-control lengthens the paragraph with the
lowest cost. However, assigning a cost to each paragraph is not quite as simple
as it sounds. Before we look at how lua-widow-control assigns costs, let’s look at
how TEX scores paragraphs when breaking them naturally.

14.1. How TEX scores paragraphs
All glue in TEX has a certain natural size: the size that it would be in an ideal
scenario. However, most glue also has stretch and shrink components so that
the glue can change in size to adapt to its surroundings. For each line, TEX
individually sums the total stretch/shrink for the line and the stretch/shrink that
was actually used. We define the stretch/shrink ratio r as the quotient of the
stretch/shrink used and the stretch/shrink available. Then the badness b of a
line is approximately defined as

b = 100r3.

This is the badness referenced in the commonly-seen Underfull \hbox (badness
1234) warnings that TEX produces.

TEX calculates the badness for each line individually; however, we also need
to assess the paragraph as a whole. To do so, TEX defines the demerits for a
whole paragraph d as approximately5 the sum of the squared badnesses for each
line. The natural paragraph that TEX breaks is the one that minimizes d.

One important thing to realize is that demerits grow incredibly fast: demerits
are proportional to the sixth power of glue stretch. This means that you can expect
to see extremely large demerit values, even for a relatively “good” paragraph.

14.2. Possible cost functions
Now, let’s return to how lua-widow-control assigns costs to each paragraph. This
is surprisingly more complicated than it sounds, so we’ll go through a few possible
cost functions first.

Here, we use c for the cost of a paragraph, d for the total demerits, and l for
the number of lines (\prevgraf).

5We ignore any additional demerits or penalties that TEX may add.

69

14.2.1. The original implementation
The original implementation of lua-widow-control used the simple cost function

c = d.

This cost function works reasonably well, but has one major issue: it doesn’t take
into account the number of lines in the paragraph. The demerits for a paragraph
is the sum of the demerits for each line. This means this cost function will prefer
using shorter paragraphs since they tend to have fewer demerits. However, long
paragraphs tend to have much more available glue stretch, so this strategy can
lead to suboptimal solutions.

14.2.2. Scaling by the number of lines
Once I realized this issue, I tried correcting it by dividing by the number of lines
in the paragraph to get the average demerits instead of the total demerits:

c = d

l

This works better than the previous function, but still has an issue. If we have a
fairly bad ten-line paragraph with total demerits 10d and an almost-equally bad
two-line paragraph with total demerits 2d + 1, then by this cost function, the
ten-line paragraph will have a lower cost and will be chosen. This means that
our page now has ten bad lines instead of two bad lines, which is not ideal.

14.2.3. Current implementation
Our first cost function, c = dl0, doesn’t consider the number of lines at all,
while our second cost function, c = dl−1, considers the number of lines too
much. Splitting the difference between the two functions, we get the current
implementation:

c = d√
l

This solves the issue with the previous function, but it adds a new issue: given
a short paragraph with a large number of demerits per line and a long paragraph
with fairly few average demerits per line, this function will often choose the
shorter line. Although this sounds bad, in practice it gives much better results
since very bad short paragraphs are much less noticeable than slightly bad long
paragraphs.

Of course, this new function may still not be quite perfect. lua-widow-control
uses the lwc.paragraph_cost(demerits, lines) Lua function to calculate a
paragraph’s cost; if you want, you can redefine this function to anything that you
want.

70

1 2 3 4 5 6 7 8 9 101112131415 ≥16
0

1

2

3

4

Paragraph length (lines)

C
ou

nt
(t

ho
us

an
ds

)

Figure 4: Histogram of natural paragraph lengths in the sample text.

15. Quantitative analysis
Let’s look at some statistics for lua-widow-control. For testing, I downloaded the
top ten books on Project Gutenberg,6 converted them to LATEX using pandoc,
concatenated them into a single article file, and compiled twice. This gives us
a pdf with 1 381 pages, 15 692 paragraphs, 61 865 lines, and 399 widows and
orphans (if they aren’t removed).

This is a fairly challenging test: almost every third page has a widow or orphan,
over half of the paragraphs have two lines or fewer, and the text block is set to
the fairly wide article defaults. An average document is much less challenging for
lua-widow-control, so we can consider this to be a worst-case scenario.

15.1. Widows and orphans removed
When we run LATEX with its default settings on the file, 179 (47%) of the widows
and orphans are removed. When we add lua-widow-control with default settings,
we remove 392 (98%). Switching to strict mode, we can only remove 52 (13%) of
the widows and orphans. In balanced mode, we remove 348 (87%). See Figure 5
for a visual comparison.

6Frankenstein, Pride and Prejudice, Alice’s Adventures in Wonderland, The Great Gatsby,
The Adventures of Sherlock Holmes, Simple Sabotage Field Manual, A Tale of Two Cities, The
Picture of Dorian Gray, Moby Dick, and A Doll’s House.

71

Max
im

um

poss
ibl

e

lwc de
fa

ul
t

ba
la

nc
ed

LATEX

st
ri

ct

100

200

300

400

W
id

ow
s

an
d

or
ph

an
s

re
m

ov
ed

Figure 5: The number of widows and orphans removed by each method.

15.2. Paragraph costs
The last section showed us that lua-widow-control is quite effective at removing
widows and orphans, so now let’s look at the paragraphs that lua-widow-control
expands. As TEX processes a document, lua-widow-control is recording the costs
for the naturally-broken and expanded versions of each paragraph in the document.
Costs don’t mean that much on their own, but a lower cost is always better.

As you can see in Figure 6, the lengthened paragraphs tend to have much
higher costs than the naturally-broken paragraphs. This is not surprising, since
(as we’ve seen) a paragraph’s demerits scale with the sixth power of glue stretch,
so even a small amount of glue stretch can cause a huge increase in demerits.

The empty space on the left of the “long” line is from the paragraphs that
lua-widow-control was unable to lengthen at any cost. LuaTEX assigns these
paragraphs zero demerits, so they disappear on a logarithmic plot.

15.3. Lengthening vs. shortening paragraphs
Figure 7 shows the number of paragraphs that lua-widow-control could potentially
stretch or shrink. The one-line paragraphs are broken out separately since this
test sample has an anomalous number of them. Otherwise, we can see that lua-
widow-control is capable of stretching the majority of paragraphs.

72

0 20 40 60 80 100

102

103

104

105

Percentile

C
os

t

Long
Natural

Figure 6: Paragraph costs by percentile rank for naturally-broken and one-line
lengthened paragraphs.

We can also see that of non-single-line paragraphs, only about 8% of para-
graphs can only be shrunk (the last segment of Figure 7), and this is in a document
where 13% of paragraphs have at least eight lines. Most documents rarely have
such long paragraphs, and it is these long paragraphs that are the easiest to shrink.

Because of this, lua-widow-control doesn’t even attempt to shrink paragraphs;
it only stretches them.

16. Known issues
lua-widow-control is quite stable these days. At this point, all known bugs have
been resolved; some bugs certainly still remain, but I’d feel quite confident
using lua-widow-control in your everyday documents. There are, however, some
fundamental limitations due to how lua-widow-control operates:

• When a three-line paragraph is at the end of a page forming a widow, lua-
widow-control will remove the widow; however, it will leave an orphan. This
issue is inherent to any process that removes widows through paragraph
expansion and is thus unavoidable. Orphans are considered to be better
than widows (Bringhurst, 2004), so this is still an improvement.

• Sometimes a widow or orphan cannot be eliminated because no paragraph
has enough stretch. Sometimes this can be remediated by increasing lua-
widow-control’s \emergencystretch; however, some pages just don’t have
any suitable paragraph.

73

0 2 4 6 8 10 12 14
Paragraphs (thousands)

n = 1 n n + 1 n ± 1 n − 1

Figure 7: The number of paragraphs in the test sample that (respectively) have
exactly one line, cannot be stretched or shrunk, can be only stretched by one line,
can be either stretched or shrunk, and can be only shrunk.

Long paragraphs with short words tend to be stretchier than short para-
graphs with long words since these long paragraphs have more interword
glue. Narrow columns also stretch more easily than wide columns since you
need to expand a paragraph by less to make a new line.

• lua-widow-control only attempts to expand paragraphs on a page with a
widow or orphan. A global system like in “A general framework for globally
optimized pagination” (Mittelbach, 2018a) would solve this; however, this
is both np-complete (Plass, 1981) and impossible to solve in a single pass.
Very rarely would such a system remove widows or orphans that lua-widow-
control cannot.

• lua-widow-control won’t properly move footnotes if there are multiple differ-
ent “classes” of inserts on the same line. To the best of my knowledge, this
shouldn’t happen in any real-world documents. If this happens to be an issue
for you, please let me know; this problem is relatively easy to fix, although
it will add considerable complexity for what I think isn’t a real issue.

17. Conclusion

All this probably makes lua-widow-control look quite complicated, and this is true
to some extent. However, this complexity is hidden from the end user: as stated at
the outset, most users merely need to place \usepackage{lua-widow-control}
in their LATEX document preamble, and lua-widow-control will remove all the
troublesome widows and orphans, without needing any manual intervention.

Should you have any issues, questions, or suggestions for lua-widow-control,
please visit the project’s GitHub page: https://github.com/gucci-on-fleek-
-lua-widow-control. Any feedback is greatly appreciated!

74

https://github.com/gucci-on-fleek/lua-widow-control
https://github.com/gucci-on-fleek/lua-widow-control

References
AMBROSE, G.; HARRIS, P., 2007. The Layout Book. Bloomsbury Academic. Advanced

Level Series. isbn 9782940373536.
BRINGHURST, R., 2004. The Elements of Typographic Style. 3rd. Hartley & Marks.
BROWN, Karl, 1948a. The Typographical Widow: Who is she? What is she? Bulletin

of the New York Public Library. Vol. 52, no. 1, pp. 3–25. Available from: https:
//hdl.handle.net/2027/uc1.b3310084.

BROWN, Karl, 1948b. The Typographical Widow: Encore: Encore. Bulletin of the
New York Public Library. Vol. 52, no. 9, pp. 458–466. Available from: https :
//hdl.handle.net/2027/uc1.b3310084.

CHERNOFF, Max, 2022. Automatically removing widows and orphans with lua-widow-
control. TUGboat. Vol. 43, no. 1, pp. 28–39. Available from doi: 10.47397/tb/43-
1/tb133chernoff-widows.

HUNT, R., 2020. Advanced Typography: From Knowledge to Mastery. Bloomsbury
Publishing. isbn 9781350055926.

ISAMBERT, Paul, 2010. Strategies against widows. TUGboat. Vol. 31, no. 1, pp. 12–17.
issn 0896-3207. Available from: https://tug.org/TUGboat/tb31-1/tb97isambert.
pdf.

JEREMIE, 2017. Paragraph callback to help with widows/orphans hand tuning [online].
2017-07. [visited on 2022-11-08]. Available from: https://tex.stackexchange.com/
q/372062.

KNUTH, Donald E., 1989. The new versions of TEX and METAFONT. TUGboat. Vol. 10,
no. 3, pp. 325–328. issn 0896-3207. Available from: https://tug.org/TUGboat/tb10-
3/tb25knut.pdf.

KNUTH, Donald E., 2021. The TEXbook. Addison–Wesley.
KRÜGER, Marcel, 2022. luametalatex [online]. 2022-10. [visited on 2022-11-08]. Avail-

able from: https://github.com/zauguin/luametalatex.
MITTELBACH, Frank, 2018a. A general framework for globally optimized pagination.

Computational Intelligence. Vol. 35, no. 2, pp. 242–284. Available from: https:
//doi.org/10.1111/coin.12165.

MITTELBACH, Frank, 2018b. Managing forlorn paragraph lines (a.k.a. widows and
orphans) in LATEX. TUGboat. Vol. 39, no. 3, pp. 246–251. issn 0896-3207. Available
from: https://tug.org/TUGboat/tb39-3/tb123mitt-widows.pdf.

MITTELBACH, Frank, 2021. The widows-and-orphans package [online]. 2021-03. [visited
on 2022-11-08]. Available from: https://ctan.org/pkg/widows-and-orphans.

MOXON, Joseph, 1683. Mechanick exercises: The doctrine of handy-works applied to
the art of printing. Vol. 2. London. Available from: https://archive.org/details/
mechanickexercis00moxo_0.

OLŠÁK, Petr, 1997. TEXbook naruby. [TEXbook inside out]. Brno, Czech Republic:
Konvoj. isbn 80-85615-64-9. Available from: https://petr.olsak.net/ftp/olsak/
tbn/tbn.pdf.

OXFORD ENGLISH DICTIONARY, 2021a. club, n. [online]. Oxford University Press,
2021-09 [visited on 2022-11-08]. Available from: https://www.oed.com/view/Entry/
34788.

75

https://hdl.handle.net/2027/uc1.b3310084
https://hdl.handle.net/2027/uc1.b3310084
https://hdl.handle.net/2027/uc1.b3310084
https://hdl.handle.net/2027/uc1.b3310084
https://doi.org/10.47397/tb/43-1/tb133chernoff-widows
https://doi.org/10.47397/tb/43-1/tb133chernoff-widows
https://tug.org/TUGboat/tb31-1/tb97isambert.pdf
https://tug.org/TUGboat/tb31-1/tb97isambert.pdf
https://tex.stackexchange.com/q/372062
https://tex.stackexchange.com/q/372062
https://tug.org/TUGboat/tb10-3/tb25knut.pdf
https://tug.org/TUGboat/tb10-3/tb25knut.pdf
https://github.com/zauguin/luametalatex
https://doi.org/10.1111/coin.12165
https://doi.org/10.1111/coin.12165
https://tug.org/TUGboat/tb39-3/tb123mitt-widows.pdf
https://ctan.org/pkg/widows-and-orphans
https://archive.org/details/mechanickexercis00moxo_0
https://archive.org/details/mechanickexercis00moxo_0
https://petr.olsak.net/ftp/olsak/tbn/tbn.pdf
https://petr.olsak.net/ftp/olsak/tbn/tbn.pdf
https://www.oed.com/view/Entry/34788
https://www.oed.com/view/Entry/34788

OXFORD ENGLISH DICTIONARY, 2021b. line at end of paragraph [online]. Oxford
University Press, 2021-12 [visited on 2022-11-08]. Available from: https://www.oed.
com/view/th/class/195380.

OXFORD ENGLISH DICTIONARY, 2021c. widow, n. [online]. Oxford University Press,
2021-12 [visited on 2022-11-08]. Available from: https://www.oed.com/view/Entry/
228912.

PLASS, Michael Frederick, 1981. Optimal pagination techniques for automatic typesetting
systems. Available from: https://tug.org/docs/plass/plass-thesis.pdf. PhD
thesis. Stanford University.

SALTZ, I., 2019. Typography Essentials Revised and Updated: 100 Design Principles for
Working with Type. Rockport Publishers. isbn 9781631596483.

THÀNH, Hàn Thế, 2001. Micro-typographic extensions to the TEX typesetting system.
Brno. Available from: http://www.pragma-ade.nl/pdftex/thesis.pdf. PhD
thesis. The Faculty of Informatics, Masaryk University.

THE NTS TEAM, 1998. The ε-TEX manual [online]. [visited on 2022-11-08]. Available
from: https://ctan.org/pkg/etex.

WERMUTH, Udo, 2018. Experiments with \parfillskip. TUGboat. Vol. 39, no. 3,
pp. 276–303. issn 0896-3207. Available from: https://tug.org/TUGboat/tb39-
3/tb123wermuth-parfillskip.pdf.

Automatické odstraňování vdov a sirotků pomocí balíčku
lua-widow-control

Balíček lua-widow-control pro LuaTEX/LuaLATEX/ConTEXt/OpTEX odstraňuje
vdovy a sirotky bez dalšího zásahu uživatele. Využívá přitom sílu LuaTEXu a
přitom nenatahuje žádné vertikální mezery a ani nezkracuje stránky nebo sloupce.
Namísto toho balíček automaticky prodlužuje některý z odstavců na té stránce
nebo sloupci, kde by se vdova nebo sirotek vyskytli.

Pro použití balíčku postačí většině uživatelů LATEXu uvést v preambuli do-
kumentu \usepackage{lua-widow-control}. Žádné další změny v dokumentu
nejsou zapotřebí.

Klíčová slova: LuaTEX, vdova, sirotek

Max Chernoff, mseven at telus dot net

76

https://www.oed.com/view/th/class/195380
https://www.oed.com/view/th/class/195380
https://www.oed.com/view/Entry/228912
https://www.oed.com/view/Entry/228912
https://tug.org/docs/plass/plass-thesis.pdf
http://www.pragma-ade.nl/pdftex/thesis.pdf
https://ctan.org/pkg/etex
https://tug.org/TUGboat/tb39-3/tb123wermuth-parfillskip.pdf
https://tug.org/TUGboat/tb39-3/tb123wermuth-parfillskip.pdf

	Motivation
	What are widows and orphans?
	Widows
	Orphans
	Broken hyphens

	History and etymology
	Widows
	Orphans
	Clubs

	Pagination in TeX
	Algorithm
	Behaviour
	\flushbottom and \normalbottom
	\raggedbottom

	\looseness
	Alternate removal strategies
	Visual comparison
	Ignore
	Shorten
	Stretch
	lua-widow-control

	Installation and standard usage
	Options
	Disabling
	Enabling
	Automatically disabling
	\emergencystretch
	Penalties
	\nobreak behaviour
	Maximum cost
	Draft mode

	Presets
	default
	strict
	balanced

	Compatibility
	Formats
	Columns
	Performance
	ε-TeX penalties

	Short last lines
	How it works
	Setup
	Paragraph breaking
	Page breaking
	Footnotes
	Inserts
	LuaMetaTeX
	Paragraph breaking
	Page breaking

	Choosing the “best” paragraph
	How TeX scores paragraphs
	Possible cost functions
	The original implementation
	Scaling by the number of lines
	Current implementation

	Quantitative analysis
	Widows and orphans removed
	Paragraph costs
	Lengthening vs. shortening paragraphs

	Known issues
	Conclusion

