
The graphics package∗

D. P. Carlisle S. P. Q. Rahtz

2024/08/06

This file is maintained by the LATEX Project team.
Bug reports can be opened (category graphics) at
https://latex-project.org/bugs.html.

1 Introduction

This package implements various ‘graphics’ functions. The main features are: a)
inclusion of ‘graphics’ files; b) rotation of sections of the page; c) scaling of sections
of the page.

The design is split into three ‘levels’.

• The user interface. This is the collection of commands designed to appear
in a document text. Actually two separate user interfaces have been imple-
mented. The ‘standard’ interface, described here, and a more powerful, and
more ‘user-friendly’ interface provided by the graphicx package.

• The core functions. These functions, which are also implemented in this file,
do all the ‘main work’. The ‘user-interface functions’ just collect together
the information from any optional-arguments or star-forms, and then call
one of these functions.

• The driver files. It is not possible to achieve the functionality of this package
just using TEX. The dvi driver used must be given additional instructions.
(Using the \special command of TEX.) Unfortunately, the capabilities
of various drivers differ, and the syntax required to pass instructions to
the drivers is also not standardised. So the ‘core functions’ never access
\special directly, but rather call a series of commands that must be de-
fined in a special file customised for each driver. The accompanying file
drivers.dtx has suitable files for a range of popular drivers.

2 Package Options

Most of the options, such as dvips, textures etc., specify the driver that is to be
used to print the document. You may wish to set up a configuration file so that
this option always takes effect, even if not specified in the document. To do this,

∗This file has version number v1.4g, last revised 2024/08/06.

1

https://latex-project.org/bugs.html

produce a file graphics.cfg containing the line
\ExecuteOptions{dvips}

(or whichever other driver you wish).
Apart from the driver options there are a few other options to control the

behaviour of the package.

draft Do not include graphics files, but instead print a box of the size the graphic
would take up, and the file name. This greatly speeds up previewing on
most systems.

final Turns off the draft option.

debugshow Show a lot of tracing information on the terminal. If you are not me
you probably do not want to use this option.

hiderotate Do not show rotated text. Sometimes useful if your previewer can
not rotate text.

hidescale Do not show scaled text.

hiresbb Look for Bounding Box lines of the form %%HiResBoundingBox instead
of the standard %%BoundingBox. These are used by some applications to get
round the restriction that BoundingBox comments should only have integer
values.

setpagesize, nosetpagesize The setpagesize option requests that the driver
option sets the page size. (Whichever option is used, the page size is not set
by this package if \mag has been changed from its default value.)

demo Instead of including a graphics file, make \includegraphics insert a black
rectangle of size 150 pt by 100 pt unless either dimension was already speci-
fied by another option.

3 Standard Interface

3.1 Graphics Inclusion

*[⟨llx,lly⟩][⟨urx,ury⟩]{⟨file⟩}\includegraphics

Include a graphics file.
If * is present, then the graphic is ‘clipped’ to the size specified. If * is omitted,

then any part of the graphic that is outside the specified ‘bounding box’ will over-
print the surrounding text.

If the optional arguments are omitted, then the size of the graphic will be de-
termined by reading an external file as described below. If [⟨urx,ury⟩] is present,
then it should specify the coordinates of the top right corner of the image, as a
pair of TEX dimensions. If the units are omitted they default to bp. So [1in,1in]
and [72,72] are equivalent. If only one optional argument appears, the lower left
corner of the image is assumed to be at [0,0]. Otherwise [⟨llx,lly⟩] may be used
to specify the coordinates of this point.

{⟨dir-list⟩}\graphicspath

This optional declaration may be used to specify a list of directories in which to
search for graphics files. The format is as for the LATEX2ε primitive \input@path,

2

a list of directories, each in a {} group (even if there is only one in the list). For
example: \graphicspath{{eps/}{tiff/}} would cause the system to look in the
subdirectories eps and tiff of the current directory. The default setting of this
path is \input@path, so that graphics files will be found wherever TEX files are
found.

{⟨ext-list⟩}\DeclareGraphicsExtensions

This specifies the behaviour of the system when the filename argument to
\includegraphics does not have an extension specified. Here {⟨ext-list⟩} should
be a comma-separated list of file extensions, each with a leading period (.). A
file name is produced by appending sep and one extension. If a file is found, the
system acts as if that extension had been specified. If not, the next extension in
ext-list is tried.

Each use of \DeclareGraphicsExtensions overwrites all previous definitions.
It is not possible to add an extension to an existing list.

Early versions of this package defined a default argument for this command.
This has been removed.

{⟨ext⟩}{⟨type⟩}{⟨read-file⟩}{⟨command⟩}\DeclareGraphicsRule

Any number of these declarations can be made. They determine how the sys-
tem behaves when a file with extension ext is specified. (The extension may
be specified explicitly or, if the argument to \includegraphics does not have
an extension, it may be a default extension from the ext-list specified with
\DeclareGraphicsExtensions.)

ext is the extension of the file. Any file with this extension will be processed
by this graphics rule. Normally a file with an extension for which no rule has been
declared will generate an error, however you may use * as the extension to define
a default rule. For instance the dvips driver file declares all files to be of type eps
unless a more specific rule is declared.

Since Version v0.6, extensions should be specified including the ., that is, .eps
not eps.

type is the ‘type’ of file involved. All files of the same type will be input with
the same internal command (which must be defined in a ‘driver file’). For example
files with extensions ps, eps, ps.gz may all be classed as type eps.

read-file determines the extension of the file that should be read to determine
size information. It may be the same as ext but it may be different, for example
.ps.gz files are not readable easily by TEX, so you may want to put the bounding
box information in a separate file with extension .ps.bb. If read-file is empty, {},
then the system will not try to locate an external file for size info, and the size
must be specified in the arguments of \includegraphics. As a special case * may
be used to denote the same extension as the graphic file. This is mainly of use in
conjunction with using * as the extension, as in that case the particular graphic
extension is not known. For example

\DeclareGraphicsRule{*}{eps}{*}{}

This would declare a default rule, such that all unknown extensions would be
treated as EPS files, and the graphic file would be read for a BoundingBox com-
ment.

If the driver file specifies a procedure for reading size files for type, that will be
used, otherwise the procedure for reading eps files will be used. Thus the size of
bitmap files may be specified in a file with a PostScript style %%BoundingBox line,
if no other specific format is available.

3

command is usually empty, but if non empty it is used in place of the filename
in the \special. Within this argument, #1 may be used to denote the filename.
Thus using the dvips driver, one may use
\DeclareGraphicsRule{.ps.gz}{eps}{.ps.bb}{‘zcat #1}

The final argument causes dvips to use the zcat command to unzip the file before
inserting it into the PostScript output.

3.2 Rotation

{⟨angle⟩}{⟨text⟩}\rotatebox

Rotate text angle degrees anti-clockwise. Normally the rotation is about the left-
hand end of the baseline of text.

3.3 Scaling

{⟨h-scale⟩}[⟨v-scale⟩]{⟨text⟩}\scalebox

Scale text by the specified amounts. If v-scale is omitted, the vertical scale factor
is the same as the horizontal one.

*{⟨h-length⟩}{⟨v-length⟩}{⟨text⟩}\resizebox

Scale text so that the width is h-length. If ! is used as either length argument, the
other argument is used to determine a scale factor that is used in both directions.
Normally v-length refers to the height of the box, but in the star form, it refers
to the ‘height + depth’. As normal for LATEX2ε box length arguments, \height,
\width, \totalheight and \depth may be used to refer to the original size of the
box.

4 The Key=Value Interface

As mentioned in the introduction, apart from the above ‘standard interface’, there
is an alternative syntax to the \includegraphics and \rotatebox commands that
some people may prefer. It is provided by the accompanying graphicx package.

5 The Graphics Kernel Functions

5.1 Graphics Inclusion

{⟨file⟩}\Ginclude@graphics

Insert the contents of the file file at the current point. \Ginclude@graphics may
use the four macros \Gin@llx, \Gin@lly, \Gin@urx, \Gin@ury to determine the
‘bounding box’ of the graphic. The result will be a TEX box of width urx− llx and
height ury − lly . If \Gin@clip is ⟨true⟩ then part of the graphic that is outside
this box should not be displayed. (Not all drivers can support this ‘clipping’.)
Normally all these parameters are set by the ‘user interface level’.

{⟨file⟩}\Gread@eps

For each type of graphics file supported, the driver file must define \Ginclude@type
and, optionally, \Gread@type. The read command is responsible for obtaining
size information from the file specified in the \DeclareGraphicsRule command.
However, the kernel defines a function, \Gread@eps, which can read PostScript
files to find the %%BoundingBox comment. This function will be used for any

4

type for which a specific function has not been declared. \Gread@eps accepts a
generalised version of the bounding box comment. TEX units may be used (but
there must be no space before the unit). If the unit is omitted, bp is assumed. So
%%BoundingBox 0 0 2in 3in

would be accepted by this function, to produce a 2in wide by 3in high graphic.

5.2 Rotation

\Grot@box

Rotate the contents of \box0 through \Grot@angle degrees (anti-clockwise). The
user-interface is responsible for setting the macro \Grot@angle, and putting the
appropriate text in \Grot@box.

5.3 Scaling

{⟨xscale⟩}[⟨yscale⟩]{⟨text⟩}\Gscale@box

(The second argument is not optional.) Scale text by the appropriate scale factors.
{⟨dima⟩}{⟨dimb⟩}{⟨text⟩}\Gscale@box@dd

Scale text in both directions by a factor dima/dimb.
{⟨dima⟩}{⟨dimb⟩}{⟨dimc⟩}{⟨dimd⟩}{⟨text⟩}\Gscale@box@dddd

Scale text horizontally by a factor dima/dimb, and vertically by a factor of
dimc/dimd.

{⟨cmd⟩}{⟨dima⟩}{⟨dimb⟩}\Gscale@div

Define the macro cmd to be the ratio of the lengths dima/dimb.

6 Interface to the Driver Files

6.1 Graphics Inclusion

Each driver file must declare that its driver can include graphics of certain types.
It does this by declaring for each type a command of the form:
\Ginclude@type
The Graphics kernel function will call this driver-defined function with the filename
as argument, and certain additional information will be provided as follows:
\Gin@llx, \Gin@lly,
\Gin@urx, \Gin@ury

Macros storing the ‘bounding box’

\Gin@nat@width

\Gin@nat@height

Registers storing the natural size.

\Gin@req@width

\Gin@req@height

Registers storing the required size, after
scaling.

\Gin@scalex, \Gin@scaley Macros with the scale factors. A value of
! means: Scale by the same amount as
the other direction.

\ifGin@clip \newif token, true if the graphic should
be ‘clipped’ to the bounding box.

Optionally the driver may define a command of the form:
\Gread@type
This is responsible for reading an external file to find the bounding box informa-
tion. If such a command is not declared but a read-file is specified, the command
\Gread@eps, which is defined in the Graphics Kernel, will be used.

5

6.2 Literal PostScript

Drivers that are producing PostScript output may want to define the following
macros. They each take one argument which should be passed to an appropriate
special. They are not used directly by this package but allow other packages to
use the standard configuration file and package options to customise to various
drivers:
\Gin@PS@raw, Literal PostScript special.
\Gin@PS@restored, Literal PostScript special, the driver will surround this with
a save-restore pair.
\Gin@PS@literal@header, PostScript to be inserted in the header section of the
PostScript file.
\Gin@PS@file@header, external file to be inserted in the header section of the
PostScript file.

6.3 Rotation

\Grot@start, \Grot@end These macros must be defined to insert the appropriate
\special to rotate the text between them by \Grot@angle degrees. The kernel
function will make sure that the correct TEX spacing is produced, these functions
only need insert the \special.

6.4 Scaling

\Gscale@start, \Gscale@end, as for rotation, but here scale the text by
\Gscale@x and \Gscale@y.

7 Implementation

1 ⟨∗package⟩

7.1 Initialisation

\Gin@codes First we save the catcodes of some characters, and set them to fixed values whilst
this file is being read.

2 \edef\Gin@codes{%

3 \catcode‘\noexpand\^^A\the\catcode‘\^^A\relax

4 \catcode‘\noexpand\"\the\catcode‘\"\relax

5 \catcode‘\noexpand*\the\catcode‘*\relax

6 \catcode‘\noexpand\!\the\catcode‘\!\relax

7 \catcode‘\noexpand\:\the\catcode‘\:\relax}

8 \catcode‘\^^A=\catcode‘\%

9 \@makeother\"%

10 \catcode‘*=11

11 \@makeother\!%

12 \@makeother\:%

We will need to have an implementation of the trigonometric functions for the
rotation feature. May as well load it now.

13 \RequirePackage{trig}

6

\Grot@start

\Grot@end

Initialise the rotation primitives.

14 \providecommand\Grot@start{\@latex@error{Rotation not supported}\@ehc

15 \global\let\Grot@start\relax}

16 \providecommand\Grot@end{}

\Gscale@start

\Gscale@end

Initialise the scaling primitives.

17 \providecommand\Gscale@start{\@latex@error{Scaling not supported}\@ehc

18 \global\let\Gscale@start\relax}

19 \providecommand\Gscale@end{}

\Gread@BBox %%BoundingBox as a macro for testing with \ifx. This may be redefined by the
hiresbb option.

20 \edef\Gread@BBox{\@percentchar\@percentchar BoundingBox}

7.2 Options

\ds@draft

\ds@final 21 \DeclareOption{draft}{\Gin@drafttrue}

22 \DeclareOption{final}{\Gin@draftfalse}

\ifGin@draft True in draft mode.

23 \newif\ifGin@draft

\ds@hiresbb If given this option the package will look for bounding box comments of the form
%%HiResBoundingBox (which typically have real values) instead of the standard
%%BoundingBox (which should have integer values).

24 \DeclareOption{hiresbb}{%

25 \edef\Gread@BBox{\@percentchar\@percentchar HiResBoundingBox}}

\ds@demo If given this option the package will disregard the actual graphics file and insert a
black box unless width or height are already specified.

26 \DeclareOption{demo}{%

27 \AtBeginDocument{%

28 \def\Ginclude@graphics#1{%

29 \rule{\@ifundefined{Gin@@ewidth}{150pt}{\Gin@@ewidth}}%

30 {\@ifundefined{Gin@@eheight}{100pt}{\Gin@@eheight}}}}}

\ds@setpagesize

\ds@nosetpagesize

The setpagesize option requests that the driver option sets the page size.
(Whichever option is used, the page size is not set by this package if \mag has
been changed from its default value.)

31 \newif\ifGin@setpagesize\Gin@setpagesizetrue

32 \DeclareOption{setpagesize}{\Gin@setpagesizetrue}

33 \DeclareOption{nosetpagesize}{\Gin@setpagesizefalse}

\Gin@driver Driver in use.

34 \providecommand\Gin@driver{}

\ds@dvips

\ds@xdvi

Tomas Rokicki’s PostScript driver (unix, MSDOS, VMS. . .). The X11 previewer
xdvi supports basically the same set of \specials.

35 \DeclareOption{dvips}{\def\Gin@driver{dvips.def}}

36 \DeclareOption{xdvi}{\ExecuteOptions{dvips}}

7

\ds@dvipdf Sergey Lesenko’s dvipdf driver.

37 \DeclareOption{dvipdf}{\def\Gin@driver{dvipdf.def}}

\ds@dvipdfm Mark Wick’s dvipdfm driver (now merged with xdvipdfmx).

38 \DeclareOption{dvipdfm}{\def\Gin@driver{dvipdfmx.def}}

\ds@dvipdfmx The driver for the dvipdfmx project (also supports xdvipdfmx).

39 \DeclareOption{dvipdfmx}{\def\Gin@driver{dvipdfmx.def}}

\ds@xetex Jonathan Kew’s TEX variant.

40 \DeclareOption{xetex}{\def\Gin@driver{xetex.def}}

\ds@pdftex Han The Thanh’s TEX variant.

41 \DeclareOption{pdftex}{\def\Gin@driver{pdftex.def}}

\ds@luatex LuaTEX TEX variant.

42 \DeclareOption{luatex}{\def\Gin@driver{luatex.def}}

\ds@dvisvgm dvisvgm driver.

43 \DeclareOption{dvisvgm}{\def\Gin@driver{dvisvgm.def}}

\ds@dvipsone

\ds@dviwindo

The drivers for the Y&Y TEX system.

44 \DeclareOption{dvipsone}{\def\Gin@driver{dvipsone.def}}

45 \DeclareOption{dviwindo}{\ExecuteOptions{dvipsone}}

\ds@emtex

\ds@dviwin

Two freely available sets of drivers for MSDOS, OS/2 and Windows.

46 \DeclareOption{emtex}{\def\Gin@driver{emtex.def}}

47 \DeclareOption{dviwin}{\def\Gin@driver{dviwin.def}}

\ds@oztex OzTEX (Macintosh). Since release 3 of OzTEX, merge with dvips back end.

48 \DeclareOption{oztex}{\ExecuteOptions{dvips}}

\ds@textures Textures (Macintosh).

49 \DeclareOption{textures}{\def\Gin@driver{textures.def}}

\ds@pctexps

\ds@pctexwin

\ds@pctexhp

\ds@pctex32

PCTEX (MSDOS/Windows).

50 \DeclareOption{pctexps}{\def\Gin@driver{pctexps.def}}

51 \DeclareOption{pctexwin}{\def\Gin@driver{pctexwin.def}}

52 \DeclareOption{pctexhp}{\def\Gin@driver{pctexhp.def}}

53 \DeclareOption{pctex32}{\def\Gin@driver{pctex32.def}}

\ds@truetex

\ds@tcidvi

Kinch TrueTeX, and its version with extended special support as shipped by Sci-
entific Word.

54 \DeclareOption{truetex}{\def\Gin@driver{truetex.def}}

55 \DeclareOption{tcidvi}{\def\Gin@driver{tcidvi.def}}

\ds@vtex VTEX driver.

56 \DeclareOption{vtex}{\def\Gin@driver{vtex.def}}

8

\ds@dvi2ps

\ds@dvialw

\ds@dvilaser

\ds@dvitops

\ds@psprint

\ds@pubps

\ds@ln

If anyone is using any of these driver options would they let me know. All these
are essentially untried and untested as far as I know.

57 %\DeclareOption{dvi2ps}{\def\Gin@driver{dvi2ps.def}}

58 %\DeclareOption{dvialw}{\def\Gin@driver{dvialw.def}}

59 %\DeclareOption{dvilaser}{\def\Gin@driver{dvilaser.def}}

60 %\DeclareOption{dvitops}{\def\Gin@driver{dvitops.def}}

61 %\DeclareOption{psprint}{\def\Gin@driver{psprint.def}}

62 %\DeclareOption{pubps}{\def\Gin@driver{pubps.def}}

63 %\DeclareOption{ln}{\def\Gin@driver{ln.def}}

\ds@debugshow You probably don’t want to use this. . .

64 \DeclareOption{debugshow}{\catcode‘\^^A=9 \let\GDebug\typeout}

A local configuration file may define more options. It should also make one
driver option the default, by calling \ExecuteOptions with the appropriate option.

65 \InputIfFileExists{graphics.cfg}{}{}

\ds@hiderotate

66 \DeclareOption{hiderotate}{%

67 \def\Grot@start{\begingroup\setbox\z@\hbox\bgroup}

68 \def\Grot@end{\egroup\endgroup}}

\ds@hidescale

69 \DeclareOption{hidescale}{%

70 \def\Gscale@start{\begingroup\setbox\z@\hbox\bgroup}

71 \def\Gscale@end{\egroup\endgroup}}

After the options are processed, load the appropriate driver file. If a site wants
a default driver (eg textures) it just needs to put \ExecuteOptions{textures}
in a graphics.cfg file.

72 \ProcessOptions

Check that a driver has been specified (either as an option, or as a default
option in the configuration file). Then load the ‘def’ file for that option, if it has
not already been loaded by some other package (for instance the color package).

73 \if!\Gin@driver!

74 \PackageError{graphics}

75 {No driver specified}

76 {You should make a default driver option in a file \MessageBreak

77 graphics.cfg\MessageBreak

78 eg: \protect\ExecuteOptions{textures}%

79 }

80 \else

81 \PackageInfo{graphics}{Driver file: \Gin@driver}

82 \@ifundefined{ver@\Gin@driver}{\input{\Gin@driver}}{}

83 \fi

7.3 Graphics Inclusion

This Graphics package uses a lot of dimension registers. TEX only has a limited
number of registers, so rather than allocate new ones, re-use some existing LATEX
registers. This is safe as long as all uses of the registers are local, and that you can
be sure that you never need to have access to both uses within the same scope.

9

\Gin@llx

\Gin@lly

\Gin@urx

\Gin@ury

In fact these four lengths are now stored as macros not as dimen registers, mainly
so that integer bp lengths may be passed exactly.

84 \def\Gin@llx{0}

85 \let\Gin@lly\Gin@llx

86 \let\Gin@urx\Gin@llx

87 \let\Gin@ury\Gin@llx

\Gin@nat@width

\Gin@nat@height

The ‘natural’ size of the graphic, before any scaling.

88 \let\Gin@nat@width\leftmarginv

89 \let\Gin@nat@height\leftmarginvi

\ifGin@clip This switch is ⟨true⟩ if any graphics outside the specified bounding box (really
viewport) should not be printed.

90 \newif\ifGin@clip

\DeclareGraphicsExtensions Declare a comma separated list of default extensions to be used if the file is
specified with no extension.

91 \newcommand\DeclareGraphicsExtensions[1]{%

92 \edef\Gin@extensions{\zap@space#1 \@empty}}

\Gin@extensions Initialise the list of possible extensions.

93 \providecommand\Gin@extensions{}

\includegraphics Top level command for the standard interface, just look for a *.

94 \protected\def\includegraphics{%

Clear \everypar before starting a group.

95 \leavevmode

96 \@ifstar

97 {\Gin@cliptrue\Gin@i}%

98 {\Gin@clipfalse\Gin@i}}

\Gin@i If an optional argument is present, call \Gin@ii to process it, otherwise call
\Ginclude@graphics.

99 \def\Gin@i{%

100 \@ifnextchar[%]

101 \Gin@ii

102 {\Gin@bboxfalse\Ginclude@graphics}}

\Gin@ii Look for a second optional argument.

103 \def\Gin@ii[#1]{%

104 \@ifnextchar[%]

105 {\Gin@iii[#1]}

106 {\Gin@iii[0,0][#1]}}

\Gin@iii Set the coordinates of the lower left corner, and the coordinates of the upper right
corner. The coordinates may be any TEX dimension, defaulting to bp.

107 \def\Gin@iii[#1,#2][#3,#4]#5{%

108 \begingroup

109 \Gin@bboxtrue

110 \Gin@defaultbp\Gin@llx{#1}%

111 \Gin@defaultbp\Gin@lly{#2}%

10

112 \Gin@defaultbp\Gin@urx{#3}%

113 \Gin@defaultbp\Gin@ury{#4}%

114 \Ginclude@graphics{#5}%

115 \endgroup}

\Gin@defaultbp

\Gin@def@bp

This macro grabs a length, #2, which may or may not have a unit, and if a
unit is supplied, converts to ‘bp’ and stores the value in #1. If a unit is not
supplied ‘bp’ is assumed, and #2 is directly stored in #1. Note that supplying ‘bp’
is not quite the same as supplying no units, as in the former case a conversion
via ‘pt’ and back to ‘bp’ takes place which can introduce rounding error. The
error is invisibly small but files conforming to Adobe DSC should have integer
Bounding Box Coordinates, and conceivably some drivers might demand integer
values. Although most seem to accept real values (if they accept bounding box
coordinates at all) in the \special, this is the reason why the mechanism uses
\def and not TEX lengths, as in earlier releases of the package.

116 \def\Gin@defaultbp#1#2{%

117 \afterassignment\Gin@def@bp\dimen@#2bp\relax{#1}{#2}}

118 \def\Gin@def@bp#1\relax#2#3{%

119 \if!#1!%

120 \def#2{#3}%

121 \else

122 \dimen@.99626\dimen@

123 \edef#2{\strip@pt\dimen@}%

124 \fi}

\DeclareGraphicsRule Declare what actions should be taken for a particular file extension.
#1 extension, #2 type, #3 read-file, #4 command,

125 \def\DeclareGraphicsRule#1#2#3#4{%

126 \edef\@tempa{\string *}\def\@tempb{#3}%

127 \expandafter\edef\csname Gin@rule@#1\endcsname##1%

128 {{#2}%

129 {\ifx\@tempa\@tempb\noexpand\Gin@ext\else#3\fi}%

130 {\ifx\indent#4\indent##1\else#4\fi}}}

An example rule base.

ext type read command

\DeclareGraphicsRule{.ps} {eps} {.ps} {}

\DeclareGraphicsRule{.eps} {eps} {.eps} {}

\DeclareGraphicsRule{.ps.gz}{eps} {.ps.bb} {‘zcat #1}

\DeclareGraphicsRule{.pcx} {bmp} {} {}

\graphicspath User level command to set the input path for graphics files. A list of directories,
each in a {} group.

131 \def\graphicspath#1{\def\Ginput@path{#1}}

\Ginput@path The default graphic path is \input@path.

132 \ifx\Ginput@path\@undefined

133 \let\Ginput@path\input@path

134 \fi

11

\Gin@getbase Given a possible extension, #1, check whether the file exists. If it does set
\Gin@base and \Gin@ext to the filename stripped of the extension, and the ex-
tension, respectively.

135 \def\Gin@getbase#1{%

136 \edef\Gin@tempa{%

137 \def\noexpand\@tempa####1#1\space{%

138 \def\noexpand\Gin@base{####1}}}%

139 \IfFileExists{\filename@area\filename@base#1}%

140 {\Gin@tempa

141 \edef\uq@filef@und{\expandafter\unquote@name

142 \expandafter{\@filef@und}}%

143 \expandafter\@tempa\uq@filef@und

144 \edef\Gin@ext{#1}}{}}%

\Gin@ext Initialise the macro to hold the extension.

145 \let\Gin@ext\relax

\Gin@sepdefault

\Gin@gzext

This must match the token used by \filename@parse to delimit the extension.

146 \def\Gin@sepdefault{.}

147 \edef\Gin@gzext{\detokenize{gz}}

\Gin@set@curr@file

\quote@name

We have to cope with older formats (rollback as far as 2019-10-01) and Plain.
Define a minimal \Gin@set@curr@file first:

148 \def\Gin@set@curr@file#1{%

149 \begingroup

150 \escapechar\m@ne

151 \xdef\@curr@file{\expandafter\string\csname\@firstofone#1\@empty\endcsname}%

152 \endgroup}

Then, if \set@curr@file@nosearch is undefined, we’re before 2022-06-01, and if
\set@curr@file is undefined, we’re before 2019-10-01 (aka Plain, as far as these
tests are concerned). Make \Gin@set@curr@file be a copy of the most recent
macro: \set@curr@file@nosearch if it exists, and \set@curr@file otherwise.
If neither exist, we also need to define \quote@name et al.

153 \ifx\set@curr@file@nosearch\@undefined

154 \ifx\set@curr@file\@undefined

155 \def\quote@name#1{"\quote@@name#1\@gobble""}

156 \def\quote@@name#1"{#1\quote@@name}

157 \def\unquote@name#1{\quote@@name#1\@gobble"}

158 \else

159 \let\Gin@set@curr@file\set@curr@file

160 \fi

161 \else

162 \let\Gin@set@curr@file\set@curr@file@nosearch

163 \fi

\Ginclude@graphics The main internal function implementing graphics file inclusion. #1 is the file
name. The quoting business for graphic files needs further sorting out. This
should be handled differently, right now we quote and unquote all over the place
as we still use the old code base.

This also makes the file name displays weird!
Guard \detokenize use for plain classic tex.

12

164 \def\Ginclude@graphics#1{%

165 \ifx\detokenize\@undefined\else

166 \edef\Gin@extensions{\detokenize\expandafter{\Gin@extensions}}%

167 \fi

168 \begingroup

169 \let\input@path\Ginput@path

A lot of quote juggling going on here (room for improvements).

170 \Gin@set@curr@file{#1}%

171 \expandafter\filename@parse\expandafter{\@curr@file}%

If extension is .gz tack on to previous extension, eg .eps.gz if available.

172 \ifx\filename@ext\Gin@gzext

173 \expandafter\filename@parse\expandafter{\filename@base}%

174 \ifx\filename@ext\relax

175 \let\filename@ext\Gin@gzext

176 \else

177 \edef\filename@ext{\filename@ext\Gin@sepdefault\Gin@gzext}%

178 \fi

179 \fi

180 \ifx\filename@ext\relax

181 \@for\Gin@temp:=\Gin@extensions\do{%

182 \ifx\Gin@ext\relax

183 \Gin@getbase\Gin@temp

184 \fi}%

185 \else

186 \Gin@getbase{\Gin@sepdefault\filename@ext}%

At this point try adding an extension, either if the given file name has none, or
if the extension matches no existing graphics inclusion rule, so that a.b may find
a.b.png, if only the latter or if both files exist. If no file is found then revert to
the extension as given to get better error reporting.

187 \ifnum0%

188 \ifx\Gin@ext\relax 1%

189 \else \@ifundefined{Gin@rule@\Gin@ext}{1}{0}%

190 \fi >0

191 \let\Gin@extsaved\Gin@ext

192 \let\Gin@savedbase\filename@base

193 \let\Gin@savedext\filename@ext

194 \let\Gin@ext\relax

195 \edef\filename@base{\filename@base\Gin@sepdefault\filename@ext}%

196 \let\filename@ext\relax

197 \@for\Gin@temp:=\Gin@extensions\do{%

198 \ifx\Gin@ext\relax

199 \Gin@getbase\Gin@temp

200 \fi}%

Restore if no file found using the known extensions.

201 \ifx\Gin@ext\relax

202 \let\Gin@ext\Gin@extsaved

203 \let\filename@base\Gin@savedbase

204 \let\filename@ext\Gin@savedext

205 \fi

206 \fi

13

If the user supplied an explicit extension, just give a warning if the file does not
exist. (It may be created later.)

207 \ifx\Gin@ext\relax

208 \@warning{File ‘#1’ not found}%

209 \def\Gin@base{\filename@area\filename@base}%

210 \edef\Gin@ext{\Gin@sepdefault\filename@ext}%

211 \fi

212 \fi

If no extension is supplied, it is an error if the file does not exist, as there is no
way for the system to know which extension to supply.

213 \ifx\Gin@ext\relax

214 \@latex@error{File ‘#1’ not found}%

215 {I could not locate the file with any of these extensions:^^J%

216 \Gin@extensions^^J\@ehc}%

217 \else

218 \@ifundefined{Gin@rule@\Gin@ext}%

Handle default rule.

219 {\ifx\Gin@rule@*\@undefined

220 \@latex@error{Unknown graphics extension: \Gin@ext}\@ehc

221 \else

222 \expandafter\Gin@setfile\Gin@rule@*{\Gin@base\Gin@ext}%

223 \fi}%

224 {\expandafter\expandafter\expandafter\Gin@setfile

225 \csname Gin@rule@\Gin@ext\endcsname{\Gin@base\Gin@ext}}%

226 \fi

227 \endgroup}

\ifGread@ True if a file should be read to obtain the natural size.

228 \newif\ifGread@\Gread@true

\Gin@setfile Set a file to the size specified in arguments, or in a ‘read file’.

229 \def\Gin@setfile#1#2#3{%

230 \ifx\\#2\\\Gread@false\fi

231 \ifGin@bbox\else

232 \ifGread@

233 \csname Gread@%

234 \expandafter\ifx\csname Gread@#1\endcsname\relax

235 eps%

236 \else

237 #1%

238 \fi

239 \endcsname{\Gin@base#2}%

240 \else

By now the natural size should be known either from arguments or from the file.
If not generate an error. (The graphicx interface relaxes this condition slightly.)

241 \Gin@nosize{#3}%

242 \fi

243 \fi

The following call will modify the ‘natural size’ if the user has supplied a viewport
or trim specification. (Not available in the standard interface.)

244 \Gin@viewport@code

14

Save the natural size, and then call \Gin@req@sizes which (in the key-val inter-
face) will calculate the required size from the natural size, and any scaling info.

245 \Gin@nat@height\Gin@ury bp%

246 \advance\Gin@nat@height-\Gin@lly bp%

247 \Gin@nat@width\Gin@urx bp%

248 \advance\Gin@nat@width-\Gin@llx bp%

249 \Gin@req@sizes

Call \Ginclude@type to include the figure unless this is not defined, or draft
mode is being used.

250 \expandafter\ifx\csname Ginclude@#1\endcsname\relax

251 \Gin@drafttrue

252 \expandafter\ifx\csname Gread@#1\endcsname\relax

253 \@latex@error{Can not include graphics of type: #1}\@ehc

254 \global\expandafter\let\csname Gread@#1\endcsname\@empty

255 \fi

256 \fi

257 \leavevmode

258 \ifGin@draft

259 \hb@xt@\Gin@req@width{%

260 \vrule\hss

261 \vbox to \Gin@req@height{%

262 \hrule \@width \Gin@req@width

263 \vss

264 \edef\@tempa{#3}%

265 \rlap{ \ttfamily\expandafter\strip@prefix\meaning\@tempa}%

266 \vss

267 \hrule}%

268 \hss\vrule}%

269 \else

Support \listfiles and then set the final box to the required size.

270 \@addtofilelist{#3}%

271 \ProvidesFile{#3}[Graphic file (type #1)]%

272 \setbox\z@\hbox{\csname Ginclude@#1\endcsname{#3}}%

273 \dp\z@\z@

274 \ht\z@\Gin@req@height

275 \wd\z@\Gin@req@width

276 \box\z@

277 \fi}

\Gin@decode In the standard interface this is a no-op, but needs to be defined to allow the
caching code to be set up.

278 \let\Gin@decode\@empty

\Gin@exclamation Catcode 12 !, in case of French, or other language styles.

279 \def\Gin@exclamation{!}

\Gin@page In the standard interface this is a no-op, but needs to be defined to allow the
caching code to be set up.

280 \let\Gin@page\@empty

\Gin@pagebox In the standard interface always points to the cropbox.

281 \def\Gin@pagebox{cropbox}

15

\ifGin@interpolate In the standard setting a no-op.

282 \newif\ifGin@interpolate

\Gin@log In the standard interface this prints to the log but can be changed via keys in
graphicx.

283 \let\Gin@log\wlog

\Gin@req@sizes

\Gin@scalex

\Gin@scaley

\Gin@req@height

\Gin@req@width

In the standard interface there is no scaling, so the required size is the same as the
natural size. In other interfaces \Gin@req@sizes will be responsible for setting
these parameters. Here we can set them globally.

284 \let\Gin@req@sizes\relax

285 \def\Gin@scalex{1}%

286 \let\Gin@scaley\Gin@exclamation

287 \let\Gin@req@height\Gin@nat@height

288 \let\Gin@req@width\Gin@nat@width

\Gin@viewport@code In the standard interface there is no possibility of specifying a viewport, so this is
a no-op.

289 \let\Gin@viewport@code\relax

\Gin@nosize This command is called in the case that the graphics type specifies no ‘read file’ and
the user supplied no size arguments. In the standard interface can only generate
an error.

290 \def\Gin@nosize#1{%

291 \@latex@error

292 {Cannot determine size of graphic in #1 (no size specified)}%

293 \@ehc}

7.4 Reading the BoundingBox in EPS files

\ifGin@bbox This switch should be set ⟨true⟩ once a size has been found, either in an argument,
or in an external file.

294 \newif\ifGin@bbox

\Gread@generic

\Gread@generic@aux

\Gread@eps

Read an EPS file (#1), search for a line starting with %%BoundingBox; then return
the result by setting four dimension registers \Gin@llx, \Gin@lly, \Gin@urx and
\Gin@ury.

\Gread@eps@aux

295 \def\Gread@generic#1#2{%

296 \edef\Gread@attr@hash{%

297 \ifx\Gin@pagebox\@empty\else

298 :\Gin@pagebox

299 \fi

300 \ifx\Gin@page\@empty\else

301 :P\Gin@page

302 \fi

303 }%

304 \@ifundefined{#1 bbox\Gread@attr@hash}%

305 {\Gread@generic@aux{#1}{#2}}

306 {%

307 \expandafter\global\expandafter\let\expandafter\@gtempa

16

308 \csname #1 bbox\Gread@attr@hash\endcsname

309 }%

310 \expandafter\Gread@parse@bb\@gtempa\\%

311 }

312 \def\Gread@generic@aux#1#2{%

313 \begingroup

Make it reasonably safe to have binary headers in the EPS file before the bounding
box line.

314 \@tempcnta\z@

315 \loop\ifnum\@tempcnta<\@xxxii

316 \catcode\@tempcnta14 %

317 \advance\@tempcnta\@ne

318 \repeat

319 \catcode‘\^^?14 %

320 \let\do\@makeother

321 \dospecials

Make sure tab and space are accepted as white space.

322 \catcode‘\ 10 %

323 \catcode‘\^^I10 %

324 \endlinechar13 %

325 \catcode\endlinechar5 %

326 \@makeother\:%

327 \@makeother\-%

The first thing we need to do is to open the information file, if possible. Due to
the space handling code file names are now already quoted so we should not add
any quotes around #1 any more.

328 \immediate\openin\@inputcheck\quote@name{#1} %

329 #2{#1}%

330 \ifGin@bbox

331 \expandafter\xdef\csname #1 bbox\Gread@attr@hash\endcsname{\@gtempa}%

332 \else

333 \@latex@error

334 {Cannot determine size of graphic in #1 (no BoundingBox)}%

335 \@ehc

336 \gdef\@gtempa{0 0 72 72 }%

337 \fi

338 \endgroup

339 }

340 \def\Gread@eps#1{%

341 \Gread@generic{#1}\Gread@eps@aux

342 }

343 \def\Gread@eps@aux#1{%

344 \ifeof\@inputcheck

345 \@latex@error{File ‘#1’ not found}\@ehc

346 \else

Now we’ll scan lines until we find one that starts with %%BoundingBox: We need
to reset the catcodes to read the file, and so this is done in a group.

347 \Gread@true

348 \let\@tempb\Gread@false

349 \loop

350 \read\@inputcheck to\@tempa

17

351 \ifeof\@inputcheck

352 \Gread@false

353 \else

354 \expandafter\Gread@find@bb\@tempa:.\\%

355 \fi

356 \ifGread@

357 \repeat

358 \immediate\closein\@inputcheck

359 \fi

360 }

\Gread@find@bb If a line in the EPS file starts with a %%BoundingBox:, we will examine it more
closely. Note using the ‘extra’ argument #2#3 causes any space after the : to be
gobbled.

361 \long\def\Gread@find@bb#1:#2#3\\{%

362 \def\@tempa{#1}%

363 \ifx\@tempa\Gread@BBox

364 \Gread@test@atend#2#3()\\%

365 \fi}

\Gread@test@atend Determine if the stuff following the %%BoundingBox is ‘(atend)’, which will involve
further reading of the file. This is accomplished by making \@tempb into a no-op,
so that finding a %%BoundingBox does not stop the loop.

366 \def\Gread@test@atend#1(#2)#3\\{%

367 \def\@tempa{#2}%

368 \ifx\@tempa\Gread@atend

369 \Gread@true

370 \let\@tempb\relax

371 \else

372 \gdef\@gtempa{#1}%

373 \@tempb

374 \Gin@bboxtrue

375 \fi}

\Gread@parse@bb We have %%BoundingBox and what follows is not ‘(atend)’ so we will parse the
rest of the line as a BB with four elements. PostScript files should never have
units specified in the BoundingBox comment, but we allow arbitrary TEX units in
external files, or in other interfaces.

376 \def\Gread@parse@bb#1 #2 #3 #4 #5\\{%

377 \Gin@defaultbp\Gin@llx{#1}%

378 \Gin@defaultbp\Gin@lly{#2}%

379 \Gin@defaultbp\Gin@urx{#3}%

380 \Gin@defaultbp\Gin@ury{#4}}%

\Gread@atend atend as a macro for testing with \ifx.

381 \def\Gread@atend{atend}

Viewport and trim, originally in graphicx.

\Gin@viewport If a viewport is specified, reset the bounding box coordinates by adding the original
origin, \Gin@llx, \Gin@lly to the new values specified as the viewport. The
original Bounding box coordinates are saved in \Gin@ollx. . . some drivers might
need this information (currently just tcidvi).

18

382 \def\Gin@viewport{%

383 \let\Gin@ollx\Gin@llx

384 \let\Gin@olly\Gin@lly

385 \let\Gin@ourx\Gin@urx

386 \let\Gin@oury\Gin@ury

387 \dimen@\Gin@llx\p@\advance\dimen@ \Gin@vurx\p@

388 \edef\Gin@urx{\strip@pt\dimen@}%

389 \dimen@\Gin@lly\p@\advance\dimen@ \Gin@vury\p@

390 \edef\Gin@ury{\strip@pt\dimen@}%

391 \dimen@\Gin@llx\p@\advance\dimen@ \Gin@vllx\p@

392 \edef\Gin@llx{\strip@pt\dimen@}%

393 \dimen@\Gin@lly\p@\advance\dimen@ \Gin@vlly\p@

394 \edef\Gin@lly{\strip@pt\dimen@}}

\Gin@trim If a trim is specified, reset the bounding box coordinates by trimming the four
specified values off each side of the graphic.

395 \def\Gin@trim{%

396 \let\Gin@ollx\Gin@llx

397 \let\Gin@olly\Gin@lly

398 \let\Gin@ourx\Gin@urx

399 \let\Gin@oury\Gin@ury

400 \dimen@\Gin@llx\p@\advance\dimen@ \Gin@vllx\p@

401 \edef\Gin@llx{\strip@pt\dimen@}%

402 \dimen@\Gin@lly\p@\advance\dimen@ \Gin@vlly\p@

403 \edef\Gin@lly{\strip@pt\dimen@}%

404 \dimen@\Gin@urx\p@\advance\dimen@ -\Gin@vurx\p@

405 \edef\Gin@urx{\strip@pt\dimen@}%

406 \dimen@\Gin@ury\p@\advance\dimen@ -\Gin@vury\p@

407 \edef\Gin@ury{\strip@pt\dimen@}}

\Gin@vllx

\Gin@vlly

\Gin@vurx

\Gin@vury

Four macros to hold the modifiers for the bounding box for viewport and trim
specifications.

408 \let\Gin@vllx\Gin@llx\let\Gin@vlly\Gin@llx

409 \let\Gin@vurx\Gin@llx\let\Gin@vury\Gin@llx

7.5 Rotation

As above, we will re-use some existing local registers.

\Grot@height

\Grot@left

\Grot@right

\Grot@depth

Final rotated box dimensions

410 \let\Grot@height\@ovxx

411 \let\Grot@left\@ovyy

412 \let\Grot@right\@ovdx

413 \let\Grot@depth\@ovdy

\Grot@h

\Grot@l

\Grot@r

\Grot@d

Original box dimensions

414 \let\Grot@l\@ovro

415 \let\Grot@r\@ovri

416 \let\Grot@h\@xdim

417 \let\Grot@d\@ydim

\Grot@x

\Grot@y

Coordinates of centre of rotation.

418 \let\Grot@x\@linelen

419 \let\Grot@y\@dashdim

19

\rotatebox The angle is specified by #1. The box to be rotated is #2. In the standard interface
the centre of rotation is (0, 0). Then finally call \Grot@box to rotate the box.

420 \protected\long\def\rotatebox#1#2{%

421 \leavevmode

422 \Grot@setangle{#1}%

423 \setbox\z@\hbox{{#2}}%

424 \Grot@x\z@

425 \Grot@y\z@

426 \Grot@box}

\Grot@setangle Set the internal macro used by \Grot@box. In the standard interface this is trivial,
but other interfaces may have more interesting definitions. For example:

\def\Grot@setangle#1{%

\dimen@#1\p@

\dimen@-57.2968\dimen@

\edef\Grot@angle{\strip@pt\dimen@}}

This would cause the argument of \rotatebox to be interpreted as an angle spec-
ified in radians, clockwise.

427 \def\Grot@setangle#1{\edef\Grot@angle{#1}}

7.6 Deriving a ‘bounding box’ for rotated object

We want to know the size of a ‘bounding box’ enclosing the rotated box. We define
two formulae (as TEX macros) to work out the x and y coordinates of vertices of
the rotated box in relation to its original coordinates (i.e., its width, height and
depth). The box we visualize with vertices B, C, D and E is illustrated below.
The vertex S is the reference point on the baseline. O is the centre of rotation,
which in the standard interface is always S.

A

BC

D E

S

Or

The formulae are, for a point P and angle α:

P ′
x = Px −Ox

P ′
y = Py −Oy

P ′′
x = (P ′

x × cos(α))− (P ′
y × sin(α))

P ′′
y = (P ′

x × sin(α)) + (P ′
y × cos(α))

P ′′′
x = P ′′

x +Ox + Lx

P ′′′
y = P ′′

y +Oy

The ‘extra’ horizontal translation Lx at the end is calculated so that the leftmost
point of the resulting box has x-coordinate 0. This is desirable as TEX boxes must
have the reference point at the left edge of the box.

20

\Grot@Px Work out new x coordinate of point after rotation. The parameters #2 and #3 are
the original x and y coordinates of the point. The new x coordinate is stored in
#1.

428 \def\Grot@Px#1#2#3{%

429 #1\Grot@cos#2%

430 \advance#1-\Grot@sin#3}

\Grot@Py Work out new y coordinate of point after rotation. The parameters #2 and #3 are
the original x and y coordinates of the point. The new y coordinate is stored in
#1.

431 \def\Grot@Py#1#2#3{%

432 #1\Grot@sin#2%

433 \advance#1\Grot@cos#3}

\Grot@box This is the tricky bit. We can rotate the box, but then need to work out how
much space to leave for it on the page.

We simplify matters by working out first which quadrant we are in, and then
picking just the right values.

434 \def\Grot@box{%

435 \begingroup

We are going to need to know the sine and cosine of the angle; simplest to calculate
these now.

436 \CalculateSin\Grot@angle

437 \CalculateCos\Grot@angle

438 \edef\Grot@sin{\UseSin\Grot@angle}%

439 \edef\Grot@cos{\UseCos\Grot@angle}%

440 ^^A \GDebug{Rotate: angle \Grot@angle, sine is \Grot@sin,

441 ^^A cosine is \Grot@cos}%

Save the four extents of the original box.

442 \Grot@r\wd\z@ \advance\Grot@r-\Grot@x

443 \Grot@l\z@ \advance\Grot@l-\Grot@x

444 \Grot@h\ht\z@ \advance\Grot@h-\Grot@y

445 \Grot@d-\dp\z@ \advance\Grot@d-\Grot@y

Now a straightforward test to see which quadrant we are operating in;

446 \ifdim\Grot@sin\p@>\z@

447 \ifdim\Grot@cos\p@>\z@

First quadrant: Height=By, Right=Ex, Left=Cx, Depth=Dy

448 \Grot@Py\Grot@height \Grot@r\Grot@h%B

449 \Grot@Px\Grot@right \Grot@r\Grot@d%E

450 \Grot@Px\Grot@left \Grot@l\Grot@h%C

451 \Grot@Py\Grot@depth \Grot@l\Grot@d%D

452 \else

Second quadrant: Height=Ey, Right=Dx, Left=Bx, Depth=Cy

453 \Grot@Py\Grot@height \Grot@r\Grot@d%E

454 \Grot@Px\Grot@right \Grot@l\Grot@d%D

455 \Grot@Px\Grot@left \Grot@r\Grot@h%B

456 \Grot@Py\Grot@depth \Grot@l\Grot@h%C

457 \fi

458 \else

459 \ifdim\Grot@cos\p@<\z@

21

Third quadrant: Height=Dy, Right=Cx, Left=Ex, Depth=By

460 \Grot@Py\Grot@height \Grot@l\Grot@d%D

461 \Grot@Px\Grot@right \Grot@l\Grot@h%C

462 \Grot@Px\Grot@left \Grot@r\Grot@d%E

463 \Grot@Py\Grot@depth \Grot@r\Grot@h%B

464 \else

Fourth quadrant: Height=Cy, Right=Bx, Left=Dx, Depth=Ey

465 \Grot@Py\Grot@height \Grot@l\Grot@h%C

466 \Grot@Px\Grot@right \Grot@r\Grot@h%B

467 \Grot@Px\Grot@left \Grot@l\Grot@d%D

468 \Grot@Py\Grot@depth \Grot@r\Grot@d%E

469 \fi

470 \fi

Now we should translate back by (Ox, Oy), but TEX can not really deal with
boxes that do not have the reference point at the left edge. (Everything with a
negative x-coordinate would over-print earlier text.) So we modify the horizontal
translation so that the reference point as understood by TEX is at the left edge.
This means that the ‘centre of rotation’ is not fixed by \rotatebox, but typically
moves horizontally. We also need to find the image of the original reference point,
S, as that is where the rotation specials must be inserted.

471 \advance\Grot@height\Grot@y

472 \advance\Grot@depth\Grot@y

473 \Grot@Px\dimen@ \Grot@x\Grot@y

474 \Grot@Py\dimen@ii \Grot@x\Grot@y

475 \dimen@-\dimen@ \advance\dimen@-\Grot@left

476 \dimen@ii-\dimen@ii \advance\dimen@ii\Grot@y

477 ^^A \GDebug{Rotate: (l,r,h,d)^^J%

478 ^^A Original \the\Grot@l,\the\Grot@r,\the\Grot@h,\the\Grot@d,^^J%

479 ^^A New..... \the\Grot@left,\the\Grot@right,%

480 ^^A \the\Grot@height,\the\Grot@depth}%

481 \setbox\z@\hbox{%

482 \kern\dimen@

483 \raise\dimen@ii\hbox{\Grot@start\box\z@\Grot@end}}%

484 \ht\z@\Grot@height

485 \dp\z@-\Grot@depth

486 \advance\Grot@right-\Grot@left\wd\z@\Grot@right

487 \leavevmode\box\z@

488 \endgroup}

7.7 Stretching and Scaling

\scalebox The top level \scalebox. If the vertical scale factor is omitted it defaults to the
horizontal scale factor, #1.

489 \protected\def\scalebox#1{%

490 \@ifnextchar[{\Gscale@box{#1}}{\Gscale@box{#1}[#1]}}

\Gscale@box Internal version of \scalebox.

491 \long\def\Gscale@box#1[#2]#3{%

492 \leavevmode

493 \def\Gscale@x{#1}\def\Gscale@y{#2}%

22

494 \setbox\z@\hbox{{#3}}%

495 \setbox\tw@\hbox{\Gscale@start\rlap{\copy\z@}\Gscale@end}%

496 \ifdim#2\p@<\z@

497 \ht\tw@-#2\dp\z@

498 \dp\tw@-#2\ht\z@

499 \else

500 \ht\tw@#2\ht\z@

501 \dp\tw@#2\dp\z@

502 \fi

503 \ifdim#1\p@<\z@

504 \hb@xt@-#1\wd\z@{\kern-#1\wd\z@\box\tw@\hss}%

505 \else

506 \hb@xt@#1\wd\z@{\box\tw@\kern#1\wd\z@\hss}%

507 \fi}

\reflectbox Just an abbreviation for the appropriate scale to get reflection.

508 \protected\def\reflectbox{\Gscale@box-1[1]}

\resizebox Look for a *, which specifies that a final vertical size refers to ‘height + depth’
not just ‘height’.

509 \protected\def\resizebox{%

510 \leavevmode

511 \@ifstar{\Gscale@@box\totalheight}{\Gscale@@box\height}}

\Gscale@@box Look for the ! in the arguments.

512 \def\Gscale@@box#1#2#3{%

513 \let\@tempa\Gin@exclamation

514 \expandafter\def\expandafter\@tempb\expandafter{\string#2}%

515 \expandafter\def\expandafter\@tempc\expandafter{\string#3}%

516 \ifx\@tempb\@tempa

517 \ifx\@tempc\@tempa

518 \toks@{\mbox}%

519 \else

520 \toks@{\Gscale@box@dd{#3}#1}%

521 \fi

522 \else

523 \ifx\@tempc\@tempa

524 \toks@{\Gscale@box@dd{#2}\width}%

525 \else

526 \toks@{\Gscale@box@dddd{#2}\width{#3}#1}%

527 \fi

528 \fi

529 \the\toks@}

\Gscale@box@dd Scale the text #3 in both directions by a factor #1/#2.

530 \long\def\Gscale@box@dd#1#2#3{%

531 \@begin@tempboxa\hbox{#3}%

532 \setlength\@tempdima{#1}%

533 \setlength\@tempdimb{#2}%

534 \Gscale@div\@tempa\@tempdima\@tempdimb

535 \Gscale@box\@tempa[\@tempa]{\box\@tempboxa}%

536 \@end@tempboxa}

23

\Gscale@box@dddd Scale the text #5 horizontally by a factor #1/#2 and vertically by a factor #3/#4.

537 \long\def\Gscale@box@dddd#1#2#3#4#5{%

538 \@begin@tempboxa\hbox{#5}%

539 \setlength\@tempdima{#1}%

540 \setlength\@tempdimb{#2}%

541 \Gscale@div\@tempa\@tempdima\@tempdimb

542 \setlength\@tempdima{#3}%

543 \setlength\@tempdimb{#4}%

544 \Gscale@div\@tempb\@tempdima\@tempdimb

545 \ifGin@iso

546 \ifdim\@tempa\p@>\@tempb\p@

547 \let\@tempa\@tempb

548 \else

549 \let\@tempb\@tempa

550 \fi

551 \fi

552 \Gscale@box\@tempa[\@tempb]{\box\@tempboxa}%

553 \@end@tempboxa}

\ifGin@iso If this flag is true, then specifying two lengths to \resizebox scales the box by
the same factor in either direction, such that neither length exceeds the stated
amount. No user interface to this flag in the standard package, but it is used by
the keepaspectratio key to \includegraphics in the graphicx package.

554 \newif\ifGin@iso

\Gscale@div The macro #1 is set to the ratio of the lengths #2 and #3.

555 \def\Gscale@div#1#2#3{%

556 \setlength\dimen@{#3}%

557 \ifdim\dimen@=\z@

558 \PackageError{graphics}{Division by 0}\@eha

559 \dimen@#2%

560 \fi

561 \edef\@tempd{\the\dimen@}%

562 \setlength\dimen@{#2}%

563 \count@65536\relax

564 \ifdim\dimen@<\z@

565 \dimen@-\dimen@

566 \count@-\count@

567 \fi

568 \ifdim\dimen@>\z@

569 \loop

570 \ifdim\ifnum\count@<\tw@\maxdimen\else\dimen@\fi<8192\p@

571 \dimen@\tw@\dimen@

572 \divide\count@\tw@

573 \repeat

574 \dimen@ii\@tempd\relax

575 \divide\dimen@ii\count@

576 \divide\dimen@\dimen@ii

577 \fi

578 \edef#1{\strip@pt\dimen@}}

Restore catcodes.

579 \Gin@codes

580 \let\Gin@codes\relax

24

581 ⟨/package⟩

25

	1 Introduction
	2 Package Options
	3 Standard Interface
	3.1 Graphics Inclusion
	3.2 Rotation
	3.3 Scaling

	4 The Key=Value Interface
	5 The Graphics Kernel Functions
	5.1 Graphics Inclusion
	5.2 Rotation
	5.3 Scaling

	6 Interface to the Driver Files
	6.1 Graphics Inclusion
	6.2 Literal PostScript
	6.3 Rotation
	6.4 Scaling

	7 Implementation
	7.1 Initialisation
	7.2 Options
	7.3 Graphics Inclusion
	7.4 Reading the BoundingBox in EPS files
	7.5 Rotation
	7.6 Deriving a `bounding box' for rotated object
	7.7 Stretching and Scaling

