
The graphicx package∗

D. P. Carlisle S. P. Q. Rahtz

2024/12/31

This file is maintained by the LATEX Project team.
Bug reports can be opened (category graphics) at
https://latex-project.org/bugs.html.

1 Introduction

This package provides an alternative interface to the LATEX2ε graphics functions.
The command names provided are the same as in the standard package, and they
use the same internal functions. However the meaning of the optional arguments
is different. Note only the optional arguments have changed: any document which
only uses the graphics commands with the mandatory arguments and/or the star-
forms will work identically (with essentially identical implementation) with the
two packages.

2 Key=Value Interface

When the decision to produce LATEX2ε was made, certain ‘guiding principles’ were
made (and published in the original announcement). One of these was that all
new features would ‘conform to the conventions of version 2.09’. Specifically this
meant that new commands would obey the same basic syntax rules for arguments
as the existing commands.

Standard LATEX optional arguments are positional. If a command were to take
three optional arguments, then there would be no way of specifying only the third,
one would have to give all three, even if the first two were repeats of the default
values. Basically this means that ‘standard’ optional arguments are not suitable
if there is more than one option. Various existing packages (for LATEX 2.09) have
recognised this, and used ‘named arguments’ in various forms. Perhaps the two
most noticeable are psfig and pstricks. With ‘named arguments’ (sometimes
called ‘attributes’) each option is not tied to a particular position, but rather given
a name (or key) and any options that must be set are set by explicitly associating
this name with the desired value.

The members of the LATEX Project do appreciate the importance of this kind of
syntax, but felt that rather than extending the syntax of LATEX in an uncoordinated
way, it would be better to keep with ‘standard arguments’ in LATEX2ε, which is

∗This file has version number v1.2e, last revised 2024/12/31.

1

https://latex-project.org/bugs.html


intended as a ‘consolidation of existing LATEX variants’. The long term planning
for an eventual LATEX3 release will then be able to consider the whole LATEX user
interface, and a suitable syntax for named arguments. It is important that such
an interface design is not hampered by having to retain compatibility with earlier
attempts at a named argument syntax. For this reason this graphicx package,
which uses the named argument mechanism from the keyval package should be
considered ‘non standard’ although it is supported by the same mechanism, and
same authors as the ‘standard’ graphics package.

3 The User Interface

*[⟨key-val list⟩]{⟨file⟩}\includegraphics

*[⟨llx,lly⟩][⟨urx,ury⟩]{⟨file⟩}\includegraphics

Include a graphics file.
The star form is just for compatibility with the standard interface, and es-

sentially just adds clip to the keys specified. Similarly the second, two-optional
argument form is for increased compatibility with the standard package. The two
optional argument form is not needed in the keyval interface.

Various ‘keys’ or named arguments are supported.

bb Set the bounding box. The argument should be four dimensions, separated
by spaces.

bbllx,bblly,bburx,bbury Set the bounding box. Mainly for compatibility
with older packages. bbllx=a,bblly=b,bburx=c,bbury=d is equivalent to
bb = a b c d.

natwidth,natheight Again an alternative to bb. natheight=h,natwidth=w is
equivalent to bb = 0 0 h w.

viewport Modify the bounding box specified in the file. The four values specify
a bounding box relative to the llx,lly coordinate of the original box.

trim Modify the bounding box specified in the file. The four values specify the
amounts to remove from the left, bottom, right and top of the original box.

hiresbb Boolean valued key. Defaults to true. Causes TEX to look for
%%HiResBoundingBox comments rather than the standard %%BoundingBox.
May be set to false to override a default setting of true specified by the
hiresbb package option.

angle Rotation angle.

origin Rotation origin (see \rotatebox, below).

width Required width, a dimension (default units bp). The graphic will be scaled
to make the width the specified dimension.

height Required height. a dimension (default units bp).

totalheight Required totalheight (i.e., height + depth). a dimension (default
units bp). Most useful after a rotation (when the height might be zero).

2



keepaspectratio Boolean valued key (like clip). If it is set to true, modify the
meaning of the width and height (and totalheight) keys such that if both
are specified then rather than distort the figure the figure is scaled such that
neither dimension exceeds the stated dimensions.

scale Scale factor.

clip Either ‘true’ or ‘false’ (or no value, which is equivalent to ‘true’). Clip the
graphic to the bounding box (or viewport if one is specified).

draft a boolean valued key, like ‘clip’. locally switches to draft mode, ie. do not
include the graphic, but leave the correct space, and print the filename.

type Specify the file type. (Normally determined from the file extension.)

ext Specify the file extension. Only for use with type.

read Specify the ‘read file’ which is used for determining the size of the graphic.
Only for use with type.

command Specify the file command. Only for use with type.

quiet Turns off writing information about graphics to the .log.

page The page of a multi-page PDF graphic to be used.

interpolate Enables interpolation of bitmap images by viewers.

pagebox Specifies which PDF box should be used for the natural image size,
one of mediabox, cropbox, bleedbox, trimbox, artbox. The default is driver-
specific.

alt Alternative text in accessibility uses.

actualtext ActualText text in accessibility uses.

artifact Boolean to mark graphics as an artifact in accessibility uses.

The arguments are interpreted left to right. clip, draft, bb,, and bbllx etc.
have the same effect wherever they appear. but the scaling and rotation keys
interact.

Any scaling that is specified before rotation, is handled by the internal graphics
inclusion function. Rotation, or any later scaling is handled by implicitly calling
\rotatebox or \scalebox. So [height=1in,angle=90] scales the graphic to 1in,
then rotates it, so it is one inch wide. [angle=90,height=1in] first rotates, then
scales the result so that it is 1in high. A driver that can scale included graphics,
but not arbitrary text will not be able to support the second form, as it will require
a call to \scalebox, but the first form should work as there the scaling is handled
by \Ginclude@graphics.

[⟨key-val list⟩]{⟨angle⟩}{⟨text⟩}\rotatebox

Rotate text.
The keys supported by \rotatebox are:

origin Specify the centre of rotation. origin=⟨label⟩, where the labels are up to
two of lrctbB (B denotes the baseline, as for PSTricks).

3



x,y An alternative to origin. x=⟨dimen⟩,y=⟨dimen⟩ The x, y coordinate of the
centre of rotation. As usual \height etc may be used.

units Specify the units used in the main argument. eg units=-360 would mean
that the argument referred to degrees clockwise instead of the default anti-
clockwise rotation.

As an example \rotatebox[origin=c]{180}{text} will rotate “text” around
its centre, thus creating a final box of the same dimensions as the original box. This
is to be contrasted to the default behaviour, which rotates around the reference
point on the baseline, thus producing a box that is mainly below the baseline.

4 Implementation

1 ⟨∗package⟩

One new option is handled by keyval. It suppresses the error normally gener-
ated if an unknow keyval key is used. (This helps porting between drivers that
use extended interfaces.)

2 \DeclareOption{unknownkeysallowed}

3 {\PassOptionsToPackage\CurrentOption{keyval}}

All other options are handled by the graphics package.
4 \DeclareOption*{\PassOptionsToPackage\CurrentOption{graphics}}

5 \ProcessOptions

This package requires these two building blocks.
6 \RequirePackage{keyval,graphics}

4.1 Graphics Inclusion

First we declare the ‘bounding box’ keys. These all use \Gin@defaultbp so that
the ⟨value⟩ can be given as a length in the usual TEX units such as cm or as an
integer, taken as bp.

\KV@Gin@bb

7 \define@key{Gin}{bb}

8 {\Gin@bboxtrue\Gread@parse@bb#1 \\}

\KV@Gin@bbllx

\KV@Gin@bblly

\KV@Gin@bburx

\KV@Gin@bbury

9 \define@key{Gin}{bbllx}

10 {\Gin@bboxtrue\Gin@defaultbp\Gin@llx{#1}}

11 \define@key{Gin}{bblly}

12 {\Gin@bboxtrue\Gin@defaultbp\Gin@lly{#1}}

13 \define@key{Gin}{bburx}

14 {\Gin@bboxtrue\Gin@defaultbp\Gin@urx{#1}}

15 \define@key{Gin}{bbury}

16 {\Gin@bboxtrue\Gin@defaultbp\Gin@ury{#1}}

\KV@Gin@hiresbb If set to true (the default) TEX will look for bounding box comments of the form
%%HiResBoundingBox (which typically have real values) instead of the standard
%%BoundingBox (which should have integer values). It may be set to false to
override a package option of hiresbb.

17 \define@key{Gin}{hiresbb}[true]{%

4



18 \edef\Gread@BBox{%

19 \@percentchar\@percentchar

20 \csname if#1\endcsname HiRes\fi

21 BoundingBox}}

\KV@Gin@natheight

\KV@Gin@natheight 22 \let\KV@Gin@natwidth\KV@Gin@bburx

23 \let\KV@Gin@natheight\KV@Gin@bbury

\KV@Gin@viewport

\KV@Gin@trim

A ‘viewport’ is a user-specified area of the graphic to be included. It should not
be confused with the ‘Bounding Box’ of a PS file. In fact, the origin for a viewport
specification is the (llx,lly) lower left coordinate of the bounding box. If a viewport
is specified, and clipping is turned on, clipping is based on the viewport, not on
the boundingbox.

Both ‘viewport’ and ‘trim’ were suggested (and originally, but differently, im-
plemented) by Arthur Ogawa.

24 \define@key{Gin}{viewport}

25 {\let\Gin@viewport@code\Gin@viewport\Gread@parse@vp#1 \\}

26 \define@key{Gin}{trim}

27 {\let\Gin@viewport@code\Gin@trim\Gread@parse@vp#1 \\}

\Gread@parse@vp Grabs four bounding box values like \Gread@parse@bp but saves them in alterna-
tive macros that are used in the viewport and trim cases to modify the bounding
box read from the file.

28 \def\Gread@parse@vp#1 #2 #3 #4 #5\\{%

29 \Gin@defaultbp\Gin@vllx{#1}%

30 \Gin@defaultbp\Gin@vlly{#2}%

31 \Gin@defaultbp\Gin@vurx{#3}%

32 \Gin@defaultbp\Gin@vury{#4}}%

\KV@Gin@angle Specify a rotation. This is just handled by wrapping the \includegraphics com-
mand in a call to the internal version of \rotatebox. Normally this is the ‘stan-
dard’ version but if an origin key is used in \includegraphics then the keyval
version of origin is used, and the origin key is passed on.

33 \define@key{Gin}{angle}

34 {\Gin@esetsize

35 \@tempswatrue

36 \edef\@tempa{\toks@{\noexpand\Gin@erotate{#1}{\the\toks@}}}%

37 \@tempa}

\KV@Gin@origin Pass the origin key value on to \rotatebox. \Gin@erotate is initialised to
\Grot@box@std later in the file, after the latter has been defined.

38 \define@key{Gin}{origin}[c]{%

39 \def\Gin@erotate{\Grot@box@kv[origin=#1]}}

\KV@Gin@width

\KV@Gin@height

Save the required height and width. The actual scaling is done later.

40 \define@key{Gin}{width}{\def\Gin@ewidth{#1}}

41 \define@key{Gin}{height}{\def\Gin@eheight{#1}}

\KV@Gin@totalheight The same as height key, but locally changes \Gin@eresize to \totalheight

from its default value of \height.

42 \define@key{Gin}{totalheight}{%

43 \def\Gin@eresize{\totalheight}\def\Gin@eheight{#1}}

5



\KV@Gin@keepaspectratio Boolean valued key (like clip). If it is set to true, modify the meaning of the width
and height (and totalheight) keys such that if both are specified then rather
than distort the figure the figure is scaled such that neither dimension exceeds the
stated dimensions.

44 \define@key{Gin}{keepaspectratio}[true]{%

45 \lowercase{\Gin@boolkey{#1}}{iso}}

\KV@Gin@scale If the scaling is being handled externally, wrap \includegraphics in the inter-
nal form of \scalebox, otherwise locally define \Gin@req@sizes to calculate the
required sizes based on scale factor.

46 \define@key{Gin}{scale}{%

47 \if@tempswa

48 \edef\@tempa{\toks@{\noexpand\Gscale@box{#1}[#1]{\the\toks@}}}%

49 \@tempa

50 \else

51 \def\Gin@req@sizes{%

52 \def\Gin@scalex{#1}\let\Gin@scaley\Gin@exclamation

53 \Gin@req@height\Gin@scalex\Gin@nat@height

54 \Gin@req@width\Gin@scalex\Gin@nat@width}%

55 \fi

56 \@tempswatrue}

\KV@Gin@draft Locally set the draft switch to true. This is used by the code in graphics package
to suppress the file inclusion.

57 \define@key{Gin}{draft}[true]{%

58 \lowercase{\Gin@boolkey{#1}}{draft}}

\KV@Gin@clip Locally set the clip switch to true. This is used by the code in graphics package
to suppress the printing of anything outside the bounding box specified.

59 \define@key{Gin}{clip}[true]{%

60 \lowercase{\Gin@boolkey{#1}}{clip}}

\KV@Gin@type If you use ‘type’ you must use no extension in the main argument and you must
use ‘ext’. You can also use ‘read’ and ‘command’.

61 \define@key{Gin}{type}{%

62 \def\Ginclude@graphics##1{%

63 \begingroup

64 \def\Gin@base{##1}%

65 \edef\@tempa{{#1}{\Gin@eread}{\Gin@ecom{##1\Gin@eext}}}%

66 \expandafter\Gin@setfile\@tempa

67 \endgroup}}

\KV@Gin@ext Specify an extension, for use with the ‘type’ key.

68 \define@key{Gin}{ext}{\def\Gin@eext{#1}}

69 \let\Gin@eext\@empty

\KV@Gin@read Specify a read file, for use with the ‘type’ key. You may want to globally set
this to * using \setkeys. * means read the graphic file for size info, as in
\DeclareGraphicsRule.

70 \define@key{Gin}{read}{%

71 \def\Gin@eread{#1}%

72 \def\@tempa{*}\ifx\@tempa\Gin@eread\def\Gin@eread{\Gin@eext}\fi}

73 \let\Gin@eread\@empty

6



\KV@Gin@command Specify a command, for use with the ‘type’ key.

74 \define@key{Gin}{command}{\def\Gin@ecom##1{#1}}

75 \let\Gin@ecom\@firstofone

\KV@Gin@decodearray For manipulating bitmap images.

76 \define@key{Gin}{decodearray}{%

77 \def\Gin@decode{#1}%

78 }

\KV@Gin@quiet Skip writing to the log.

79 \define@key{Gin}{quiet}[]{%

80 \let\Gin@log\@gobble

81 }

\KV@Gin@page Page of a multi-page (PDF) graphic.

82 \define@key{Gin}{page}{%

83 \def\Gin@page{#1}%

84 \ifx\Gin@page\@empty

85 \else

86 \edef\Gin@page{\number\Gin@page}%

87 \fi

88 }

\KV@Gin@interpolate Enable/disable interpolation of bitmap images by the viewer.

89 \define@key{Gin}{interpolate}[true]{%

90 \lowercase{\Gin@boolkey{#1}}{interpolate}}

\KV@Gin@pagebox Specify which PDF box to use for the natural image size in PDF inclusions.

91 \define@key{Gin}{pagebox}{%

92 \expandafter\let\expandafter\Gin@pagebox

93 \csname Gin@pagebox@#1\endcsname

94 \ifx\Gin@pagebox\relax

95 \let\Gin@pagebox\Gin@pagebox@cropbox

96 \@warning{%

97 Unknown value ‘#1’ for ‘pagebox’.\MessageBreak

98 Supported values:\MessageBreak

99 mediabox, cropbox, bleedbox, trimbox, artbox%

100 }%

101 \fi

102 }

103 \def\Gin@pagebox@mediabox{mediabox}%

104 \def\Gin@pagebox@cropbox{cropbox}%

105 \def\Gin@pagebox@bleedbox{bleedbox}%

106 \def\Gin@pagebox@trimbox{trimbox}%

107 \def\Gin@pagebox@artbox{artbox}%

\KV@Gin@alt By default the alt key does nothing but may be used for alternative text for
accessibility uses in extensions.

108 \define@key{Gin}{alt}{}

\KV@Gin@actualtext By default the actualtext key does nothing but may be used for ActualText text
for accessibility uses in extensions.

109 \define@key{Gin}{actualtext}{}

7



\KV@Gin@artifact By default the artifact key does nothing but may be used to mark graphicas as
an artifact for accessibility uses in extensions.

110 \define@key{Gin}{artifact}[true]{%

111 \lowercase{\Gin@boolkey{#1}}{artifact}}

\Gin@boolkey Helper function for defining boolean valued functions. The order of arguments
allows \lowercase to only act on the user-supplied argument.

112 \def\Gin@boolkey#1#2{%

113 \csname Gin@#2\ifx\relax#1\relax true\else#1\fi\endcsname}

\Gin@esetsize Arrange for the final size to be set, either by wrapping the include graphics call
in \scalebox, or by redefining \Gin@req@sizes appropriately.

114 \def\Gin@eresize{\height}

115 \def\Gin@esetsize{%

116 \let\@tempa\Gin@exclamation

117 \if@tempswa

External. Wrap the \includegraphics command in a call to the internal form of
\scalebox to handle the rotation.

118 \edef\@tempa{\toks@{\noexpand

119 \Gscale@@box\noexpand\Gin@eresize

120 {\Gin@ewidth}{\Gin@eheight}{\the\toks@}}}%

121 \@tempa

122 \else

Internal. Handle scaling with the \includegraphics command directly rather
than calling \scalebox.

123 \ifx\Gin@ewidth\@tempa

124 \ifx\Gin@eheight\@tempa

No resizing.

125 \else

Just height specified.

126 \let\Gin@@eheight\Gin@eheight

127 \def\Gin@req@sizes{%

128 \Gscale@div\Gin@scaley\Gin@@eheight\Gin@nat@height

129 \let\Gin@scalex\Gin@exclamation

130 \setlength\Gin@req@height\Gin@@eheight

131 \Gin@req@width\Gin@scaley\Gin@nat@width}%

132 \fi

133 \else

134 \ifx\Gin@eheight\@tempa

Just width specified.

135 \let\Gin@@ewidth\Gin@ewidth

136 \def\Gin@req@sizes{%

137 \Gscale@div\Gin@scalex\Gin@@ewidth\Gin@nat@width

138 \let\Gin@scaley\Gin@exclamation

139 \setlength\Gin@req@width\Gin@@ewidth

140 \Gin@req@height\Gin@scalex\Gin@nat@height}%

141 \else

Both height and width specified.

142 \let\Gin@@ewidth\Gin@ewidth

143 \let\Gin@@eheight\Gin@eheight

8



At this point can locally redefine \Gin@nosize. Instead of generating an error,
just set the ‘natural’ size to be the ‘requested size’. Previous versions of this
package did not allow the use of height and width unless the natural size was
known as otherwise LATEX can not calculate the scale factor. However many drivers
(especially for bitmap formats) can work this out themselves, so as long as both
height and width are given, so LATEX knows the size to leave, accept this. This
assumes the code in the driver file will use the ‘required height’ information, not
the scale factors, which will be set to 1!.

144 \def\Gin@nosize##1{%

145 \KV@Gin@natwidth\Gin@@ewidth

146 \KV@Gin@natheight\Gin@@eheight}%

147 \def\Gin@req@sizes{%

148 \Gscale@div\Gin@scalex\Gin@@ewidth\Gin@nat@width

149 \Gscale@div\Gin@scaley\Gin@@eheight\Gin@nat@height

Donald Arseneau requested this feature. If both height and width are chosen,
choose the smaller scale factor rather than distort the graphic. This mode is
turned on with the keepaspectratio key.

150 \ifGin@iso

151 \ifdim\Gin@scaley\p@>\Gin@scalex\p@

152 \let\Gin@scaley\Gin@scalex

153 \else

154 \let\Gin@scalex\Gin@scaley

155 \fi

156 \fi

157 \Gin@req@width\Gin@scalex\Gin@nat@width

158 \Gin@req@height\Gin@scaley\Gin@nat@height}%

159 \fi

160 \fi

161 \fi

162 \let\Gin@ewidth\Gin@exclamation

163 \let\Gin@eheight\Gin@ewidth}

\Gin@req@height

\Gin@req@width

The required final size.

164 \newdimen\Gin@req@height

165 \newdimen\Gin@req@width

\Gin@outer@scalex

\Gin@outer@scaley

Scale factors to pass to \scalebox.

166 \let\Gin@outer@scalex\relax

167 \let\Gin@outer@scaley\relax

\Gin@angle Rotation angle.

168 \let\Gin@angle\relax

\Gin@ewidth

\Gin@eheight

Final size, initialised for no scaling.

169 \let\Gin@ewidth\Gin@exclamation

170 \let\Gin@eheight\Gin@ewidth

\Gin@scalex

\Gin@scaley

Scale factors. Initialised for no scaling.

171 \def\Gin@scalex{1}

172 \let\Gin@scaley\Gin@exclamation

9



\Gin@i Use the same top level \includegraphics command as the standard interface.
This will set the clipping switch, and then call \Gin@i.

173 \def\Gin@i{%

174 \def\Gin@req@sizes{%

175 \Gin@req@height\Gin@nat@height

176 \Gin@req@width\Gin@nat@width}%

177 \@ifnextchar[\Gin@ii{\Gin@ii[]}}

\Gin@ii Look for a second optional argument. If one optional argument is present, call
\setkeys to process it,

178 \def\Gin@ii[#1]#2{%

179 \def\@tempa{[}\def\@tempb{#2}%

180 \ifx\@tempa\@tempb

181 \def\@tempa{\Gin@iii[#1][}%

182 \expandafter\@tempa

183 \else

184 \begingroup

185 \@tempswafalse

186 \toks@{\Ginclude@graphics{#2}}%

187 \setkeys{Gin}{#1}%

188 \Gin@esetsize

189 \the\toks@

190 \endgroup

191 \fi}

5 Rotation

\rotatebox Look for an optional argument.

192 \protected\def\rotatebox{%

193 \leavevmode

194 \@ifnextchar[\Grot@box@kv\Grot@box@std}

\Grot@box@std If no KV argument, just repeat the standard definition.

195 \long\def\Grot@box@std#1#2{%

196 \Grot@setangle{#1}%

197 \setbox\z@\hbox{{#2}}%

198 \Grot@x\z@

199 \Grot@y\z@

200 \Grot@box}

\Grot@box@kv

201 \long\def\Grot@box@kv[#1]#2#3{%

202 \@begin@tempboxa\hbox{#3}%

203 \Grot@x\width \divide\Grot@x\tw@

204 \Grot@y\height \advance\Grot@y-\depth \divide\Grot@y\tw@

205 \setkeys{Grot}{#1}%

206 \setbox\z@\box\@tempboxa

207 \Grot@setangle{#2}%

208 \Grot@box

209 \@end@tempboxa}

There are two ways of specifying the centre of rotation.

10



\KV@Grot@origin origin=⟨label⟩, where the labels are up to two of lrctbB (B denotes the baseline,
as for PSTricks).

210 \define@key{Grot}{origin}[c]{%

211 \@tfor\@tempa:=#1\do{%

212 \if l\@tempa \Grot@x\z@\else

213 \if r\@tempa \Grot@x\width\else

214 \if t\@tempa \Grot@y\height\else

215 \if b\@tempa \Grot@y-\depth\else

216 \if B\@tempa \Grot@y\z@\fi\fi\fi\fi\fi}}

\KV@Grot@x

\KV@Grot@y

x=⟨dimen⟩,y=⟨dimen⟩ The x, y coordinate of the centre of rotation. As usual
\height etc may be used.

217 \define@key{Grot}{x}{\setlength\Grot@x{#1}}

218 \define@key{Grot}{y}{\setlength\Grot@y{#1}}

\KV@Grot@units ‘units’ specifies the number or units in one anti-clockwise circle. So the default is
360. −360 gives clockwise rotation, 6.283185 gives radians etc.

219 \define@key{Grot}{units}{%

220 \def\Grot@setangle##1{%

221 \dimen@##1\p@

222 \dimen@ii#1\p@

223 \divide\dimen@ii360\relax

224 \divide\dimen@\dimen@ii

225 \edef\Grot@angle{\number\dimen@}}}

\Gin@erotate Initialise the rotation command to use in \includegraphics.

226 \let\Gin@erotate\Grot@box@std

227 ⟨/package⟩

11


	1 Introduction
	2 Key=Value Interface
	3 The User Interface
	4 Implementation
	4.1 Graphics Inclusion

	5 Rotation

