
ctablestack.dtx

Catcode table stable support

David Carlisle and Joseph Wright

2015/10/01

Contents

1 Overview 1

2 Implementation 2

1 Overview

This small package adds support for a stack of category code tables to the core
support for LuaTEX provided by the LATEX kernel and available for plain users
as ltluatex.tex. As such, the code here may be used with both plain TEX
and LATEX, and requires either an up-to-date LATEX kernel (2016 onward), use of
latexrelease with older kernels or loading ltluatex.tex for plain users.

The commands here are aimed mainly for use by package authors to develop
environments needing specific catcode regimes. As such the package does not
define any user level commands.
\@setrangecatcode{〈start〉}{〈end〉}{〈catcode〉}\@setrangecatcode

Sets all characters in the range 〈start〉–〈end〉 inclusive to have the 〈catcode〉 spec-
ified.
\@pushcatcodetable\@pushcatcodetable

\@popcatcodetable \@popcatcodetable

This pair of commands enable the current category code régime to be saved and
restored meaning that arbitrary catcode changes can be made. This functionality
will normally be used in concert with applying catcode tables. For example

\catcode‘\Z=4 %

\@pushcatcodetable

\catcodetable\catcodetable@latex

% Code here

\@popcatcodetable

\showthe\catcode‘\Z

1



will ensure that the ‘content’ is set with normal category codes but allow restora-
tion of the non-standard codes at the conclusion. Importantly, it does not require
that anything is known about the catcode situation in advance (cf. a more tradi-
tional approach to saving the state of targeting characters).

2 Implementation

1 〈∗package〉

2 \edef\ctstackatcatcode{\the\catcode‘\@}

3 \catcode‘\@=11

Check for ltluatex functionality using \newluafunction as a marker.
4 \ifx\newluafunction\@undefined

5 \input{ltluatex}%

6 \fi

\@setcatcodetable Save a catcode table specified in #1 using the catcode settings specified in #2.
These settings are executed in a local group to avoid affecting surrounding code.
(Saving a catcode table is always a global operation.)

7 1

8 \def\@setcatcodetable#1#2{%

9 \begingroup

10 #2%

11 \savecatcodetable#1%

12 \endgroup

13 }

\@setrangecatcode Set a range of characters from #1 to #2 inclusive to the catcode specified in #3.

14 \def\@setrangecatcode#1#2#3{%

15 \ifnum#1>#2 %

16 \expandafter\@gobble

17 \else

18 \expandafter\@firstofone

19 \fi

20 {%

21 \catcode#1=#3 %

22 \expandafter\@setrangecatcode\expandafter

23 {\number\numexpr#1+1\relax}{#2}{#3}%

24 }%

25 }

\@catcodetablelist

\@catcodetablestack

Data structures for a stack: a list of free tables in the stack and the stack record
itself.

26 \def\@catcodetablelist{}

27 \def\@catcodetablestack{}

\@catcodetablestackcnt A count for adding to the list of scratch tables.

28 \newcount\@catcodetablestackcnt

2



\@pushcatcodetable

\@pushctbl

To push a table, first check there is a free one in the pool and if not create one.
Then take the top table in the pool and use it to save the current table.

29 \def\@pushcatcodetable{%

30 \ifx\@catcodetablelist\empty

31 \global\advance\@catcodetablestackcnt by\@ne

32 \edef\@tempa{\csname ct@\the\@catcodetablestackcnt\endcsname}%

33 \expandafter\newcatcodetable\@tempa

34 \xdef\@catcodetablelist{\@tempa}%

35 \fi

36 \expandafter\@pushctbl\@catcodetablelist\@nil

37 }

38 \def\@pushctbl#1#2\@nil{%

39 \gdef\@catcodetablelist{#2}%

40 \xdef\@catcodetablestack{#1\@catcodetablestack}%

41 \savecatcodetable#1%

42 }

\@popcatcodetable

\@popctbl

Much the same in reverse.

43 \def\@popcatcodetable{%

44 \if!\@catcodetablestack!%

45 \errmessage{Attempt to pop empty catcodetable stack}%

46 \else

47 \expandafter\@popctbl\@catcodetablestack\@nil

48 \fi

49 }

50 \def\@popctbl#1#2\@nil{%

51 \gdef\@catcodetablestack{#2}%

52 \xdef\@catcodetablelist{\@catcodetablelist#1}%

53 \catcodetable#1%

54 }

55 \catcode‘\@\ctstackatcatcode\relax

56 〈/package〉

3


