Prototype reimplementation of IXTEX 2¢’s block
environments using templates

ETEX Project*

v0.9c 2025-05-17

Abstract

Contents

M

1 Introduction

2 Object types and templates for blocks and lists
2.1 Object types . . . o o e e e
2.1.1 The object type ‘block’ L
2.1.2 The object type ‘para’ oo
2.1.3 The object type ‘list” o
2.1.4 The object type ‘item’” oL
2.1.5 The object type ‘blockenv’ oL
2.2 Templates e
2.2.1 The blockenv template ‘display’”
2.2.2 The block template ‘display’
2.2.3 The para template ‘std” oo
2.2.4 The list template ‘std’”
2.2.5 The item template ‘std” Lo L

SO UL UL W W WWWwWNnN NN

3 Tagging support
3.1 Paragraphtags L
3.2 Taggingrecipes L e

©

4 Debugging 10

5 New and redefined kernel command 10

Index 11

*Initial reimplementation of lists done by Bruno Le Floch, generalized second version with tagging
support by Frank Mittelbach.

1 Introduction

The list implementation in A TEX 2¢ serves a dual purpose: it implements real lists such
as itemize or enumerate, but it is also used as the basis for vertical blocks, i.e., to specify
the vertical spacing and paragraph handling after such block, e.g., in environments like
center, quote, verbatim, or in the theorem environments. They are all implemented as
“trivial” lists with a single (hidden) item.

While this was convenient to get a consistent layout using a single implementation
it is not adequate if it comes to interpreting the structure of a document, because envi-
ronments based on trivlist should not advertise themselves as being a “list” — after
all, from a semantic point of view they aren’t lists.

The approach taking here is therefore to offer separate object types: block (horizon-
tally or vertically oriented data that needs some handling at the start and the end), para
(that deals with different paragraph layouts), list (that handles list related parameters,
and jtem (for item layouts and handling), to address the independent aspects and also
offer the object type blockenv that ties them together as necessary.

For example, a quote environment would make use of a (display) block and some
para handling while an standard enumerate would make use of a display block, a list, and
an item and para instance. An inline list (like enumerate* from the enumitem package)
would be using the same /ist instance but a different (horizontally oriented) block.

2 Object types and templates for blocks and lists

2.1 Object types
2.1.1 The object type ‘block’

Arg: 1 key/value list to alter the default block parameters

Semantics:

Handle the layout aspects of a block of data. In case of a “display” block (i.e., vertically
oriented) the spacing and page breaking as well as the handling if the block starts a
paragraph or ends one, that is, if text is immediately following the block without being
separated by an empty line, then this text is considered to be in the same paragraph as
the block.

In case of a horizontally oriented block it covers any special handling at the start
and end of the block, e.g, extra spacing, prohibitying or encuraging line breaks, and so
forth.

2.1.2 The object type ‘para’
Arg: 1 key/value list to alter the default item parameters

Semantics:

Sets up paragraph-specific parameters for H&J, e.g., to implement justification variations,
the behavior of \\ etc. The instances are used in higher-level templates, e.g., in a block.

2.1.3 The object type ‘list’

Arg: 1 key/value list to alter the default item parameters

Semantics:

Handle the aspects related to list design, e.g., the use and formatting of counters, etc.
Note that this does not cover block-related aspects, i.e., a list instance could be used
both for a display list or for an inline line.

2.1.4 The object type ‘item’

Arg: 1 key/value list to alter the default item parameters

Semantics:

A sub-type used as part of list to easily cover alternative layout for list items.

2.1.5 The object type ‘blockenv’

Arg: 1 key/value list to alter the default item parameters

Semantics:

This object type is used to implement document-level environments. It defines a block
instance to handle the layout at the “edge” of the environment data, possibly some
paragraph setup through a para instance, potentially an “inner” instance for more com-
plicated environments (such as lists), and possibly some additional setup code for certain
environments.

It also defines how the blockenv behaves with respect to nesting, e.g., does it change
when nested and if so how many levels of nesting are supported, etc.

Finally, the object type defines how it appears in a tagged PDF document, what
tag names are used, how they are rolemapped and whether it adds additional attributes,
etc.

2.2 Templates

2.2.1 The blockenv template ‘display’

Attributes:

env-name (tokenlist) Name of the environment used in tracing and error messages

tag-name (tokenlist) Name of the tag in the PDF. If not explicitly given the name is
defined by the tagging-recipe

tag-class (tokenlist) An explicit tag class attribute

tagging-recipe (tokenlist) Defines the way tagging is done. Currently the values
basic, standard, and list are supported Default: standard

level-increase (boolean) Does this blockenv increase the block level if it is nested in
an outer block? Default: true

setup-code (tokenlist) Initial setup code. This is executed after legacy defaults (from
\@listi, \@listii, etc.) are used but before the block instance is called

block-instance (tokenlist) Part of the name of the block instance that is called. The
full name has a -(level) appended Default: displayblock

para-instance (tokenlist)

inner-level-counter (fokenlist) Name of an existing (!) counter that is incremented
and used to determine final name of the inner-instance or empty if always the
same inner instance should be used

max-inner-levels (tokenlist) Maximum number of nested environments of this kind.
Only relevant if there is a inner-level-counter specified Default: 4

inner-instance-type (tokenlist) Object type of the inner instance Default: list
inner-instance (tokenlist) Name of the inner instance (if any).
para-flattened (boolean) describe Default: false

final-code (tokenlist) Final setup code Default: \ignorespaces

Semantics & Comments: This blockenv template supports the legacy list setting that
are found in many document classes in the macros \@listi, \@listii, up to \@listvi.
It also uses the counter \@listdepth to track nesting of block, again mainly to support
legacy setups (internally it gives it a more appropriate name but it remains accessible
through the IWTEX 2¢ name).

It first checks that nothing is too deeply nested. If the level should increase then
the increments the \@listdepth counter and calls the corresponding \@list... macro
to update the legacy defaults. If level-increase is set to false this is bypassed.

It then sets up the tagging via the tagging-recipe setting and executes any code
in setup-code.

Afterwards it calls the appropriate block instance based on block-instance and
current level, e.g., displayblock-1. Then it sets up paragraph parameters if a para-
instance was specified (otherwise they stay as they are).

If a inner-instance was specified this is called next, or more precisely: if no inner-
level-counter was specified the instance inner-instance is called.

Otherwise, the inner-level-counter is incremented and the instance with the name
inner-instance-inner-level-counter is called.

Finally, the final-code is executed (by default \ignorespaces).

The maximum number of blockenvs that can be nested into each other is restricted
by the XTEX counter maxblocklevels with a default value of 6. If this value is increased
then it is necessary to provide additional instances, e.g., displayblock-7, etc. Decreasing
is, of course, always possible, then some of the instances defined are not used and instead
the user gets an error that there is too much nesting going on.

If the key level-increase is set to false then such an environment doesn’t alter
the nesting level and therefore you can nest those environments as often as you like (a
typical example would be flushleft anywhere in the nesting hierarchy, that would have
no effect on hitting the boundary).

2.2.2 The block template ‘display’
Attributes:

heading (tokenlist) not really used yet

beginsep (skip) Default: \topsep
begin-par-skip (skip) Default: \partopsep
par-skip (skip) Default: \parsep
end-skip (skip) Default: value from beginsep
end-par-skip (skip) Default: value from begin-par-skip
item-skip (skip) The space in front of an item if the block is a list; if not the setting

has no effect Default: \itemsep
beginpenalty (integer) Default: \@beginparpenalty
endpenalty (integer) Default: \@endparpenalty
leftmargin (length) Default: \leftmargin
rightmargin (length) Default: \rightmargin
parindent (length) Default: Opt

Semantics & Comments: The idea of a heading key needs some further thoughts.
Maybe instead the object type should accept a second argument and receive input for
such a heading from the document level instead.

The names of the keys need further thoughts and some decision. Right now it is
a mixture of those with hyphens and those that match legacy register names (the way
enumitem did its keys).

Also parindent conflicts with indent-width!

2.2.3 The para template ‘std’

Attributes:

indent-width (length) Default: \parindent
start-skip (skip) Default: Opt
left-skip (skip) Default: Opt
right-skip (skip) Default: Opt
end-skip (skip) Default: \@flushglue
fixed-word-spaces (boolean) Default: false
final-hyphen-demerits (integer) Default: 5000
cr-cmd (tokenlist) Default: \@normalcr
para-class (tokenlist) Default: justify

2.2.4 The list template ‘std’

Attributes:

counter (lokenlist) Counter name to be used in a numbered list or empty, if the list is
unnumbered

item-label (tokenlist) Label “string” for a fixed label or as generated from the current
counter value

start (integer) Start value for the counter if the list is numbered, otherwise irrelevant
Default: 1

resume (boolean) Should a numbered list be resumed from the last instance?
Default: false

item-instance (instance) Instance of type item to be used to format the label string
Default: basic

item-skip (skip) The space in front of an item in the list. If not specified the value
specified in the block template instance is used

item-indent (length) Horizontal displacement of the item. Default: Opt

item-penalty (integer) Penalty for breaking before an item (except the first)
Default: \@itempenalty

label-width (length) Width reserved for the formatted item labelDefault: \1abelwidth

label-sep (length) Horizontal separation between label and following text
Default: \labelsep

legacy-support (boolean) Is formatting the label via \makelabel supported?
Default: false

2.2.5 The item template ‘std’

Attributes:

counter-label (functionl) unused Default: \arabic{#1}
counter-ref (functionl) unused Default: value from counter-label
label-ref (functionl) unused Default: #1
label-autoref (functionl) unused Default: item #1

label-format (functionl) Formatting of the label, questionable the way it is used
Default: #1

label-strut (boolean) Add a \strut to the label? Default: false

label-align (choice) Supported values left,center, right, and parleft. Only partly

implemented Default: right
label-boxed (boolean) Should the label be boxed? Default: true
next-line (boolean) Default: false

text-font (tokenlist) unused

compatibility (boolean) Default: true

Semantics & Comments: This template is only rudimentary implemented at the mo-
ment. It probably needs other keys and the existing ones need a proper implementation.

3 Tagging support
3.1 Paragraph tags

Paragraphs in I¥TEX can be nested, e.g., you can have a paragraph containing a display
quote, which in turn consists of more than one (sub)paragraph, followed by some more
text which all belongs to the same outer paragraph.

In the PDF model and in the HTML model that is not supported — a limitation
that conflicts with real live, given that such constructs are quite normal in spoken and
written language.

The approach we take to resolve this is to model such “big” paragraphs with a
structure named <text-unit> and use <text> (rollmapped to <P>) ounly for (portions
of) the actual paragraph text in a way that the <text>s are not nested. As a result we
have for a simple paragraph the structures

<text-unit>
<text>
The paragraph text ...
</text>
</text-unit>

The <text-unit> structure is rollmapped to <Part> or possibly to <Div> so we get a
valid PDF, but processors who care can identify the complete paragraphs by looking for
<text-unit> tags.

In the case of an element, such as a display quote or a display list inside the para-
graph, we then have

<text-unit>
<text>
The paragraph text before the display element ...
</text>
<display element structure>
Content of the display structure possibly involving inner <text-unit> tags
</display element structure>

<text>
... continuing the outer paragraph text
</text>
</text-unit>

In other words such a display block is always embedded in a <text-unit> structure,
possibly preceded by a <text>..</text> block and possibly followed by one, though
both such blocks are optional.

Thus an itemize environment that has some introductory text but no text imme-
diately following the list would be tagged as follows:

<text-unit>
<text>
The intro text for the itemize environment ...
</text>
<itemize>

<Lbl> label </Lbl>
<LBody>
The text of the first item involving <text-unit> as necessary ...
</LBody>

The second item ...

... further items ...
</itemize>
</text-unit>

The <itemize> is rollmapped to <L>.

For some display blocks, such as centered text, we use a simpler strategy. Such
blocks still ensure that they are inside a <text-unit> structure but their body uses
simple <text> blocks and not <text-unit><text> inside, e.g., the input

This is a paragraph with some
\begin{center}
centered lines

with a paragraph break between them
\end{center}
followed by some more text.

will be tagged as follows:

<text-unit>
<text>
This is a paragraph with some
</text>
<text /0 /Layout /TextAlign/Center>

centered lines
</text>
<text /0 /Layout /TextAlign/Center>
with a paragraph break between them
</text>
<text>
followed by some more text.
</text-unit>

3.2 Tagging recipes

There are a number of different tagging recipes that implement different tagging ap-

proaches.

They are selected through the tagging-recipe of the blockenv template.

Currently the following values are implemented:

standalone This recipe does the following:

Ensure that the blockenv is not inside a <text-unit> structure. If necessary,
close the open one (and any open <text> structure).

Text inside the body of the environment start with <text-unit><text>
unless the key para-flattened is set to true (which is most likely the
wrong thing to do because we then get just <text> as the structure).

At the end of the environment close </text> and possibly an inner
</text-unit> if open.

Finally, ensure that after the environment a new <text-unit> is started, if
appropriate, e.g., if text is following.

basic This recipe does the following:

Ensure that the blockenv is inside a <text-unit> structure, if necessary,
start one.

If inside a <text-unit><text>, then close the </text> but leave the
<text-unit> open.

Text inside the body of the environment start with <text-unit><text> if
para-flattened is set to false, otherwise just with <text>.

At the end of the environment close </text> and possibly an inner
</text-unit> if open.

Then look if the environment is followed by an empty line (\par). If so, close
the outer </text-unit> and start any following text with
<text-unit><text>. Otherwise, don’t and following text restarts with a just
a <text> (and no paragraph indentation)

standard This recipe is like the basic one as far as handling <text-unit> and <text>
is concerned. In addition

it starts an inner tagging structure (i.e., which is therefore a child of the
outer <text-unit>).

¢ By default this structure is a <Figure> unless overwritten by the key
tag-name. If that key is used, a suitable rollmap needs to be provided for the
name given.

e At the end of the environment that inner structure is closed again so that we
are back on the <text-unit> level from the outside.

e Then the lookahead for an empty line is done as described previously.
list This recipe is like the standard one except that

« the inner structure is a list (<L>).

o Furthermore everything is set up so that we have list items () with
suitable substructures (<Lbl> for the item labels and <LBody> for the item
bodies).

o If the key tag-name is specified, this is used as the tag name for the whole
list instead of <L>. Of course, it should then have a suitable rollmap.

o If the key tag-class is specified then this is used as the class attribute.
Again, this requires a suitable setup on the outside.

o At the end of the environment the </LBody>, , and </L> (or the tag
name used) are closed.

e Then the lookahead for an empty line is done as described previously.

4 Debugging

\DebugBlocksOn These commands enable/disable debugging messages.
\DebugBlocks0ff

\block_debug_on:
\block_debug_off:

5 New and redefined kernel command

\@doendpe The original IXTEX 2¢ command is augmented to allow for tagging.

\legacyverbatimsetup to be documented
\legacylistsetupcode

\@setupverbinvisiblespace A counterpart definition to the kernel command \@setupverbinvisiblespace, needed
as we need to handle real space chars in verbatim.

endblockenv to be documented
\g_block_nesting_depth_int

10

\newtheorem
\@thm
\@begintheorem

\item
\@itemlabel

\c@maxblocklevels

\begin

\para_end:

para/begin

Redefined to make theorems tagging aware.

The \item is redefined.

A counter to increase or decrease the number of supported level. If increased, one needs
to supply additional level instances.

The \begin is slightly redefine to handle \@doendpe better. TODO: move to kernel
TODO: consider name, document

The para/begin hook is enhanced to support list ends

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

B P
\begin 11 para commands:
block commands: \para_end: 11
\block_debug_off: 10 para/begin 11
\block_debug_on: 10
\g_block_nesting_depth_int 10 T
TEX and KTEX 26 commands:
D \@beginparpenalty 5
\DebugBlocksOff 10 \@begintheorem 11
\DebugBlocksOn 10 \@doendpe 10, 11
E \@endparpenalty 5
\@flushglue 5
endblockenv 10 \Qitemlabeloooooooo . 11
I \@itempenalty 6
\item . ..o 11 NOList... 4
\@listdepth 4
L \@listi 4
\legacylistsetupcode 10 \@listii ... 4
\legacyverbatimsetup 10 \elistvi ... 4
\@normalcr 5
N \@setupverbinvisiblespace 10
\newtheorem 11 \@thm 11

11

\arabic 6
\begin 11
\c@maxblocklevels 11
\ignorespaces 4
\item 11
\itemsep 5
\labelsepovuvininonn. 6
\labelwidth 6
\leftmargin 5

12

\makelabel

\par ..

\parindent

\parsep

\partopsep
\rightmargin

\strut
\topsep

	Contents
	1 Introduction
	2 Object types and templates for blocks and lists
	2.1 Object types
	2.1.1 The object type `block'
	2.1.2 The object type `para'
	2.1.3 The object type `list'
	2.1.4 The object type `item'
	2.1.5 The object type `blockenv'

	2.2 Templates
	2.2.1 The blockenv template `display'
	2.2.2 The block template `display'
	2.2.3 The para template `std'
	2.2.4 The list template `std'
	2.2.5 The item template `std'

	3 Tagging support
	3.1 Paragraph tags
	3.2 Tagging recipes

	4 Debugging
	5 New and redefined kernel command
	Index
	B
	D
	E
	I
	L
	N
	P
	T

