
An environment for multicolumn output∗†

Frank Mittelbach
Email: see top of the source file

Printed June 9, 2025

This file is maintained by the LATEX Project team.
Bug reports can be opened (category tools) at
https://latex-project.org/bugs.html.

Abstract

This article describes the use and the implementation of the multicols environment. This environment
allows switching between one and multicolumn format on the same page. Footnotes are handled correctly
(for the most part), but will be placed at the bottom of the page and not under each column. LATEX’s
float mechanism, however, is partly disabled in this implementation. At the moment only page-wide
floats (i.e., star-forms) can be used within the scope of the environment.

Preface to versions 1.9 + 2.0

Version 1.9 added tagging sup-
port and also a number of
smaller enhancements, such
as an optional argument to
\columnbreak to allow for con-
ditional breaks instead of forced

ones. The min column depth was
also made customizable (previ-
ously it was hardwired to the
depth of “p”) to support special
cases and in particular languages
that do not have characters with

any noticeable depth such as, for
example, Japanese.
Verson 2.0 then simplified and

improved the mark handling, by
fully supporting the new mark
mechanism of LATEX.

Preface to version 1.8

The 1.8 release improves on the
balancing approach. If due
to a limited number of break
points (e.g., due to large ob-
jects) the balanced columns ex-
ceed the available vertical space,
then balancing is canceled and
a normal page is produced
first. Some overflow is allowed
(controlled by the parameter
\maxbalancingoverflow which
defaults to 12pt). This ensures
that we only cut a normal page

if we get enough material carried
over to next page.

Also added was support for
\enlargethispage. This means
it is now possible to request a
page to be artificially enlarged
or shortened. Note that if you
enlarge pages by more than one
line you may have to increase the
collectmore counter value to en-
sure that enough material is be-
ing picked up.

This command was used on the

second page of this manual to
shorten it by one line, in order
to get rid of a number of widow
lines on the following pages.

There are also some small en-
hancements to the balancing al-
gorithm including a ways to re-
quire a minimum number of rows
in the result.

Finally, version 1.8 adds the
command \docolaction to help
with more complicated actions
that depend on the current col-

∗This file has version number v2.0a, last revised 2025/05/25.
†Note: This package is released under terms which affect its use in commercial applications. Please see the details at the

top of the source file.

1

https://latex-project.org/bugs.html

umn. This command expects 3
arguments: code that is executed
if we are in the “first” column,
code to execute if we end up in
any “middle” column (if there are
more than two) and finally code
to execute if we are in the “last”
column. Thus

\docolaction{first}

{middle}{last}

would typeset a different word
depending the type of column
this code is executed. Using it
like this is probably pointless, but
you can imagine applications like
writing something into the near-
est margin, etc.

As this feature needs at least
two LATEX runs to produce cor-
rect results and as it adds to the
processing complexity it is only
made available if one add the op-
tion colaction when loading the
package.

Preface to version 1.7 (right to left support)

The 1.7 release adds support for
languages that are typeset right-
to-left. For those languages the
order of the columns on the
page also need to be reversed—

something that wasn’t supported
before. The next paragraph
demonstrates the result (as it
is typeset as if we are writ-
ing in a left-to-right language—

so read the rightmost column
first). The change is initialized
via \RLmulticolcolumns and re-
turning to left-right (default) is
done via \LRmulticolcolumns.

Right-to-left typesetting will
only reverse the column orders.
Any other support needed will
have to be provided by other
means, e.g., using appropriate
fonts and reversing the writing

directions within the columns.
As footnotes are typeset in full
measure the footnote rule needs
to be redefined as if they are be-
low a single column, i.e., using
\textwidth not \columnwidth.

For example:

\renewcommand \footnoterule{%

\kern-3pt\hbox to\textwidth

{\hskip .6\textwidth

\hrulefill }%

\kern2.6pt}

Preface to version 1.5 + 1.6

The 1.5 release contains two
major changes: multicols will
now support up to 10 columns
and two more tuning possibilities
have been added to the balanc-
ing routine. The balancing rou-

tine now checks the badness of
the resulting columns and rejects
solutions that are larger than a
certain threshold. At the same
time multicols has been upgraded
to run under LATEX2ε.

Later changes to 1.5 include
\columnbreak and multicols*.
For version 1.6 micro-spacing

around the boxes produced by
multicols has been improved to al-
low for baseline-grid typesetting.

1 Introduction

Switching between two-column
and one-column layout is pos-
sible in LATEX, but every use
of \twocolumn or \onecolumn

starts a new page. More-
over, the last page of two-
column output isn’t balanced
and this often results in an
empty, or nearly empty, right col-
umn. When I started to write
macros for doc.sty (see “The

doc–Option”, TUGboat volume
10 #2, pp. 245–273) I thought
that it would be nice to place
the index on the same page as
the bibliography. And balancing
the last page would not only look
better, it also would save space;
provided of course that it is also
possible to start the next article
on the same page. Rewriting the
index environment was compar-

atively easy, but the next goal,
designing an environment which
takes care of footnotes, floats,
etc., was a harder task. It took
me a whole weekend1 to get to-
gether the few lines of code below
and there is still a good chance
that I missed something after all.
Try it and, hopefully, enjoy it;

and please direct bug reports and
suggestions back to Mainz.

1I started with the algorithm given in the TEXbook on page 417. Without this help a weekend would not have been enough.
(This remark was made in the documentation of the initial release, since then several hundreds more hours went into improving
the original code.)

2

2 The User Interface

To use the environment one sim-
ply says

\begin{multicols}{⟨number⟩}
⟨multicolumn text⟩

\end{multicols}

where ⟨number⟩ is the required
number of columns and ⟨multi-
column text⟩ may contain arbi-
trary LATEX commands, except
that floats and marginpars are
not allowed in the current imple-
mentation2.
As its first action, the multicols

environment measures the cur-
rent page to determine whether
there is enough room for some
portion of multicolumn out-
put. This is controlled by the
⟨dimen⟩ variable \premulticols
which can be changed by the
user with ordinary LATEX com-
mands. If the space is less than
\premulticols, a new page is
started. Otherwise, a \vskip of
\multicolsep is added.3

When the end of the mul-
ticols environment is encoun-
tered, an analogous mechanism
is employed, but now we test
whether there is a space larger
than \postmulticols available.
Again we add \multicolsep or
start a new page.
It is often convenient to spread

some text over all columns, just
before the multicolumn output,
without any page break in be-
tween. To achieve this the multi-
cols environment has an optional
second argument which can be
used for this purpose. For exam-
ple, the text you are now reading
was started with

\begin{multicols}{3}

[\section{The User

Interface}] ...

If such text is unusually
long (or short) the value of
\premulticols might need ad-
justing to prevent a bad page
break. We therefore provide a
third argument which can be
used to overwrite the default
value of \premulticols just for
this occasion. So if you want
to combine some longer single
column text with a multicols en-
vironment you could write

\begin{multicols}{3}

[\section{Index}

This index contains ...]

[6cm]

...

The space between columns is
controlled by the length param-
eter \columnsep. The width
for the individual columns is
automatically calculated from
this parameter and the current
\linewidth. In this article a
value of 18.0pt was used.
Separation of columns with

vertical rules is achieved
by setting the parameter
\columnseprule to some posi-
tive value. In this article a value
of .4pt was used.
The color of the rules

separating the columns
can be specified through
\columnseprulecolor. The de-
fault value is \normalcolor.
Since narrow columns tend

to need adjustments in in-
terline spacing we also pro-
vide a ⟨skip⟩ parameter called
\multicolbaselineskip which
is added to the \baselineskip

parameter inside the multicols en-
vironment. Please use this pa-
rameter with care or leave it
alone; it is intended only for
package file designers since even

small changes might produce to-
tally unexpected changes to your
document.

2.1 Balancing columns

Besides the previously mentioned
parameters, some others are pro-
vided to influence the layout of
the columns generated.

Paragraphing in TEX is con-
trolled by several parameters.
One of the most important is
called \tolerance: this controls
the allowed ‘looseness’ (i.e. the
amount of blank space between
words). Its default value is 200
(the LATEX \fussy) which is too
small for narrow columns.

Setting it to 10000 (a.k.a. ∞)
means arbitrary bad lines are
possible. With that setting LATEX
will make most lines perfect but
intermix them with really bad
lines. This was the setting origi-
nally used by \sloppy (nowadays
it is a bit more cautious and used
9999 which makes a huge differ-
ence).4

We there-
fore use a \multicoltolerance

parameter for the \tolerance

value inside the multicols envi-
ronment. Its default value is
9999 which is less than infinity
but ‘bad’ enough for most para-
graphs in a multicolumn environ-
ment. Changing its value should
be done outside the multicols en-
vironment. Since \tolerance

is set to \multicoltolerance

at the beginning of every multi-
cols environment one can locally
overwrite this default by assign-
ing \tolerance=⟨desired value⟩.
There also
exists a \multicolpretolerance

2This is dictated by lack of time. To implement floats one has to reimplement the whole LATEX output routine.
3Actually the added space may be less because we use \addvspace (see the LATEX manual for further information about this

command).
4Look at the next paragraph, it was set with the \tolerance=10000.

3

parameter holding the value for
\pretolerance within a multi-
cols environment. Both param-
eters are usually used only by
package or class designers.

Generation of multicolumn
output can be divided into two
parts. In the first part we are
collecting material for a page,
shipping it out, collecting mate-
rial for the next page, and so on.
As a second step, balancing will
be done when the end of the mul-
ticols environment is reached. In
the first step TEX might consider
more material whilst finding the
final column content than it ac-
tually uses when shipping out the
page. This might cause a prob-
lem if a footnote is encountered
in the part of the input consid-
ered, but not used, on the current
page. In this case the footnote
might show up on the current
page, while the footnotemark
corresponding to this footnote
might be set on the next one.5

Therefore the multicols environ-
ment gives a warning message6

whenever it is unable to use all
the material considered so far.

If you don’t use footnotes too
often the chances of something
actually going wrong are very
slim, but if this happens you can
help TEX by using a \pagebreak

command in the final document.
Another way to influence the be-
havior of TEX in this respect
is given by the counter variable
‘collectmore’. If you use the
\setcounter declaration to set
this counter to ⟨number⟩, TEX
will consider ⟨number⟩ more (or
less) lines before making its fi-
nal decision. So a value of −1
may solve all your problems at
the cost of slightly less optimal
columns.

In the second step (balanc-

ing columns) we have other bells
and whistles. First of all you
can say \raggedcolumns if you
don’t want the bottom lines to
be aligned. The default is
\flushcolumns, so TEX will nor-
mally try to make both the
top and bottom baselines of all
columns align.

If there is only a small amount
of material available for balanc-
ing then you may end up with
very few lines per column. In an
extreme case there may be only
one line which looks distinctly
odd. In that case it might be
better to have more material dis-
tributed to the earlier columns
even if that means that later
columns are empty or partially
empty. This is controlled through
the counter ‘minrows’ (default 1).
If set to a higher value then the
balancing will have at least that
many rows in the first column
(and also all further columns un-
til it runs outs of material).

Additionally you can set an-
other counter, the ‘unbalance’
counter, to some positive
⟨number⟩. This will make all but
the right-most column ⟨number⟩
of lines longer than they would
normally have been. ‘Lines’ in
this context refer to normal text
lines (i.e. one \baselineskip

apart); thus, if your columns
contain displays, for example,
you may need a higher ⟨number⟩
to shift something from one col-
umn into another. A negative
value can make sense if you have
set minrows and want to locally
adjust that.

Unlike ‘collectmore,’ the
‘unbalance’ counter is reset to
zero at the end of the environ-
ment so it only applies to one
multicols environment.

The two methods may be com-

bined but I suggest using these
features only when fine tuning
important publications.

Two more general tuning pos-
sibilities were added with ver-
sion 1.5. TEX allows to mea-
sure the badness of a column in
terms of an integer value, where
0 means optimal and any higher
value means a certain amount
of extra white space. 10000 is
considered to be infinitely bad
(TEX does not distinguish any
further). In addition the special
value 100000 means overfull (i.e.,
the column contains more text
than could possibly fit into it).

The new release now measures
every generated column and ig-
nores solutions where at least
one column has a badness be-
ing larger than the value of the
counter columnbadness. The de-
fault value for this counter is
10000, thus TEX will accept all
solutions except those being over-
full. By setting the counter to a
smaller value you can force the
algorithm to search for solutions
that do not have columns with a
lot of white space.

However, if the setting is too
low, the algorithm may not find
any acceptable solution at all and
will then finally choose the ex-
treme solution of placing all text
into the first column.

Often, when columns are bal-
anced, it is impossible to find a
solution that distributes the text
evenly over all columns. If that
is the case the last column usu-
ally has less text than the oth-
ers. In the earlier releases this
text was stretched to produce a
column with the same height as
all others, sometimes resulting in
really ugly looking columns.

In the new release this stretch-
ing is only done if the badness

5The reason behind this behavior is the asynchronous character of the TEX page builder. However, this could be avoided
by defining very complicated output routines which don’t use TEX primitives like \insert but do everything by hand. This is
clearly beyond the scope of a weekend problem.

6This message will be generated even if there are no footnotes in this part of the text.

4

of the final column is not larger
than the value of the counter fi-
nalcolumnbadness. The default
setting is 9999, thus preventing
the stretching for all columns
that TEX would consider in-
finitely bad. In that case the fi-
nal column is allowed to run short
which gives a much better result.
And there are two more

parameters of some exper-
imental nature, one called
\multicolovershoot the other
\multicolundershoot. They
control the amount of space a col-
umn within the multicols environ-
ment is allowed to be “too full”
or “too short” without affecting
the column badness. They are
set to 0pt and 2pt, respectively.
Finally, when doing the bal-

ancing at the end, columns
may become higher than the
remaining available space. In
that case the algorithm aborts
and instead generates a normal
page. However, if the amount
is not too large, e.g., a line or
so, then it might be better to
keep everything on the same
page instead of starting a new
page with just one line after
balancing. So the parameter
\maxbalancingoverflow gov-
erns this process: only when the
excess gets larger than its value
balancing is aborted.

2.2 Not balancing the
columns

Although this package was writ-
ten to solve the problem of bal-
ancing columns, I got repeated
requests to provide a version
where all white space is auto-
matically placed in the last col-
umn or columns. Since version
v1.5q this now exists: if you
use multicols* instead of the
usual environment the columns
on the last page are not balanced.
Of course, this environment only
works on top-level, e.g., inside a

box one has to balance to deter-
mine a column height in absence
of a fixed value.

2.3 Manually breaking
columns

Another request often voiced
was: “How do I tell LATEX that
it should break the first column
after this particular line?”. The
\pagebreak command (which
works with the two-column op-
tion of LATEX) is of no use here
since it would end the collection
phase of multicols and thus all
columns on that page. So with
version 1.5u the \columnbreak

command was added. If used
within a paragraph it marks the
end of the current line as the de-
sired breakpoint. You can ob-
serve its effect on the previous
page where three lines of text
have been artificially forced into
the second column (resulting in
some white space between para-
graphs in the first column).
From version 1.9 onwards

\columnbreak accepts an op-
tional argument (just like
\pagebreak) in which you can
specify the desirability to break
the column at that point: sup-
ported values are 0 (slightly de-
sirable) to 4 (forced). This ver-
sion also adds \newcolumn which
forces a column break but runs
the column short (comparable to
\newpage).

2.4 Floats inside a mul-
ticols environment

Within the multicols environment
the usual star float commands
are available but their function is
somewhat different as in the two-
column mode of standard LATEX.
Stared floats, e.g., figure*, de-
note page wide floats that are
handled in a similar fashion as
normal floats outside the multi-
cols environment. However, they

will never show up on the page
where they are encountered. In
other words, one can influence
their placement by specifying a
combination of t, b, and/or p

in their optional argument, but
h doesn’t work because the first
possible place is the top of the
next page. One should also note,
that this means that their place-
ment behavior is determined by
the values of \topfraction, etc.
rather than by \dbl....

2.5 Support for right-
to-left typesetting

In right-to-left typesetting the or-
der of the columns on the page
also need to be reversed, i.e., the
first column has to appear on
the far right and the last col-
umn on the left. This is sup-
ported through the commands
\RLmulticolcolumns (switching
to right-to-left typesetting) and
\LRmulticolcolumns (switching
to left-to-right typesetting) the
latter being the default.

2.6 Warnings

Under certain circumstances the
use of the multicols environment
may result in some warnings from
TEX or LATEX. Here is a list of the
important ones and the possible
cause:

Underfull \hbox (badness

...)

As the columns are often very
narrow TEX wasn’t able to find
a good way to break the para-
graph. Underfull denotes a loose
line but as long as the badness
value is below 10000 the result
is probably acceptable.

Underfull \vbox ... while

\output is active

If a column contains a character
with an unusual depth, for ex-
ample a ‘(’, in the bottom line

5

then this message may show up.
It usually has no significance as
long as the value is not more
than a few points.

LaTeX Warning: I moved

some lines to the next

page

As mentioned above, multicols
sometimes screws up the foot-
note numbering. As a precau-
tion, whenever there is a foot-
note on a page where multicols
had to leave a remainder for the
following page this warning ap-
pears. Check the footnote num-
bering on this page. If it turns
out that it is wrong, you have to
manually break the page using
\newpage or \pagebreak[..].

Floats and marginpars not

allowed inside ‘multicols’

environment!

This message appears if you try
to use the \marginpar com-
mand or an unstarred version of
the figure or table environment.
Such floats will disappear!

Very deep columns! Grid

alignment might be broken

This message can only appear if
the option grid was chosen. In
that case it will show up if a col-
umn has a very large depth so
that multicols is unable to back
up to its baseline. This is only
relevant if one tries to produce
a document where all text lines
are aligned at an invisible grid,
something that requires careful
adjustment of many parameters
and macros, e.g., heading defini-
tions.

2.7 Tracing the output

To understand the reasoning be-
hind the decisions TEX makes
when processing a multicols envi-
ronment, a tracing mechanism is
provided. If you set the counter
‘tracingmulticols’ to a positive
⟨number⟩ you then will get some
tracing information on the termi-
nal and in the transcript file:

⟨number⟩ = 1. TEX will now
tell you, whenever it enters
or leaves a multicols environ-
ment, the number of columns it
is working on and its decision
about starting a new page be-
fore or after the environment.

⟨number⟩ = 2. In this case
you also get information from
the balancing routine: the
heights tried for the left and
right-most columns, informa-
tion about shrinking if the
\raggedcolumns declaration is
in force and the value of the
‘unbalance’ counter if positive.

⟨number⟩ = 3. Setting
⟨number⟩ to this value will ad-
ditionally trace the mark han-
dling algorithm. It will show
what marks are found, what
marks are considered, etc. To
fully understand this informa-
tion you will probably have to
read carefully through the im-
plementation.

⟨number⟩ ≥ 4. Setting
⟨number⟩ to such a high value
will additionally place an
\hrule into your output, sep-
arating the part of text which
had already been considered
on the previous page from the
rest. Clearly this setting should
not be used for the final out-
put. It will also activate even
more debugging code for mark
handling.

3 Prefaces to older versions

3.1 Preface to version 1.4

Beside fixing some bugs as men-
tioned in the multicol.bug file this
new release enhances the multi-
cols environment by allowing for
balancing in arbitrary contexts.
It is now, for example, possible
to balance text within a multicols
or a minipage as shown in 2 where
a multicols environment within a
quote environment was used. It
is now even possible to nest mul-
ticols environments.
The only restriction to such

inner multicols environments
(nested, or within TEX’s internal
vertical mode) is that such vari-

ants will produce a box with the
balanced material in it, so that
they can not be broken across
pages or columns.
Additionally I rewrote the al-

gorithm for balancing so that it
will now produce slightly better
results.
I updated the source documen-

tation but like to apologize in ad-
vance for some ‘left over’ parts
that slipped through the revision.
A note to people who like

to improve the balancing algo-
rithm of multicols: The balanc-
ing routine is now placed into

a single macro which is called
\balance@columns. This means
that one can easily try different
balancing routines by rewriting
this macro. The interface for it
is explained in table 1. There
are several improvements possi-
ble, one can think of integrating
the \badness function of TEX3,
define a faster algorithm for find-
ing the right column height, etc.
If somebody thinks he/she has an
enhancement I would be pleased
to learn about it. But please obey
the copyright notice and don’t
change multicol.dtx directly!

6

The macro \balance@columns that contains
the code for balancing gathered material is a
macro without parameters. It assumes that
the material for balancing is stored in the box
\mult@box which is a \vbox. It also “knows”
about all parameters set up by the multicols
environment, like \col@number, etc. It can
also assume that \@colroom is the still avail-

able space on the current page.

When it finishes it must return the individ-
ual columns in boxes suitable for further pro-
cessing with \page@sofar. This means that
the left column should be stored in box reg-
ister \mult@firstbox, the next in register
\mult@firstbox + 2, . . . , only the last one
as an exception in register \mult@grightbox.

Table 1: Interface description for \balance@columns

3.2 Preface to version 1.2

After the article about the mul-
ticols environment was published
in TUGboat 10#3, I got numer-
ous requests for these macros.
However, I also got a changed
version of my style file, together
with a letter asking me if I would
include the changes to get better
paragraphing results in the case
of narrow lines. The main dif-
ferences to my original style op-
tion were additional parameters
(like \multicoladjdemerits to
be used for \adjdemerits, etc.)
which would influence the line
breaking algorithm.
But actually resetting such pa-

rameters to zero or even worse to
a negative value won’t give bet-
ter line breaks inside the multicols
environment. TEXs line break-
ing algorithm will only look at
those possible line breaks which
can be reached without a badness
higher than the current value of
\tolerance (or \pretolerance

in the first pass). If this isn’t pos-
sible, then, as a last resort, TEX
will produce overfull boxes. All
those (and only those) possible

break points will be considered
and finally the sequence which re-
sults in the fewest demerits will
be chosen. This means that a
value of −1000 for \adjdemerits
instructs TEX to prefer visibly in-
compatible lines instead of pro-
ducing better line breaks.
However, with TEX 3.0 it is

possible to get decent line breaks
even in small columns by setting
\emergencystretch to an appro-
priate value. I implemented a
version which is capable of run-
ning both in the old and the
new TEX (actually it will sim-
ply ignore the new feature if it
is not available). The calculation
of \emergencystretch is proba-
bly incorrect. I made a few tests
but of course one has to have
much more experience with the
new possibilities to achieve the
maximum quality.
Version 1.1a had a nice ‘fea-

ture’: the penalty for using
the forbidden floats was their
ultimate removal from LATEXs
\@freelist so that after a few
\marginpars inside the multi-

cols environment floats where dis-
abled forever. (Thanks to Chris
Rowley for pointing this out.) I
removed this misbehavior and at
the same time decided to allow at
least floats spanning all columns,
e.g., generated by the figure*

environment. You can see the
new functionality in table 2 which
was inserted at this very point.
However single column floats are
still forbidden and I don’t think I
will have time to tackle this prob-
lem in the near future. As an ad-
vice for all who want to try: wait
for TEX 3.0. It has a few fea-
tures which will make life much
easier in multi-column surround-
ings. Nevertheless we are work-
ing here at the edge of TEXs ca-
pabilities, really perfect solutions
would need a different approach
than it was done in TEXs page
builder.
The text below is nearly un-

changed, I only added documen-
tation at places where new code
was added.

7

\setemergencystretch: This is a hook for people
who like to play around. It is supposed to set the
\emergencystretch ⟨dimen⟩ register provided in
the new TEX 3.0. The first argument is the num-
ber of columns and the second one is the current
\hsize. At the moment the default definition is

4pt × #1, i.e. the \hsize isn’t used at all. But
maybe there are better formulae.

\set@floatcmds: This is the hook for the experts
who like to implement a full float mechanism for
the multicols environment. The @ in the name
should signal that this might not be easy.

Table 2: The new commands of multicol.sty version 1.2. Both commands might be removed if good solutions
to these open problems are found. I hope that these commands will prevent that nearly identical style files
derived from this one are floating around.

4 The Implementation

We are now switching to two-column output to show the abilities of this environment (and bad layout
decisions).

4.1 The documentation driver file

The next bit of code contains the documentation
driver file for TEX, i.e., the file that will produce the
documentation you are currently reading. It will be
extracted from this file by the docstrip program.
Since this is the first code in this file one can produce
the documentation simply by running LATEX on the
.dtx file.

1 ⟨∗driver⟩
2 \documentclass{ltxdoc}

We use the balancingshow option when loading
multicols so that full tracing is produced. This has to
be done before the doc package is loaded, since doc
otherwise requires multicols without any options.

3 \usepackage{multicol}[1999/05/25]

4 \usepackage{doc}

First we set up the page layout suitable for this ar-
ticle.

5 \setlength{\textwidth}{39pc}

6 \setlength{\textheight}{54pc}

7 \setlength{\parindent}{1em}

8 \setlength{\parskip}{0pt plus 1pt}

9 \setlength{\oddsidemargin}{0pc}

10 \setlength{\marginparwidth}{0pc}

11 \setlength{\topmargin}{-2.5pc}

12 \setlength{\headsep}{20pt}

13 \setlength{\columnsep}{1.5pc}

We want a rule between columns.

14 \setlength\columnseprule{.4pt}

We also want to ensure that a new multicols envi-
ronment finds enough space at the bottom of the
page.

15 \setlength\premulticols{6\baselineskip}

When balancing columns we disregard solutions that
are too bad. Also, if the last column is too bad we

typeset it without stretch.

16 \setcounter{columnbadness}{7000}

17 \setcounter{finalcolumnbadness}{7000}

The index is supposed to come out in four columns.
And we don’t show macro names in the margin.

18 \setcounter{IndexColumns}{4}

The following redefinitions have to be moved un-
til after the preamble because version 3 of doc re-
sets them after the preamble (this is tmp, because
hypdoc is not yet integrated, but as we all know,
tmp solutions have a tendency to survive for a long
time. . .).

19 \AddToHook{begindocument}{%

20 \let\DescribeMacro\SpecialUsageIndex

21 \let\DescribeEnv\SpecialEnvIndex

22 \renewcommand\PrintMacroName[1]{}%

23 }

24 \CodelineIndex

25 %\DisableCrossrefs % Partial index

26 \RecordChanges % Change log

Line numbers are very small for this article.

27 \renewcommand{\theCodelineNo}

28 {\scriptsize\rm\arabic{CodelineNo}}

29 \settowidth\MacroIndent{\scriptsize\rm 00\ }

30

31 \begin{document}

32 \typeout

33 {**

34 ^^J* Expect some Under- and overfull boxes.

35 ^^J**}

36 \DocInput{multicol.dtx}

37 \end{document}

38 ⟨/driver⟩

8

4.2 Identification and option processing

We start by identifying the package. Since it makes
use of features only available in LATEX2ε we ensure
that this format is available. (Now this is done ear-
lier in the file.)

39 ⟨∗package⟩
40 % \NeedsTeXFormat{LaTeX2e}

41 % \ProvidesPackage{multicol}[..../../..

42 % v... multicolumn formatting]

Next we declare options supported by multicols.
Two-column mode and multicols do not work to-
gether so we warn about possible problems. How-
ever, since you can revert to \onecolumn in which
case multicols does work, we don’t make this an er-
ror.

43 \DeclareOption{twocolumn}

44 {\PackageWarning{multicol}{May not work

45 with the twocolumn option}}

Tracing is done using a counter. However it is also
possible to invoke the tracing using the options de-
clared below.

46 \newcount\c@tracingmulticols

47 \DeclareOption{errorshow}

48 {\c@tracingmulticols\z@}

49 \DeclareOption{infoshow}

50 {\c@tracingmulticols\@ne}

51 \DeclareOption{balancingshow}

52 {\c@tracingmulticols\tw@}

53 \DeclareOption{markshow}

54 {\c@tracingmulticols\thr@@

55 \DebugMarksOn

56 }

57 \DeclareOption{debugshow}

58 {\c@tracingmulticols5\relax

59 \DebugMarksOn

60 }

The next option is intended for typesetting on a
\baselineskip grid. Right now it doesn’t do any-
thing other than warning if it thinks that the grid
got lost.

61 \let\mc@gridwarn\maxdimen

62 \DeclareOption{grid}

63 {\def\mc@gridwarn{\@maxdepth}}

Next option enables the \docolaction command.
As this changes the .aux file content this is not au-
tomatically enabled.

64 \DeclareOption{colaction}{%

65 \def\mc@col@status@write{%

66 \protected@write\@auxout{}%

67 {\string\mc@col@status

68 {\ifmc@firstcol 1\else 2\fi}}%

69 \mc@firstcolfalse}%

70 \def\mc@lastcol@status@write{%

71 \protected@write\@auxout{}%

72 {\string\mc@col@status{3}}}%

73 }

74 \let\mc@col@status@write\relax

75 \let\mc@lastcol@status@write\relax

76 \ProcessOptions

4.3 Starting and Ending the multicols Environment

As mentioned before, the multicols environment has
one mandatory argument (the number of columns)
and up to two optional ones. We start by reading
the number of columns into the \col@number regis-
ter.

77 \def\multicols#1{\col@number#1\relax

If the user forgot the argument, TEX will complain
about a missing number at this point. The error
recovery mechanism will then use zero, which isn’t
a good choice in this case. So we should now test
whether everything is okay. The minimum is two
columns at the moment.

78 \ifnum\col@number<\tw@

79 \PackageWarning{multicol}%

80 {Using ‘\number\col@number’

81 columns doesn’t seem a good idea.^^J

82 I therefore use two columns instead}%

83 \col@number\tw@ \fi

We have only enough box registers for twenty

columns, so we need to check that the user hasn’t
asked for more.

84 \ifnum\col@number>20

85 \PackageError{multicol}%

86 {Too many columns}%

87 {Current implementation doesn’t

88 support more than 20 columns.%

89 \MessageBreak

90 I therefore use 20 columns instead}%

91 \col@number20 \fi

Within the environment we need a special version
of the kernel \@footnotetext command since the
original sets the the \hsize to \columnwidth which
is not correct in the multicol environment. Here
\columnwidth refers to the width of the individual
column and the footnote should be in \textwidth.
Since \@footnotetext has a different definition in-
side a minipage environment we do not redefine it
directly. Instead we locally set \columnwidth to

9

\textwidth and call the original (current) definition
stored in \orig@footnotetext. If the multicols
environment is nested inside another multicols envi-
ronment then the redefinition has already happened.
So be better test for this situation. Otherwise, we
will get a TEX stack overflow as this would generate
a self-referencing definition.

92 \ifx\@footnotetext\mult@footnotetext

93 \else

94 \let\orig@footnotetext\@footnotetext

95 \let\@footnotetext\mult@footnotetext

96 \fi

Now we can safely look for the optional arguments.

97 \@ifnextchar[\mult@cols{\mult@cols[]}}

98 \long\def\mult@footnotetext#1{\begingroup

99 \columnwidth\textwidth

100 \orig@footnotetext{#1}\endgroup}

The \mult@cols macro grabs the first optional ar-
gument (if any) and looks for the second one.

101 \def\mult@cols[#1]{\@ifnextchar[%

This argument should be a ⟨dimen⟩ denoting the
minimum free space needed on the current page to
start the environment. If the user didn’t supply one,
we use \premulticols as a default.

102 {\mult@@cols{#1}}%

103 {\mult@@cols{#1}[\premulticols]}}

After removing all arguments from the input we are
able to start with \mult@@cols.

104 \def\mult@@cols#1[#2]{%

First thing we do is to decide whether or not this is
an unbounded multicols environment, i.e. one that
may split across pages, or one that has to be typeset
into a box. If we are in TEX’s “inner” mode (e.g.,
inside a box already) then we have a boxed version
of multicols therefore we set the @boxedmulticols

switch to true. The multicols should start in vertical
mode. If we are not already there we now force it
with \par since otherwise the test for “inner” mode
wouldn’t show if we are in a box.

105 \par

106 \ifinner \@boxedmulticolstrue

Otherwise we check \doublecol@number. This
counter is zero outside a multicols environment but
positive inside (this happens a little later on). In
the second case we need to process the current mul-
ticols also in “boxed mode” and so change the switch
accordingly.

107 \else

108 \ifnum \doublecol@number>\z@

109 \@boxedmulticolstrue

110 \fi

111 \fi

Then we look to see if statistics are requested:

112 \mult@info\z@

113 {Starting environment with

114 \the\col@number\space columns%

In boxed mode we add some more info.

115 \if@boxedmulticols\MessageBreak

116 (boxed mode)\fi

117 }%

Then we measure the current page to see whether a
useful portion of the multicolumn environment can
be typeset. This routine might start a new page.

118 \enough@room{#2}%

Now we output the first argument and produce ver-
tical space above the columns. (Note that this ar-
gument corresponds to the first optional argument
of the multicols environment.) For many releases
this argument was typeset in a group to get a sim-
ilar effect as \twocolumn[..] where the argument
is also implicitly surrounded by braces. However,
this conflicts with local changes done by things like
sectioning commands (which account for the major-
ity of commands used in that argument) messing up
vertical spacing etc. later in the document so that
from version v1.5q on this argument is again typeset
at the outer level.

119 #1\par\addvspace\multicolsep

When the last line of a paragraph had a posi-
tive depth then this depth normally taken into ac-
count by the baselineskip calculation for the next
line. However, the columns produced by a following
multicol are rigid and thus the distance from the
baseline of a previous text line to the first line in
a multicol would differ depending on the depth of
the previous line. To account for this we add a nega-
tive space unless the depth is -1000pt which signals
something special to TEXand is not supposed to be
a real depth.

120 \ifdim \prevdepth = -\@m\p@

121 \else

The actual generation of this corrective space is a
little bit more complicated as it doesn’t make sense
to always back up to the previous baseline (in case
an object with a very large depth was placed there,
e.g., a centered tabular). So we only back up to the
extend that we are within the \baselineskip grid.
We know that the box produced by multicols has
\topskip at its top so that also needs to be taken
into account.

122 \@tempcnta\prevdepth

10

123 \@tempcntb\baselineskip

124 \divide\@tempcnta\@tempcntb

125 \advance\@tempcnta\@ne

126 \dimen@\prevdepth

127 \advance\dimen@ -\@tempcnta\baselineskip

128 \advance\dimen@ \topskip

132 \kern-\dimen@

133 \fi

We start a new grouping level to hide all subsequent
changes (done in \prepare@multicols for exam-
ple).

134 \begingroup

135 \prepare@multicols

If we are in boxed mode we now open a box to type-
set all material from the multicols body into it, oth-
erwise we simply go ahead.

136 \if@boxedmulticols

137 \setbox\mult@box\vbox\bgroup

138 \color@setgroup

We may have to reset some parameters at this point,
perhaps \@parboxrestore would be the right action
but I leave it for the moment.

139 \fi

We finish by suppressing initial spaces.

140 \ignorespaces}

Here is the switch and the box for “boxed” multicols
code.

141 \newif\if@boxedmulticols

142 \@boxedmulticolsfalse

143 \newbox\mult@box

The \enough@room macro used above isn’t perfect
but works reasonably well in this context. We mea-
sure the free space on the current page by subtract-
ing \pagetotal from \pagegoal. This isn’t en-
tirely correct since it doesn’t take the ‘shrinking’
(i.e. \pageshrink) into account. The ‘recent con-
tribution list’ might be nonempty so we start with
\par and an explicit \penalty.7 Actually, we use
\addpenalty to ensure that a following \addvspace
will ‘see’ the vertical space that might be present.
The use of \addpenalty will have the effect that all
items from the recent contributions will be moved
to the main vertical list and the \pagetotal value
will be updated correctly. However, the penalty will
be placed in front of any dangling glue item with
the result that the main vertical list may already
be overfull even if TEX is not invoking the output
routine.

144 \def\enough@room#1{%

Measuring makes only sense when we are not in
“boxed mode” so the routine does nothing if the
switch is true.

145 \if@boxedmulticols\else

146 \par

To empty the contribution list the first release con-
tained a penalty zero but this had the result that
\addvspace couldn’t detect preceding glue. So this
was changed to \addpenalty. But this turned out
to be not enough as \addpenalty will not add a
penalty when @nobreak is true. Therefore we force
this switch locally to false. As a result there may
be a break between preceding text and the start of
a multicols environment, but this seems acceptable
since there is the optional argument for exactly this
reason.

147 \bgroup\@nobreakfalse\addpenalty\z@\egroup

148 \page@free \pagegoal

149 \advance \page@free -\pagetotal

To be able to output the value we need to assign it
to a register first since it might be a register (de-
fault) in which case we need to use \the or it might
be a plain value in which case \the would be wrong.

150 \@tempskipa#1\relax

Now we test whether tracing information is required:

151 \mult@info\z@

152 {Current page:\MessageBreak

153 height=%

154 \the\pagegoal: used \the\pagetotal

155 \space -> free=\the\page@free

156 \MessageBreak

157 needed \the\@tempskipa

158 \space(for #1)}%

Our last action is to force a page break if there isn’t
enough room left.

159 \ifdim \page@free <#1\newpage \fi

160 \fi}

When preparing for multicolumn output several
things must be done.

161 \def\prepare@multicols{%

We start saving the current \@totalleftmargin

and then resetting the \parshape in case we are
inside some list environment. The correct inden-
tation for the multicols environment in such a case
will be produced by moving the result to the right
by \multicol@leftmargin later on. If we would
use the value of \@totalleftmargin directly then
lists inside the multicols environment could cause a
shift of the output.

7See the documentation of \endmulticols for further details.

11

162 \multicol@leftmargin\@totalleftmargin

163 \@totalleftmargin\z@

164 \parshape\z@

We also set the register \doublecol@number for
later use. This register should contain 2 ×
\col@number. This is also an indicator that we are
within a multicols environment as mentioned above.

165 \doublecol@number\col@number

166 \multiply\doublecol@number\tw@

167 \advance\doublecol@number\mult@rightbox

168 \mc@prepare@mark@regions

169 \if@boxedmulticols

170 \else

We add an empty box to the main vertical list to
ensure that we catch any insertions (held over or in-
serted at the top of the page). Otherwise it might
happen that the \eject is discarded without calling
the output routine. Inside the output routine we re-
move this box again. Again this code applies only
if we are on the main vertical list and not within
a box. However, it is not enough to turn off inter-
line spacing, we also have to clear \topskip before
adding this box, since \topskip is always inserted
before the first box on a page which would leave us
with an extra space of \topskip if multicols start on
a fresh sheet.

171 \nointerlineskip {\topskip\z@\null}%

172 \output{%

173 \global\setbox\partial@page\vbox

174 {%

Now we have to make sure that we catch one spe-
cial situation which may result in loss of text! If
the user has a huge amount of vertical material
within the first optional argument that is larger then
\premulticols and we are near the bottom of the
page then it can happen that not the \eject is
triggering this special output routine but rather the
overfull main vertical list. In that case we get an-
other breakpoint through the \eject penalty. As
a result this special output routine would be called
twice and the contents of \partial@page, i.e. the
material before the multicols environment gets lost.
There are several solutions to avoid this problem,
but for now we will simply detect this and inform the
user that he/she has to enlarge the \premulticols
by using a suitable value for the second argument.

175 ⟨∗check⟩
176 \ifvoid\partial@page\else

177 \PackageError{multicol}%

178 {Error saving partial page}%

179 {The part of the page before

180 the multicols environment was

181 nearly full with^^Jthe result

182 that starting the environment

183 will produce an overfull

184 page. Some^^Jtext may be lost!

185 Please increase \premulticols

186 either generally or for this%

187 ^^Jenvironment by specifying a

188 suitable value in the second

189 optional argument to^^Jthe

190 multicols environment.}

191 \unvbox\partial@page

192 \box\last@line

193 \fi

194 ⟨/check⟩
195 \unvbox\@cclv

196 \global\setbox\last@line\lastbox

197 }%

198 }\eject

The next thing to do is to assign a new value to
\vsize. LATEX maintains the free room on the page
(i.e. the page height without the space for already
contributed floats) in the register \@colroom. We
must subtract the height of \partial@page to put
the actual free room into this variable.

199 \advance\@colroom-\ht\partial@page

Then we have to calculate the \vsize value to use
during column assembly. \set@mult@vsize takes
an argument which allows to make the setting local
(\relax) or global (\global). The latter variant is
used inside the output routine below. At this point
here we have to make a local change to \vsize be-
cause we want to get the original value for \vsize
restored in case this multicols environment ends on
the same page where it has started.

200 \set@mult@vsize\relax

Now we switch to a new \output routine which will
be used to put the gathered column material to-
gether.

201 \output{\multi@column@out}%

Finally we handle the footnote insertions. We have
to multiply the magnification factor and the extra
skip by the number of columns since each footnote
reduces the space for every column (remember that
we have page-wide footnotes). If, on the other hand,
footnotes are typeset at the very end of the docu-
ment, our scheme still works since \count\footins
is zero then, so it will not change. To allow even
further customization the setting of the \footins

parameters is done in a separate macro.

202 \init@mult@footins

For the same reason (page-wide footnotes), the
⟨dimen⟩ register controlling the maximum space
used for footnotes isn’t changed. Having done this,

12

we must reinsert all the footnotes which are already
present (i.e. those encountered when the material
saved in \partial@page was first processed). This
will reduce the free space (i.e. \pagetotal) by the
appropriate amount since we have changed the mag-
nification factor, etc. above.

203 \reinsert@footnotes

Inside multicols a \clearpage is fairly useless as we
aren’t supporting floats. In fact, it can cause harm
as it doesn’t know about the \partial@page and
may therefore result in making columns too long.
So we change that to behave like \newpage but
also check if there are any deferred floats. If so,
perhaps the user tried to place them through that
\clearpage (but that needs to be done before start-
ing the multicols environment.

204 \def\clearpage{%

205 \ifx\@deferlist\@empty\else

206 \PackageError{multicol}%

207 {Deferred floats not cleared}%

208 {A \string\clearpage\space inside

209 multicols acts like

210 \string\newpage\space and doesn’t

211 clear floats.\MessageBreak

212 Move it before the multicols

213 environment if you need it.}%

214 \fi

215 \newpage}%

All the code above was only necessary for the un-
restricted multicols version, i.e. the one that allows
page breaks. If we are within a box there is no point
in setting up special output routines or \vsize, etc.

216 \fi

But now we are coming to code that is necessary
in all cases. We assign new values to \vbadness,
\hbadness and \tolerance since it’s rather hard
for TEX to produce ‘good’ paragraphs within nar-
row columns.

217 \vbadness\@Mi \hbadness5000

218 \tolerance\multicoltolerance

Since nearly always the first pass will fail we ignore
it completely telling TEX to hyphenate directly. In
fact, we now use another register to keep the value
for the multicol pre-tolerance, so that a designer may
allow to use \pretolerance.

219 \pretolerance\multicolpretolerance

For use with the new TEX we set
\emergencystretch to \col@number × 4pt. How-
ever this is only a guess so at the moment this is

done in a macro \setemergencystretch which gets
the current \hsize and the number of columns as
arguments. Therefore users are able to figure out
their own formula.

220 \setemergencystretch\col@number\hsize

Another hook to allow people adding their own
extensions without making a new package is
\set@floatcmds which handles any redefinitions of
LATEXs internal float commands to work with the
multicols environment. At the moment it is only
used to redefine \@dblfloat and \end@dblfloat.

221 \set@floatcmds

Additionally, we advance \baselineskip by
\multicolbaselineskip to allow corrections for
narrow columns.

222 \advance\baselineskip\multicolbaselineskip

The \hsize of the columns is given by the formula:

\linewidth− (\col@number− 1)× \columnsep

\col@number

The formula above has changed from release to
release. We now start with the current value of
\linewidth so that the column width is properly
calculated when we are inside a minipage or a list
or some other environment. This will be achieved
with:

223 \hsize\linewidth \advance\hsize\columnsep

224 \advance\hsize-\col@number\columnsep

225 \divide\hsize\col@number

We also set \linewidth and \columnwidth to
\hsize In the past \columnwidth was left un-
changed. This is inconsistent, but \columnwidth is
used only by floats (which aren’t allowed in their
current implementation) and by the \footnote

macro. Since we want page-wide footnotes8 this
simple trick saved us from rewriting the \footnote
macros. However, some applications referred to
\columnwidth as the “width of the current column”
to typeset displays (the amsmath package, for exam-
ple) and to allow the use of such applications to-
gether with multicol this is now changed.

Before we change \linewidth to the new value
we record its old value in some register called
\full@width. This value is used later on when we
package all columns together.

226 \full@width\linewidth

227 \linewidth\hsize

228 \columnwidth\hsize

229 }

8I’m not sure that I really want page-wide footnotes. But balancing of the last page can only be achieved with this approach
or with a multi-path algorithm which is complicated and slow. But it’s a challenge to everybody to prove me wrong! Another
possibility is to reimplement a small part of the fire up procedure in TEX (the program). I think that this is the best solution
if you are interested in complex page makeup, but it has the disadvantage that the resulting program cannot be called TEX
thereafter.

13

This macro is used to set up the parameters asso-
ciated with footnote floats. It can be redefined by
applications that require different amount of spaces
when typesetting footnotes.

230 \def\init@mult@footins{%

231 \multiply\count\footins\col@number

232 \multiply\skip \footins\col@number

233 }

Since we have to set \col@umber columns on one
page, each with a height of \@colroom, we have to
assign \vsize = \col@number × \@colroom in or-
der to collect enough material before entering the
\output routine again. In fact we have to add
another (\col@number − 1) × (\baselineskip −
\topskip) if you think about it.

234 \def\set@mult@vsize#1{%

235 \vsize\@colroom

236 \@tempdima\baselineskip

237 \advance\@tempdima-\topskip

238 \advance\vsize\@tempdima

239 \vsize\col@number\vsize

240 \advance\vsize-\@tempdima

But this might not be enough since we use \vsplit
later to extract the columns from the gathered ma-
terial. Therefore we add some ‘extra lines,’ one for
each column plus a corrective action depending on
the value of the ‘collectmore’ counter. The final
value is assigned globally if #1 is \global because
we want to use this macro later inside the output
routine too.

241 \advance\vsize\col@number\baselineskip

242 #1\advance\vsize

243 \c@collectmore\baselineskip}

Here is the dimen register we need for saving away
the outer value of \@totalleftmargin.

244 \newdimen\multicol@leftmargin

In versions prior to 1.8r the balancing at the
end of the environment was done by changing
the output routine from \multi@column@out to
\balance@column@out. As it turned out that this
has a couple of issues when the last columns should
not be balanced after all (for example because they
contained several \columnbreak commands we now
stay with one output routine for the environment
and only signal that we reached the end of the envi-
ronment by marking it with a special penalty that
we can check for later.

245 \mathchardef\@Mvi=10006 % 10005 is

246 % \columnbreak

When the end of the multicols environment is sensed
we have to balance the gathered material. Depend-
ing on whether or not we are inside a boxed multicol

different things must happen. But first we end the
current paragraph with a \par command.

247 \def\endmulticols{\par

248 \if@boxedmulticols

In boxed mode we have to close the box in which we
have gathered all material for the columns. But be-
fore we do this we need to remove any space at the
end of the box as we don’t want to use this in balanc-
ing. Because of the \color@endgroup this can’t be
done later in \balance@columns as the color com-
mand will hide it.

249 \remove@discardable@items

250 \color@endgroup\egroup

Now we call \balance@columns the routine that
balances material stored in the box \mult@box.

251 \balance@columns

After balancing the result has to be returned by the
command \page@sofar. When the boxed multicol
is returned to the page it can happen that it doesn’t
fit onto it and LATEX therefore breaks earlier. The
problem in that case is that during the generation
\hsize, etc. got changed and this setting is still in
effect right now, and if this boxed multicol is within,
say, multicols* then its output routine gets very
upset. We therefore delay returning the result by
saving it in box for now until we have left the group
below.

252 \global\setbox\mc@boxedresult\vbox{%

We first update the mark structures and collect all
marks that need reinsertion once multicols has fin-
ished. Then we output the boxed columns and fi-
nally we reinsert the marks.

253 \mc@handle@marks@and@reinserts

254 {in multicol (boxed mode)}%

255 \page@sofar

256 \mc@reinsert@marks

257 }%

This finishes the code for the “boxed” case.

258 \else

If there was a \columnbreak on the very last
line all material will have been moved to the
\colbreak@box. Thus the galley will be empty
and no output routine gets called so that the text
is lost. To avoid this problem (though unlikely)
we check if the current galley is empty and the
\colbreak@box contains text and if so return that
to the galley. If the galley is non-empty any mate-
rial in \colbreak@box is added in the output routine
since it needs to be put in front.

259 \ifdim\pagegoal=\maxdimen

260 \ifvoid\colbreak@box\else

261 \mult@info\@ne{Re-adding forced

14

262 break(s) for splitting}%

263 \unvbox\colbreak@box\fi

264 \fi

If we are in an unrestricted multicols environment
we end the current paragraph above with \par but
this isn’t sufficient since TEXs page builder will not
totally empty the contribution list.9 Therefore we
must also add an explicit \penalty. Now the con-
tribution list will be emptied and, if its material
doesn’t all fit onto the current page then the output
routine will be called before we change it. At this
point we need to use \penalty not \addpenalty to
ensure that a) the recent contributions are emptied
and b) that the very last item on the main vertical
list is a valid break point so that TEX breaks the
page in case it is overfull.

265 \penalty\z@

Now it’s safe to call the output routine in order to
balance the columns. We do this by calling it with
a special penalty.

266 \penalty-\@Mvi

If the multicols environment body was completely
empty or if a multi-page multicols just ends at a
page boundary we have the unusual case that the
\eject will have no effect (since the main vertical
list is empty)—thus no output routine is called at
all. As a result the material preceding the multicols
(stored in \partial@page will get lost if we don’t
put this back by hand.

267 \ifvbox\partial@page

268 \unvbox\partial@page\fi

269 \fi

The output routine above will take care of the
\vsize and reinsert the balanced columns, etc. But
it can’t reinsert the \footnotes because we first
have to restore the \footins parameter since we
are returning to one column mode. This will be
done in the next line of code; we simply close the
group started in \multicols.
To fix an obscure bug which is the result of the

current definition of the \begin . . . \end macros,
we check that we are still (logically speaking) in the
multicols environment. If, for example, we forget to
close some environment inside the multicols environ-
ment, the following \endgroup would be incorrectly
considered to be the closing of this environment.

270 \@checkend{multicols}%

271 \endgroup

We also set the ‘unbalance’ counter to its default.
This is done globally since LATEX counters are al-
ways changed this way.10

272 \global\c@unbalance\z@

Now it’s time to return any footnotes if we are in
unrestricted mode. In boxed mode footnotes are
kept inside, but in that case we have to first re-
turn the saved box to the page and then write an-
other column status into the .aux file to support
\docolaction in case we have nested environments.

273 \if@boxedmulticols

274 \unvbox\mc@boxedresult

275 \mc@col@status@write

276 \else

277 \reinsert@footnotes

We also take a look at the amount of free space on
the current page to see if it’s time for a page break.
The vertical space added thereafter will vanish if
\enough@room starts a new page.

But there is one catch. If the \end{multicols}

is at the top of which can happen if there is a break
point just before it (such as end ending environment)
which was chosen. In that case we would do the next
page using the internal \vsize for multicol collec-
tion which is a disaster. So we better catch this
case. Fortunately we can detect it by looking at
\pagegoal.

278 \ifdim \pagegoal=\maxdimen

279 \global\vsize\@colroom

280 \else

281 \enough@room\postmulticols

282 \fi

283 \fi

284 \addvspace\multicolsep

There is one more thing to do: the balanced result of
the environment is supposed to have a \prevdepth

of zero as we backed up by its real prevdepth
within \page@sofar. However if the balancing hap-
pened in the output routine then TEX reverts to the
\prevdepth that was current before the OR once
the OR has finished. In short \prevdepth is some-
thing you can’t set globally it is always local to the
current list being built. Thus we need to set it back
to zero here to avoid incorrect spacing.

285 \prevdepth\z@

If statistics are required we finally report that we
have finished everything.

9This once caused a puzzling bug where some of the material was balanced twice, resulting in some overprints. The reason
was the \eject which was placed at the end of the contribution list. Then the page builder was called (an explicit \penalty

will empty the contribution list), but the line with the \eject didn’t fit onto the current page. It was then reconsidered after
the output routine had ended, causing a second break after one line.

10Actually, we are still in a group started by the \begin macro, so \global must be used anyway.

15

286 \mult@info\z@

287 {Ending environment

288 \if@boxedmulticols

289 \space(boxed mode)\fi

290 }}

Let us end this section by allocating all the registers
used so far.

294 \newcount\c@unbalance

295 \newcount\c@collectmore

In the new LATEX release \col@number is already al-
located by the kernel, so we don’t allocate it again.

296 %\newcount\col@number

297 \newcount\doublecol@number

298 \newcount\multicoltolerance

299 \newcount\multicolpretolerance

300 \newdimen\full@width

301 \newdimen\page@free

302 \newdimen\premulticols

303 \newdimen\postmulticols

304 \newskip\multicolsep

305 \newskip\multicolbaselineskip

306 \newbox\partial@page

307 \newbox\last@line

308 \newbox\mc@boxedresult

And here are their default values:

309 \c@unbalance = 0

310 \c@collectmore = 0

To allow checking whether some macro is used
within the multicols environment the counter
\col@number gets a default of 1 outside the envi-
ronment.

311 %\col@number = 1

312 \multicoltolerance = 9999

313 \multicolpretolerance = -1

314 \premulticols = 50pt

315 \postmulticols= 20pt

316 \multicolsep = 12pt plus 4pt minus 3pt

317 \multicolbaselineskip=0pt

4.4 The output routines

We first start with some simple macros. When type-
setting the page we save the columns either in the
box registers 0, 2, 4,. . . (locally) or 1, 3, 5,. . . (glob-
ally). This is PlainTEX policy to avoid an overflow
of the save stack.

Therefore we define a \process@cols macro to help
us in using these registers in the output routines
below. It has two arguments: the first one is a
number; the second one is the processing informa-
tion. It loops starting with \count@=#1 (\count@ is
a scratch register defined in PlainTEX), processes
argument #2, adds two to \count@, processes ar-
gument #2 again, etc. until \count@ is higher than
\doublecol@number. It might be easier to under-
stand it through an example, so we define it now
and explain its usage afterwards.

318 \def\process@cols#1#2{\count@#1\relax

319 \loop

320 ⟨∗debug⟩
321 \typeout{Looking at box \the\count@}

322 ⟨/debug⟩
323 #2%

324 \advance\count@\tw@

325 \ifnum\count@<\doublecol@number

326 \repeat}

We now define \page@sofar to give an example
of the \process@cols macro. \page@sofar should
output everything prepared by the balancing routine

\balance@columns.

327 \def\page@sofar{%

\balance@columns prepares its output in the even
numbered scratch box registers. Now we output
the columns gathered assuming that they are saved
in the box registers 2 (left column), 4 (second col-
umn), . . . However, the last column (i.e. the right-
most) should be saved in box register 0.11 First
we ensure that the columns have equal width. We
use \process@cols for this purpose, starting with
\count@ = \mult@rightbox. Therefore \count@

loops through \mult@rightbox, \mult@rightbox+
2,. . . (to \doublecol@number).

328 \process@cols\mult@rightbox

We have to check if the box in question is void, be-
cause the operation \wd⟨number⟩ on a void box will
not change its dimension (sigh).

329 {\ifvoid\count@

330 \setbox\count@\hbox to\hsize{}%

331 \else

332 \wd\count@\hsize

333 \fi}%

Now we give some tracing information.

334 \count@\col@number \advance\count@\m@ne

335 \mult@info\z@

336 {Column spec: \the\full@width\space = indent

337 + columns + sep =\MessageBreak

338 \the\multicol@leftmargin\space

339 + \the\col@number\space

11You will see the reason for this numbering when we look at the output routines \multi@column@out and
\balance@columns@out.

16

340 x \the\hsize\space

341 + \the\count@\space

342 x \the\columnsep

343 }%

At this point we should always be in vertical mode.

347 \ifvmode\else\errmessage{Multicol Error}\fi

Now we put all columns together in an
\hbox of width \full@width (shifting it by
\multicol@leftmargin to the right so that it will
be placed correctly if we are within a list environ-
ment) and separating the columns with a rule if de-
sired.
The box containing the columns has a large height

and thus will always result in using \lineskip if the
normal \baselineskip calculations are used. We
therefore better cancel that process.

348 \nointerlineskip

As mentioned earlier we want to have the reference
point of the box we put on the page being at the
baseline of the last line of the columns but we also
want to ensure that the box has no depth so that any
following skip is automatically starting from that
baseline. We achieve this by recording the depths
of all columns and then finally backing up by the
maximum. (perhaps a simpler method would be to
assemble the box in a register and set the depth of
that box to zero (not checked).
We need a global scratch register for this; using

standard TEX conventions we choose \dimen2 and
initialize it with the depth of the character “p” since
that is one of the depths that compete for the max-
imum.

349 \setbox\z@\hbox{\multicolmindepthstring}\global\dimen\tw@\dp\z@

350 \UseTaggingSocket{page@sofar}%

351 \moveright\multicol@leftmargin

352 \hbox to\full@width{%

If the document is written in a language that is type-
set right-to-left then, of course, the multicol columns
should be also typeset right-to-left. To support this
we call \mc@align@columns which with execute dif-
ferent code depending on the typesetting direction.

353 \mc@align@columns

The depths of the columns depend on their last lines.
To ensure that we will always get a similar look as
far as the rules are concerned we force the depth to
be at least the depth of a letter ‘p’ or more exactly
\multicolmindepthstring (which is what we set
\dimen2 to above).

354 \rlap{\phantom \multicolmindepthstring}%

355 }%

The processed material might consist of a last line
with a descender in which case the \prevdepth will
be non-zero. However, this material is getting refor-
matted now so that this value is likely to be wrong.
We therefore normalize the situation by pretending
that the depth is zero. However, if \page@sofar is
being called inside the OR then setting \prevdepth

here has no long-lasting effect, we therefore have
to repeat this once we return to the main vertical
list. Here we set it only for those cases where the
command is used within a list and then followed by
something else.

356 \prevdepth\z@

Now after typesetting the box we back up to its base-
line by using the value stored in \dimen2 (which will
hold the largest depth found on any column).

357 \kern-\dimen\tw@

However, in case one of the columns was unusu-
ally deep TEX may have tried some corrective ac-
tions in which case backing up by the saved value
will not bring us back to the baseline. A good in-
dication for this is a depth of \@maxdepth though
it is not an absolute proof. If the option grid is
used \mc@gridwarn will expand to this, otherwise
to \maxdimen in which case this warning will not
show up.

358 \ifdim\dimen\tw@ > \mc@gridwarn

359 \PackageWarning{multicol}%

360 {Very deep columns!\MessageBreak

361 Grid alignment might be broken}%

362 \fi

363 }

The default minimum depth of each column corre-
sponds to the depth of a ‘p’ in the current font.
This makes sense for Latin-based languages and
was hard-wired initially, but for Asian languages
it is better to use a zero depth (and alternatively
one might want to use the depth of a strut or a
parentheses). So we now offer a way to adjust
this while maintaining backward compatibility. Use
\renewcommand to alter it.

364 \def\multicolmindepthstring{p}

By default the vertical rule between columns will be
in \normalcolor.

365 \def\columnseprulecolor{\normalcolor}

Before we tackle the bigger output routines we
define just one more macro which will help us
to find our way through the mysteries later.
\reinsert@footnotes will do what its name in-
dicates: it reinserts the footnotes present in
\footinbox so that they will be reprocessed by
TEX’s page builder.

17

Instead of actually reinserting the footnotes we
insert an empty footnote. This will trigger insertion
mechanism as well and since the old footnotes are
still in their box and we are on a fresh page \skip

footins should be correctly taken into account.

366 \def\reinsert@footnotes{\ifvoid\footins\else

367 \insert\footins{}\fi}

This curious definition is used as the space
at the bottom of a column if we implement
\raggedcolumns. Normally one only appends
\vfill in that case but this is actually wrong for
columns that are more or less full: by adding a glue
at the bottom such a column doesn’t have any depth
any more but without it the material would be al-
lowed a depth of \@maxdepth. So we allow shrinking
by that amount. This only makes a difference if the
box would otherwise become overfull and shrinking
never exceeds the specified value, so we should be
fine.

368 \def\vfilmaxdepth{\vskip \z@ \@plus .0001fil

369 \@minus \@maxdepth}

Now we can’t postpone the difficulties any longer.
The \multi@column@out routine will be called in
two situations. Either the page is full (i.e., we
have collected enough material to generate all the
required columns) or a float or marginpar or a
\clearpage is sensed. In the latter case the
\outputpenalty is less than −10000, otherwise the
penalty which triggered the output routine is higher.
Therefore it’s easy to distinguish both cases: we sim-
ply test this register.

370 \def\multi@column@out{%

371 \ifnum\outputpenalty <-\@M

If this was a \clearpage, a float or a marginpar we
call \speci@ls

372 \speci@ls \else

otherwise we construct the final page. For the next
block of code see comments in section 7.2.

373 \ifvoid\colbreak@box\else

374 \mult@info\@ne{Re-adding forced

375 break(s) for splitting}%

376 \setbox\@cclv\vbox{%

377 \unvbox\colbreak@box

378 \penalty-\@Mv

379 \unvbox\@cclv}%

380 \fi

Let us now consider the normal case. We have to
\vsplit the columns from the accumulated mate-
rial in box 255. Therefore we first assign appropriate
values to \splittopskip and \splitmaxdepth.

381 \splittopskip\topskip

382 \splitmaxdepth\@maxdepth

We also need to restrict \boxmaxdepth so that re-
boxing is not generating boxes with arbitrary depth.

383 \boxmaxdepth\@maxdepth

Then we calculate the current column height (in
\dimen@). Note that the height of \partial@page
is already subtracted from \@colroom so we can use
its value as a starter.

384 \dimen@\@colroom

But we must also subtract the space occupied by
footnotes on the current page. Note that we first
have to reset the skip register to its normal value.
Again, the actual action is carried out in a utility
macro, so that other applications can modify it.

385 \divide\skip\footins\col@number

386 \ifvoid\footins \else

387 \leave@mult@footins

388 \fi

And there is one more adjustment that we have to
make: if the user has issue a \enlargethispage

command then the height the \@kludgeins box will
be the negation of the size by which the page should
be enlarged. If the star form of this command has
been used then we also need to shrink the resulting
column.

That local change will be reverted at the end of
the output routine So for the next page the origi-
nal state will be reestablished. However, in theory
there is a possibility to sneak in a whole multicols
environment into the running header definition. If
that happens then it will also be affected by this
change—too bad I think.

389 \ifvbox \@kludgeins

390 \advance \dimen@ -\ht\@kludgeins

The star form of \enlargethispage makes the
width of the box greater than zero (sneaky isn’t it?).

391 \ifdim \wd\@kludgeins>\z@

392 \shr@nkingtrue

393 \fi

394 \fi

Now we are able to \vsplit off all but the last col-
umn. Recall that these columns should be saved in
the box registers 2, 4,. . . (plus offset).

395 \process@cols\mult@firstbox{%

396 \setbox\count@

397 \vsplit\@cclv to\dimen@

If \raggedcolumns is in force we add a vfill at the
bottom by unboxing the split box. But we need to
unbox anyway to ensure that at the end of the box
we do not have unwanted space. This can sneak in,
in certain situations, for example, if two lists follow
each other and we break between them. While such
space is usually zero it still has an effect because it

18

hides depth of the last line in the column and that
will result in incorrect placement.

398 \setbox\count@

399 \vbox to\dimen@

403 {\unvbox\count@

404 \ifshr@nking

405 \vfilmaxdepth\fi}%

406 }%

Then the last column follows.

407 \setbox\mult@rightbox

408 \vsplit\@cclv to\dimen@

409 \setbox\mult@rightbox\vbox to\dimen@

410 {\unvbox\mult@rightbox

411 \ifshr@nking\vfilmaxdepth\fi}%

Having done this we hope that box 255 is emptied.
If not, we reinsert its contents.

412 \ifvoid\@cclv \else

413 \unvbox\@cclv

414 \ifnum\outputpenalty=\@M

415 \else

416 \penalty\outputpenalty

417 \fi

In this case a footnote that happens to fall into
the leftover bit will be typeset on the wrong page.
Therefore we warn the user if the current page con-
tains footnotes. The older versions of multicols pro-
duced this warning regardless of whether or not foot-
notes were present, resulting in many unnecessary
warnings.

418 \ifvoid\footins\else

419 \PackageWarning{multicol}%

420 {I moved some lines to

421 the next page.\MessageBreak

422 Footnotes on page

423 \thepage\space might be wrong}%

424 \fi

If the ‘tracingmulticols’ counter is 4 or higher we
also add a rule.

425 \ifnum \c@tracingmulticols>\thr@@

426 \hrule\allowbreak \fi

427 \fi

With a little more effort we could have done bet-
ter. If we had, for example, recorded the shrinkage
of the material in \partial@page it would be now
possible to try higher values for \dimen@ (i.e. the
column height) to overcome the problem with the
nonempty box 255. But this would make the code
even more complex so I skipped it in the current
implementation.
Now we use LATEX’s standard output mecha-

nism.12 Admittedly this is a funny way to do it.

Within the OR \boxmaxdepth needs to be unre-
stricted so we set it back now as it was changed
above.

428 \boxmaxdepth\maxdimen

429 \setbox\@cclv\vbox

430 {%

If we make a page while still inside the multicols en-
vironment we have to handle column and page mark
structures.

431 \mc@handle@col@andpage@marks

432 {in multicol OR (full page)}%

433 \unvbox\partial@page

434 \page@sofar

435 }%

The macro \@makecol adds all floats assigned for
the current page to this page. \@outputpage ships
out the resulting box. Note that it is just possible
that such floats are present even if we do not allow
any inside a multicols environment.

436 \@makecol\@outputpage

Now we reset \@colroom to \@colht which is
LATEX’s saved value of \textheight. We also have
to reset the recorded position of the last \marginpar
as well as the recorded size of in-text floats as we are
now on a new page.

437 \global\@colroom\@colht

438 \global \@mparbottom \z@

439 \global \@textfloatsheight \z@

Then we process deferred floats waiting for their
chance to be placed on the next page.

440 \process@deferreds

441 \@whilesw\if@fcolmade\fi{\@outputpage

442 \global\@colroom\@colht

443 \process@deferreds}%

If the user is interested in statistics we inform him
about the amount of space reserved for floats.

444 \mult@info\@ne

445 {Colroom:\MessageBreak

446 \the\@colht\space

447 after float space removed

448 = \the\@colroom \@gobble}%

Having done all this we must prepare to tackle the
next page. Therefore we assign a new value to
\vsize. New, because \partial@page is now empty
and \@colroom might be reduced by the space re-
served for floats.

449 \set@mult@vsize \global

The \footins skip register will be adjusted when
the output group is closed.

450 \fi}

12This will produce a lot of overhead since both output routines are held in memory. The correct solution would be to
redesign the whole output routine used in LATEX.

19

This macro is used to subtract the amount of space
occupied by footnotes for the current space from the
space available for the current column. The space
current column is stored in \dimen@. See above for
the description of the default action.

454 \def\leave@mult@footins{%

455 \advance\dimen@-\skip\footins

456 \advance\dimen@-\ht\footins

457 }

We left out two macros: \process@deferreds and
\speci@ls.

458 \def\speci@ls{%

459 \ifnum\outputpenalty <-\@Mi

If the document ends in the middle of a mul-
ticols environment, e.g., if the user forgot the
\end{multicols}, TEX adds a very negative
penalty to the end of the galley which is intended
to signal the output routine that it is time to pre-
pare for shipping out everything remaining. Since
inside multicols the output routine of LATEX is dis-
abled sometimes we better check for this case: if
we find a very negative penalty we produce an error
message and run the default output routine for this
case.

460 \ifnum \outputpenalty<-\@MM

461 \PackageError{multicol}{Document end

462 inside multicols environment}\@ehd

463 \@specialoutput

464 \else

For the next block of code see comments in sec-
tion 7.2.

465 \ifnum\outputpenalty = -\@Mv

466 \mult@info\@ne{Forced column

467 break seen}%

468 \global\advance\vsize-\pagetotal

469 \global\setbox\colbreak@box

470 \vbox{%

471 \ifvoid\colbreak@box

472 \else

473 \unvbox\colbreak@box

474 \penalty-\@Mv

475 \fi

As this is the place of a forced break we now remove
vertical white space just in front of it (or some of
it at least) as it is quite likely that the break is not
exactly in the right place, e.g., after a display envi-
ronment (if LaTeX would break here by its own it
would break before the space following the display).
Thus we rebox box 255 once (using \@maxdepth

and calling \remove@discardable@items inside).
The depth of 255 will then give us the depth the
box would have had if it would have been a nat-
ural break. We then unbox 255 to get it into the

\colbreak@box and then back up by this depth.
This will position the bottom of the box at its nat-
ural baseline which is useful for balancing later on.

476 \boxmaxdepth\@maxdepth

477 \setbox\@cclv\vbox{%

478 \unvbox\@cclv

479 \remove@discardable@items}%

480 \dimen@\dp\@cclv

481 \unvbox\@cclv

482 \kern-\dimen@

483 }%

484 \reinsert@footnotes

485 \else

Another special case is reaching the end of the mul-
ticols environment which is signaled by -\@Mvi.

486 \ifnum\outputpenalty = -\@Mvi

487 \mult@info\@ne{End penalty of

488 multicols seen}%

If we are at this point then we have to run
the balancing code (which was previously its
own output routine). First we pretend that we
had a normal forced breakpoint and then call
\balance@column@out. The latter may be let to
\multi@column@out if we are inside multicols*

in which case we would get a loop if the
\outputpenalty is not changed—this could be
cleaned up in a better way; basically it is like this,
because of the older code was using different ORs
and I simply reused most of it.

489 \outputpenalty\@M % pretend we had

490 % a natural

491 % forced break

492 \balance@columns@out

493 \else

If we encounter a float or a marginpar in the cur-
rent implementation we simply warn the user that
this is not allowed. Then we reinsert the page and
its footnotes.

494 \PackageWarningNoLine{multicol}%

495 {Floats and marginpars not

496 allowed inside ‘multicols’

497 environment!}%

498 \unvbox\@cclv\reinsert@footnotes

Additionally we empty the \@currlist to avoid
later error messages when the LATEX output routine
is again in force. But first we have to place the
boxes back onto the \@freelist. (\@elts default is
\relax so this is possible with \xdef.)

499 \xdef\@freelist{\@freelist

500 \@currlist}%

501 \gdef\@currlist{}%

502 \fi

503 \fi

504 \fi

20

If the penalty is −10001 it will come from a
\clearpage and we will execute \@doclearpage to
get rid of any deferred floats.

508 \else \@doclearpage \fi

509 }

\process@deferreds is a simplified version of
LATEX’s \@startpage. We first call the macro
\@floatplacement to save the current user parame-
ters in internal registers. Then we start a new group
and save the \@deferlist temporarily in the macro
\@tempb.

510 \def\process@deferreds{%

511 \@floatplacement

512 \@tryfcolumn\@deferlist

513 \if@fcolmade\else

514 \begingroup

515 \let\@tempb\@deferlist

Our next action is to (globally) empty \@deferlist

and assign a new meaning to \@elt. Here
\@scolelt is a macro that looks at the boxes in
a list to decide whether they should be placed on
the next page (i.e. on \@toplist or \@botlist) or
should wait for further processing.

516 \gdef\@deferlist{}%

517 \let\@elt\@scolelt

Now we call \@tempb which has the form

\@elt⟨box register⟩\@elt⟨box register⟩. . .

So \@elt (i.e. \@scolelt) will distribute the boxes
to the three lists.

518 \@tempb \endgroup

519 \fi}

The \raggedcolumns and \flushcolumns declara-
tions are defined with the help of a new \if...

macro.

520 \newif\ifshr@nking

The actual definitions are simple: we just switch to
true or false depending on the desired action. To
avoid extra spaces in the output we enclose these
changes in \@bsphack. . . \@esphack.

521 \def\raggedcolumns{%

522 \@bsphack\shr@nkingtrue\@esphack}

523 \def\flushcolumns{%

524 \@bsphack\shr@nkingfalse\@esphack}

Now for the last part of the show: the column bal-
ancing output routine. Since this code is called with
an explicit penalty (\eject) there is no need to
check for something special (eg floats). We start
by balancing the material gathered.

525 \def\balance@columns@out{%

For this we need to put the contents of box 255 into
\mult@box. For the next block of code see also
comments in section 7.2. All forced breaks except
the last are inside \colbreak@box so all we have
to do is to concatenate this box with box \@cclv

and put a penalty in between. Here we test if
\colbreak@box is void so that the message is only
generated if we really add forced breaks and the
penalty.

526 \setbox\mult@box\vbox{%

527 \ifvoid\colbreak@box\else

528 \unvbox\colbreak@box

529 \penalty-\@Mv

530 \mult@info\@ne{Re-adding

531 forced break(s) in balancing}%

532 \fi

533 \unvbox\@cclv

The last column again is a forced break, so here we
discard white space as well as that is normally un-
wanted.

534 \remove@discardable@items

535 }%

536 \balance@columns

If during balancing the columns got too long the flag
\iftoo@bad is set to true.

537 \iftoo@bad

538 \mult@info\@ne

539 {Balancing failed ...

540 cut a normal page}%

In that case we put the material back in box 255
so that we can cut a normal page. The curious set
of \vskips we add is necessary to cancel out the
\splittopskip that got added for balancing.

541 \setbox\@cclv\vbox

542 {\vskip\topskip

543 \vskip-\splittopskip

544 \unvbox\mult@box

We also have to re-add the end of environment
penalty since after this page we may want balance
the remaining material.

545 \penalty-\@Mvi

546 }%

We then call the standard multicol output routine
which will produce a normal page for us (remem-
ber we are still within the OR so some part of
the code in \multi@column@out is actually not do-
ing anything—perhaps this should be cleaned up at
some point). This also means that if there was an
\enlargethispage present it will apply to this page
as \multi@column@out will look at the status of
\@kludgeins.

547 \multi@column@out

21

Because balancing made the columns too long
we are sure that there will be some material re-
maining which was put back onto the main ver-
tical list by \multi@column@out. This will also
put the explicit \eject penalty back so the cur-
rent \balance@columns@out output routine will be
called again (so we better do not add another
penalty or else the OR will be called twice and we
may get scrambled results).

548 \else

If the balancing went ok, we are in the position to
apply \page@sofar. But first we have to set \vsize
to a value suitable for one column output.

549 \global\vsize\@colroom

550 \global\advance\vsize\ht\partial@page

We also have to look at \@kludgeins and generate
a new \insert in case there was one present due to
an \enlargethispage command.

551 \ifvbox\@kludgeins

552 \insert\@kludgeins

553 {\unvbox\@kludgeins}\fi

Then we \unvbox the \partial@page (which may
be void if we are not processing the first page of this
multicols environment.

554 \unvbox\partial@page

We then handle mark structures of the columns, re-
turn the gathered material to the main vertical list
and then also reinsert the first and last marks that
have been found in the columns.

555 \mc@handle@marks@and@reinserts

556 {in multicol OR (balancing)}%

557 \page@sofar

558 \mc@reinsert@marks

We need to add a penalty at this point which allows
to break at this point since calling the output rou-
tine may have removed the only permissible break
point thereby “glueing” any following skip to the
balanced box. In case there are any weird settings
for \multicolsep etc. this could produce funny re-
sults.

559 \penalty\z@

560 \fi

561 }

As we already know, reinserting of footnotes will be
done in the macro \endmulticols.

This macro now does the actual balancing.

562 \def\balance@columns{%

We start by adding a forced break point at the very
beginning, so that we can split the box to height zero
later on, thereby adding a known \splittopskip

glue at the beginning.

563 \setbox\mult@box\vbox{%

564 \penalty-\@M

565 \unvbox\mult@box

566 }%

Then follow values assignments to get the
\vsplitting right. We use the natural part of
\topskip as the natural part for \splittopskip

and allow for a bit of undershoot and overshoot by
adding some stretch and shrink.

567 \@tempdima\topskip

568 \splittopskip\@tempdima

569 \@plus\multicolundershoot

570 \@minus\multicolovershoot

571 \splitmaxdepth\@maxdepth

We also have to set \boxmaxdepth which normally
allows to build boxes with arbitrary depth, but as
we are building text columns we really want to re-
strict the depth. This is necessary as we sometimes
rebox the boxes generated by \vsplit and then the
restriction posed by \splitmaxdepth gets lost.

572 \boxmaxdepth\@maxdepth

The next step is a bit tricky: when TEX assem-
bles material in a box, the first line isn’t preceded
by interline glue, i.e. there is no parameter like
\boxtopskip in TEX. This means that the baseline
of the first line in our box is at some unpredictable
point depending on the height of the largest charac-
ter in this line. But of course we want all columns
to align properly at the baselines of their first lines.
For this reason we have opened \mult@box with a
\penalty -10000. This will now allow us to split
off from \mult@box a tiny bit (in fact nothing since
the first possible break-point is the first item in the
box). The result is that \splittopskip is inserted
at the top of \mult@box which is exactly what we
like to achieve.

573 \setbox\@tempboxa\vsplit\mult@box to\z@

Next we try to find a suitable starting point for
the calculation of the column height. It should be
less than the height finally chosen, but large enough
to reach this final value in only a few iterations.
The formula which is now implemented will try to
start with the nearest value which is a multiple of
\baselineskip. The coding is slightly tricky in TEX
and there are perhaps better ways . . .

574 \@tempdima\ht\mult@box

575 \advance\@tempdima\dp\mult@box

576 \divide\@tempdima\col@number

The code above sets \@tempdima to the length of
a column if we simply divide the whole box into
equal pieces. To get to the next lower multiple of
\baselineskip we convert this dimen to a num-
ber (the number of scaled points) then divide this

22

by \baselineskip (also in scaled points) and then
multiply this result with \baselineskip assigning
the result to \dimen@. This makes \dimen@ ≤ to
\@tempdimena.

580 \count@\@tempdima

581 \divide\count@\baselineskip

582 \dimen@\count@\baselineskip

Next step is to correct our result by taking
into account the difference between \topskip and
\baselineskip. We start by adding \topskip; if
this makes the result too large then we have to sub-
tract one \baselineskip.

583 \advance\dimen@\topskip

584 \ifdim \dimen@ >\@tempdima

585 \advance\dimen@-\baselineskip

586 \fi

As a further restriction we want to see a minimum
number of rows in the balanced result based on the
setting of the counter minrows. If the starting value
is lower we adjust.

587 \@tempdima\dimexpr

588 \topskip +\c@minrows\baselineskip

589 -\baselineskip\relax

590 \ifnum\dimen@<\@tempdima

591 \mult@info\@ne

592 {Start value

593 \the\dimen@ \space ->

594 \the\@tempdima \space

595 (corrected for minrows)}%

596 \dimen@\@tempdima

597 \fi

At the user’s request we start with a higher value (or
lower, but this usually only increases the number of
tries).

598 \advance\dimen@\c@unbalance\baselineskip

We type out statistics if we were asked to do so.

599 \mult@info\@ne

600 {Balance columns\on@line:

601 \ifnum\c@unbalance=\z@\else

602 (off balance=\number\c@unbalance)\fi

603 \@gobbletwo}%

But we don’t allow nonsense values for a start.

604 \ifnum\dimen@<\topskip

605 \mult@info\@ne

606 {Start value

607 \the\dimen@ \space ->

608 \the\topskip \space (corrected)}%

609 \dimen@\topskip

610 \fi

Now we try to find the final column height. We start
by setting \vbadness to infinity (i.e. 10000) to sup-
press underfull box reports while we are trying to
find an acceptable solution. We do not need to do
it in a group since at the end of the output routine

everything will be restored. The setting of the final
columns will nearly always produce underfull boxes
with badness 10000 so there is no point in warning
the user about it.

611 \vbadness\@M

We also allow for overfull boxes while we trying to
split the columns. They can easily happen if we have
objects with unusual depth.

612 \vfuzz \maxdimen

The variable \last@try will hold the dimension
used in the previous trial splitting. We initialize
it with a negative value.

613 \last@try-\p@

614 \loop

In order not to clutter up TEX’s valuable main
memory with things that are no longer needed, we
empty all globally used box registers. This is neces-
sary if we return to this point after an unsuccessful
trial. We use \process@cols for this purpose, start-
ing with \mult@grightbox. Note the extra braces
around this macro call. They are needed since
PlainTEX’s \loop. . . \repeat mechanism cannot
be nested on the same level of grouping.

615 {\process@cols\mult@grightbox

616 {\global\setbox\count@

617 \box\voidb@x}}%

The contents of box \mult@box are now copied glob-
ally to box \mult@grightbox. (This will be the
right-most column, as we shall see later.)

618 \global\setbox\mult@grightbox

619 \copy\mult@box

We start with the assumption that the trial will be
successful. If we end up with a solution that is too
bad we set too@bad to true. We also assume that
all forced breaks (if any) will be used during bal-
ancing. If this is not the case we record this in
forcedbreak@leftover.

620 ⟨∗badness⟩
621 \too@badfalse

622 \forcedbreak@leftoverfalse

623 ⟨/badness⟩
Using \vsplit we extract the other columns from
box register \mult@grightbox. This leaves box reg-
ister \mult@box untouched so that we can start over
again if this trial was unsuccessful.

624 {\process@cols\mult@gfirstbox{%

625 \global\setbox\count@

626 \vsplit\mult@grightbox to\dimen@

After splitting we need to ensure that there isn’t any
space at the bottom, so we rebox once more.

627 \global\setbox\count@

628 \vbox to\dimen@

629 {\unvbox\count@}%

23

After every split we check the badness of the result-
ing column, normally the amount of extra white in
the column.

633 ⟨∗badness⟩
634 \ifnum\c@tracingmulticols>\@ne

635 \@tempcnta\count@

636 \advance\@tempcnta-\mult@grightbox

637 \divide\@tempcnta \tw@

638 \message{^^JColumn

639 \number\@tempcnta\space

640 badness: \the\badness\space}%

641 \fi

If this badness is larger than the allowed column
badness we reject this solution by setting too@bad

to true.

642 \ifnum\badness>\c@columnbadness

643 \ifnum\c@tracingmulticols>\@ne

644 \message{too bad

645 (>\the\c@columnbadness)}%

646 \fi

647 \too@badtrue

648 \fi

649 ⟨/badness⟩
650 }}%

There is one subtle point here: while all other con-
structed boxes have a depth that is determined
by \splitmaxdepth and/or \boxmaxdepth the last
box will get a natural depth disregarding the orig-
inal setting and the value of \splitmaxdepth or
\boxmaxdepth. This means that we may end up
with a very large depth in box \mult@grightbox

which would make the result of the testing incor-
rect. So we change the value by unboxing the box
into itself.

651 \global\setbox\mult@grightbox

652 \vbox{\unvbox\mult@grightbox}%

We also save a copy \mult@gfirstbox at its “natu-
ral” size for later use.

653 \setbox\mult@nat@firstbox

654 \vbox{\unvcopy\mult@gfirstbox}%

After \process@cols has done its job we have the
following situation:

box \mult@rightbox ←− all material
box \mult@firstbox ←− first column

box \mult@firstbox+ 2 ←− second column
...

...
box \mult@grightbox ←− last column

We report the height of the first column, in brackets
the natural size is given.

655 \ifnum\c@tracingmulticols>\@ne

656 \message{^^JFirst column

657 = \the\dimen@\space

658 (\the\ht\mult@nat@firstbox)}\fi

If \raggedcolumns is in force older releases of this
file also shrank the first column to its natural height
at this point. This was done so that the first col-
umn doesn’t run short compared to later columns
but it is actually producing incorrect results (over-
printing of text) in boundary cases, so since version
v1.5q \raggedcolumns means allows for all columns
to run slightly short.

659 % \ifshr@nking

660 % \global\setbox\mult@gfirstbox

661 % \copy\mult@nat@firstbox

662 % \fi

Then we give information about the last column.13

663 \ifnum\c@tracingmulticols>\@ne

664 \message{<> last column =

665 \the\ht\mult@grightbox^^J}%

Some tracing code that we don’t compile into the
production version unless asked for. It will produce
huge listings of the boxes involved in balancing in
the transcript file.

666 ⟨∗debug⟩
667 \ifnum\c@tracingmulticols>4

668 {\showoutput

669 \batchmode

670 \process@cols\mult@grightbox

671 {\showbox\count@}}%

672 \errorstopmode

673 \fi

674 ⟨/debug⟩
675 \fi

We check whether our trial was successful. The test
used is very simple: we merely compare the first and
the last column. Thus the intermediate columns
may be longer than the first if \raggedcolumns

is used. If the right-most column is longer than
the first then we start over with a larger value for
\dimen@.

676 \ifdim\ht\mult@grightbox >\dimen@

If the height of the last box is too large we mark this
trial as unsuccessful.

677 ⟨∗badness⟩
678 \too@badtrue

679 \ifnum\c@tracingmulticols>\@ne

680 \typeout{Rejected: last

681 column too large!}%

682 \fi

683 \else

13With TEX version 3.141 it is now possible to use LATEX’s \newlinechar in the \message command, but people with older
TEX versions will now get ^^J instead of a new line on the screen.

24

To ensure that there isn’t a forced break in the last
column we try to split off a box of size \maxdimen

from \mult@grightbox (or rather from a copy of it).
This should result in a void box after the split, un-
less there was a forced break somewhere within the
column in which case the material after the break
would have stayed in the box.

684 \setbox\@tempboxa

685 \copy\mult@grightbox

686 \setbox\z@\vsplit\@tempboxa to\maxdimen

687 \ifvoid\@tempboxa

Thus if \@tempboxa is void we have a valid solution.
In this case we take a closer look at the last column
to decide if this column should be made as long as
all other columns or if it should be allowed to be
shorter. For this we first have to rebox the column
into a box of the appropriate height. If tracing is
enabled we then display the badness for this box.

688 \global\setbox\mult@grightbox

689 \vbox to\dimen@

690 {\unvbox\mult@grightbox}%

691 \ifnum\c@tracingmulticols>\@ne

692 \message{Final badness:

693 \the\badness}%

694 \fi

We then compare this badness with the allowed bad-
ness for the final column. If it does not exceed this
value we use the box, otherwise we rebox it once
more and add some glue at the bottom.

695 \ifnum\badness>\c@finalcolumnbadness

696 \global\setbox\mult@grightbox

697 \vbox to\dimen@

698 {\unvbox\mult@grightbox\vfil}%

699 \ifnum\c@tracingmulticols>\@ne

700 \message{ setting natural

701 (> \the\c@finalcolumnbadness)}%

702 \fi

703 \fi

If \@tempboxa above was not void our trial was un-
successful and we report this fact and try again.

704 \else

If we have unprocessed forced breaks we normally
reiterate with a larger column size to fit them in
eventually. However, if there are simply too many
of them (e.g., 3 forced breaks but only 2 columns to
balance) then this will never succeed and we would
continue growing the columns until we hit the largest
possible column size. So in addition we check how
big the column size is compared to available room
and if we exceed this by \maxbalancingoverflow

we give up and instead of balancing cut another
normal page. To be indicate this case we set
forcedbreak@leftover to true.

705 \@tempdima\@colroom

706 \advance\@tempdima \maxbalancingoverflow

707 \ifdim \dimen@ < \@tempdima

708 \too@badtrue

709 \ifnum\c@tracingmulticols>\@ne

710 \typeout{Rejected: unprocessed

711 forced break(s) in last column!}%

712 \fi

713 \else

714 \forcedbreak@leftovertrue

715 \ifnum\c@tracingmulticols>\@ne

716 \typeout{Failed: columns too large

717 with unprocessed forced break(s)!}%

718 \fi

719 \fi

720 \fi

721 \fi

If the natural height of the first box is smaller than
the current trial size but is larger than the previous
trial size it is likely that we have missed a poten-
tially better solution. (This could have happened if
for some reason our first trial size was too high.) In
that case we dismiss this trial and restart using the
natural height for the next trial.

722 \ifdim\ht\mult@nat@firstbox<\dimen@

723 \ifdim\ht\mult@nat@firstbox>\last@try

724 \too@badtrue

725 \ifnum\c@tracingmulticols>\@ne

726 \typeout{Retry: using natural

727 height of first column!}%

728 \fi

729 \dimen@\ht\mult@nat@firstbox

730 \last@try\dimen@

731 \advance\dimen@-\p@

732 \fi

733 \fi

Finally the switch too@bad is tested. If it was made
true either earlier on or due to a rightmost column
being too large we try again with a slightly larger
value for \dimen@.

734 \iftoo@bad

735 ⟨/badness⟩
736 \advance\dimen@\p@

737 \repeat

If we come out of the loop with the switch
forcedbreak@leftover set to true then balancing
has failed and we should cut a normal page. We
indicate this below with \too@badtrue when any of
the columns get too high, so we set this flag here too
in order to get the same processing logic.14

738 \ifforcedbreak@leftover

739 \too@badtrue

740 \else

14Should get cleaned up as we now have two different routes to reach this part of the processing.

25

At that point \dimen@ holds the height that was de-
termined by the balancing loop. If that height for
the columns turns out to be larger than the available
space (which is \@colroom) we squeeze the columns
into the space assuming that they will have enough
shrinkability to allow this.15 However, this squeez-
ing should only be done if we are balancing columns
on the main galley and not if we are building a boxed
multicol (in the latter case the current \@colroom is
irrelevant since the produced box might be moved
anywhere at a later stage).

741 \if@boxedmulticols\else

742 \ifdim\dimen@>\@colroom

743 \dimen@\@colroom

744 \fi

745 \fi

Then we move the contents of the odd-numbered
box registers to the even-numbered ones, shrinking
them if requested. We have to use \vbox not \vtop
(as it was done in the first versions) since otherwise
the resulting boxes will have no height (TEXbook
page 81). This would mean that extra \topskip

is added when the boxes are returned to the page-
builder via \page@sofar.

746 \process@cols\mult@rightbox

747 {\@tempcnta\count@

748 \advance\@tempcnta\@ne

when putting the final column together we want
overfull information:

749 \vfuzz\z@

750 \setbox\count@\vbox to\dimen@

751 {%

752 \vskip \z@

753 \@plus-\multicolundershoot

754 \@minus-\multicolovershoot

755 \unvbox\@tempcnta

756 \ifshr@nking\vfilmaxdepth\fi

757 }%

If the resulting box is overfull there was too much
material to fit into the available space. The ques-
tion though is how much? If it wasn’t more than
\maxbalancingoverflow we accept it still to avoid
getting very little material for the next page (which
we would then have difficulties to balance).

758 \ifnum\badness>\@M

759 \vfuzz\maxdimen % no overfull warning

760 \setbox\@tempboxa \vbox to\dimen@

761 {\vskip-\maxbalancingoverflow

762 \unvcopy\count@}%

763 \ifnum\badness>\@M

764 \mult@info\@ne

765 {Balanced column more than

766 \the\maxbalancingoverflow\space

767 too large}%

Fail the balancing attempt:

768 \too@badtrue

769 \else

Otherwise report that there is a problem but within
the accepted boundary.

770 \mult@info\@ne

771 {Balanced column

772 too large, but less than

773 \the\maxbalancingoverflow}%

774 \fi

775 \fi

776 }%

Finally end the \ifforcedbreak@leftover condi-
tional.

777 \fi

778 }

Amount that balancing is allowed to overflow the
available column space. We default to 12pt which
means about one line in most layouts.

779 \newdimen\maxbalancingoverflow

780 \maxbalancingoverflow=12pt

4.5 The box allocations

Early releases of these macros used the first box
registers 0, 2, 4,. . . for global boxes and 1, 3, 5,. . .
for the corresponding local boxes. (You might still
find some traces of this setup in the documentation,
sigh.) This produced a problem at the moment we
had more than 5 columns because then officially allo-
cated boxes were overwritten by the algorithm. The
new release now uses private box registers.

There was in fact a bug in the new implementa-
tion because at one point LATEX started to use the

extended registers and so jumped from below 255 to
above omitting the boxes allocated for inserts and
the output page box.

So nowadays we really have to check if we get the
full sequence of boxes allocated without holes (i.e.,
2×max cols+1) and if not alter the allocation reg-
isters to start allocating after 255. This is all done
quite low-level by looking directly at the values of
the allocation counters.

781 \ifnum\numexpr

15This might be wrong, since the shrinkability that accounts for the amount of material might be present only in some
columns. But it is better to try then to give up directly.

26

782 \count20-\count14-1<40

783 % this is = 2 * 20

784 \count14=\@cclv

785 \fi

789 \newbox\mult@rightbox

790 \newbox\mult@grightbox

791 \newbox\mult@firstbox

792 \newbox\mult@gfirstbox

793 \newbox\@tempa\newbox\@tempa

794 \newbox\@tempa\newbox\@tempa

795 \newbox\@tempa\newbox\@tempa

796 \newbox\@tempa\newbox\@tempa

797 \newbox\@tempa\newbox\@tempa

798 \newbox\@tempa\newbox\@tempa

799 \newbox\@tempa\newbox\@tempa

800 \newbox\@tempa\newbox\@tempa

801 \newbox\@tempa\newbox\@tempa

802 \newbox\@tempa\newbox\@tempa

803 \newbox\@tempa\newbox\@tempa

804 \newbox\@tempa\newbox\@tempa

805 \newbox\@tempa\newbox\@tempa

806 \newbox\@tempa\newbox\@tempa

807 \newbox\@tempa\newbox\@tempa

808 \newbox\@tempa\newbox\@tempa

809 \newbox\@tempa\newbox\@tempa

810 \newbox\@tempa\newbox\@tempa

811 \let\@tempa\relax

5 New macros and hacks for version 1.2

If we don’t use TEX 3.0 \emergencystretch is un-
defined so in this case we simply add it as an unused
⟨dimen⟩ register.
812 \@ifundefined{emergencystretch}

813 {\newdimen\emergencystretch}{}

My tests showed that the following for-
mula worked pretty well. Nevertheless the
\setemergencystretch macro also gets \hsize as
second argument to enable the user to try different
formulae.

814 \def\setemergencystretch#1#2{%

815 \emergencystretch 4pt

816 \multiply\emergencystretch#1}

Even if this should be used as a hook we use a @ in
the name since it is more for experts. For now we
test if the socket is already defined

817 \def\set@floatcmds{%

818 \let\@dblfloat\@dbflt

819 \def\end@dblfloat{\@endfloatbox

820 \UseTaggingSocket{float/end}%

821 \@largefloatcheck

822 \outer@nobreak

This is cheap (deferring the floats until after the cur-
rent page) but any other solution would go deep into
LATEX’s output routine and I don’t like to work on it
until I know which parts of the output routine have
to be reimplemented anyway for LATEX3.

823 \ifnum\@floatpenalty<\z@

We have to add the float to the \@deferlist be-
cause we assume that outside the multicols environ-
ment we are in one column mode. This is not en-
tirely correct, I already used the multicols environ-
ment inside of LATEXs \twocolumn declaration but
it will do for most applications.

824 \@cons\@deferlist\@currbox

825 \fi

826 \ifnum\@floatpenalty=-\@Mii

827 \@Esphack

828 \UseTaggingSocket{float/hmode/end}%

829 \fi}}

There are situations when we may have some space
at the end of a column and this macro here will at-
tempt to get rid of it. The typical LATEX sequence is
a series of self-canceling glues so if we remove them
recursively we are usually fine.

Special care is needed with handling
\vspace* as that corresponds to \penalty10000,
\vskip <skip>, followed by \vskip 0pt. If we see
this sequence going backwards in the vertical list we
assume that this is a “desired” space. We therefore
stop the recursion and reinsert the spaces.

As the multicol code sometimes add an explicit
penalty at the end of a column we first attempt to
remove it in case it is there.

830 \skip0=0pt

831 \edef\the@zero@skip{\the\skip0}

832 \def\remove@discardable@items{%

833 \unpenalty

Save a previous skip (if there) and then remove it,
we can’t really tell the difference between no skip an
a skip of zero but that’s life.

834 \edef\@tempa{\the\lastskip}%

835 %\typeout{s1=\@tempa}%

836 \unskip

If it was a zero skip (or none) we save the next pre-
vious skip (if any).

837 \ifx\@tempa\the@zero@skip

838 \edef\@tempb{\the\lastskip}%

839 %\typeout{s2=\@tempb}%

If this one again was zero (or more likely not there
in the first place) we stop.

840 \ifx\@tempb\the@zero@skip

841 \else

27

Otherwise we remove this “real” skip. Then we look
if it was preceded by a penalty of 10000 (i.e., a
\nobreak)

845 \unskip

846 %\typeout{p=\lastpenalty}%

847 \ifnum \lastpenalty=\@M

If so this was a \vspace* or something equivalent
to it. Therefore we reintroduce the skips and stop.
Otherwise we recurse.

848 \vskip\@tempb\vskip\@tempa\relax

849 \else

850 \remove@discardable@items

851 \fi

852 \fi

853 \else

If the first skip was a non-zero skip we recurse as
well.

854 \remove@discardable@items

855 \fi

856 }

857 ⟨∗badness⟩
858 \newif\iftoo@bad

859 \def\too@badtrue{\global\let\iftoo@bad\iftrue}

860 \def\too@badfalse{\global\let\iftoo@bad\iffalse}

861 \newif\ifforcedbreak@leftover

862 \newcount\c@minrows

863 \c@minrows=1

864 \newcount\c@columnbadness

865 \c@columnbadness=10000

866 \newcount\c@finalcolumnbadness

867 \c@finalcolumnbadness=9999

868

869 \newdimen\last@try

870

871 \newdimen\multicolovershoot

872 \newdimen\multicolundershoot

873 \multicolovershoot=0pt

874 \multicolundershoot=2pt

875 \newbox\mult@nat@firstbox

876 ⟨/badness⟩

A helper for producing info messages

877 \def\mult@info#1#2{%

878 \ifnum\c@tracingmulticols>#1%

879 \GenericWarning

880 {(multicol)\@spaces\@spaces}%

881 {Package multicol: #2}%

882 \fi

883 }

6 Fixing the \columnwidth

If we store the current column width in
\columnwidth we have to redefine the internal
\@footnotetext macro to use \textwidth for the
width of the footnotes rather than using the original
definition.
Starting with version v1.5r this is now done in a

way that the original definition is still used, except
that locally \columnwidth is set to \textwidth.
This solves two problems: first redefinitions of

\@footnotetext done by a class will correctly
survive and second if multicols is used inside
a minipage environment the special definition of
\@footnotetext in that environment will be picked
up and not the one for the main galley (the lat-
ter would result in all footnotes getting lost in that
case).

See the definition of the \multicols command
further up for the exact code.

7 Further extensions

This section contains code for extensions added to this package over time. Not all of them may be active,
some might sit dormant and wait for being activated in some later release.

7.1 Not balancing the columns

This is fairly trivial to implement. we just have to disable the balancing output routine and replace it by
the one that ships out the other pages.

The code for this environment was suggested by Matthias Clasen.

884 ⟨∗nobalance⟩
885 \@namedef{multicols*}{%

28

If we are not on the main galley, i.e., inside a box of some sort, that approach will not work since we don’t
have a vertical size for the box so we better warn that we balance anyway.

886 \ifinner

887 \PackageWarning{multicol}%

888 {multicols* inside a box does

889 not make sense.\MessageBreak

890 Going to balance anyway}%

891 \else

If we aren’t balancing we change the \balance@columns@out to work like the normal output routine that
cuts normal pages. However, there is a catch: In case the last page we cut (after seeing the end of the
environment) is actually larger than a page (for example, if it contains more \columnbreak commands than
columns) we end up with some leftover material that is returned to the main galley, but now the environment
end penalty is missing. So we add another one here too. Of course that shouldn’t be done if there is really
only a single final page, but fortunately in that case we have just finished a page and any penalty on the
recent contributions will be discarded, thus the extra one is harmless—puh.

892 \def\balance@columns@out

893 {\multi@column@out \penalty-\@Mvi }%

894 \fi

895 \begin{multicols}

896 }

When ending the environment we simply end the inner multicols environment, except that we better also
stick in some stretchable vertical glue so that the last column still containing text is not vertically stretched
out.
We do this as follows: first we ensure that we are back in vertical mode and then we cancel out \lastskip

if it was positive (in case of a negative glue we assume that it was deliberate, for a deliberate positive glue
one needs to use \vspace*). We can’t simply use \remove@discardable@items here as this only works
inside boxes but we are here on the main vertical list.
Then we back up by \prevdepth but not more than \boxmaxdepth so that a baseline of the last box is

now at the bottom. This way the material will align properly in case something like \vfill spreads it out
after all. Finally we append \vfil to put white space at the bottom of the column, but we only do this if
we aren’t anyway doing \raggedcolumns.

897 \@namedef{endmulticols*}{%

898 \par

899 \ifdim\lastskip>\z@ \vskip-\lastskip \fi

900 \ifdim \prevdepth>\z@

901 \vskip-\ifdim\prevdepth>\boxmaxdepth

902 \boxmaxdepth

903 \else \prevdepth \fi

904 \fi

905 \ifshr@nking\else

906 \vfil

907 \fi

908 \end{multicols}}

909 ⟨/nobalance⟩

7.2 Manual column breaking

The problem with manual page breaks within multicols is the fact that during collection of material for all
columns a page-forcing penalty (i.e. -10000 or higher) would stop the collecting pass which is not quite what
is desired. On the other hand, using a penalty like -9999 would mean that there would be occasions where
the \vspliting operations within multicols would ignore that penalty and still choose a different break point.
For this reason the current implementation uses a completely different approach. In a nutshell it extends

the LATEX output routine handling by introducing an additional penalty flag (i.e., a penalty which is forcing
but higher than -10000 so that the output routine can look at this value and thus knows why it has been
called).

29

Inside the output routine we test for this value and if it appears we do two things: save the galley up to
this point in a special box for later use and reduce the \vsize by the height of the material seen. This way
the forcing penalty is now hidden in that box and we can restart the collection process for the remaining
columns. (This is done in \speci@ls above.)
In the output routines that do the \vsplitting either for balancing or for a full page we simply combine

box 255 with the saved box thus getting a single box for splitting which now contains forcing breaks in the
right positions.

\columnbreak is modeled after \pagebreak except that we generate a penalty -10005.

910 \mathchardef\@Mv=10005

911 \newcommand\columnbreak[1][4]{%

We have to ensure that it is only used within a multicols environment since if that penalty would be seen by
the unmodified LATEX output routine strange things would happen.

912 \ifnum\col@number<\tw@

913 \PackageError{multicol}%

914 {\noexpand\columnbreak outside multicols}%

915 {This command can only be used within

916 a multicols or multicols* environment.}%

917 \else

Increasingly lower penalty based on argument value. This is like \pagebreak but we use other penalty
values as the LATEX defaults are rather useless for pagination.

918 \edef\mc@break@pen

919 {-\ifcase#1\@m\or 3333\or 6666\or 9999\else\@Mv\fi\relax}%

920 \ifvmode

921 \penalty \mc@break@pen

922 \else

923 \@bsphack

924 \vadjust{\penalty \mc@break@pen}%

925 \@esphack

926 \fi

927 \fi}

This is modeled after \newpage but for column breaks.

928 \newcommand\newcolumn{%

929 \ifnum\col@number<\tw@

930 \PackageError{multicol}%

931 {\noexpand\newcolumn outside multicols}%

932 {This command can only be used within

933 a multicols or multicols* environment.}%

934 \else

935 \ifvmode

We need to guard the \vfill from disappearing.

936 \nobreak\vfill\kern\z@\penalty -\@Mv\relax

937 \else

938 \@bsphack

939 \vadjust{\nobreak\vfill\kern\z@\penalty -\@Mv\relax}%

940 \@esphack

941 \fi

942 \fi}

Need a box to collect the galley up to the column break.

943 \newbox\colbreak@box

944 ⟨/package⟩

30

7.3 Supporting right-to-left languages

\LR@column@boxes is called when we are assembling the columns for left to right typesetting. When we
start we are inside an \hbox of full width. Left to right typesetting is fairly easy, we basically output each
column box intermixed with vertical rules and proper spacing. As this happens inside a box of a defined
width the rules and the columns automatically get into the right positions.

945 \def\LR@column@boxes{%

We loop through the columns with \process@cols

946 \process@cols\mult@firstbox{%

If the depth of the current box is larger than the maximum found so far in \dimen2 we update that register
for later use.

947 \ifdim\dp\count@>\dimen\tw@

948 \global\dimen\tw@\dp\count@ \fi

If the colaction option is given we write out status information about the current column, otherwise the
next command does nothing.

949 \mc@col@status@write

The typeset box followed by the column rule material

950 \box\count@

951 \hss{\columnseprulecolor\vrule

952 \@width\columnseprule}\hss}%

As you will have noticed, we started with box register \mult@firstbox (i.e. the left column). So this time
\count@ looped through 2, 4,. . . (plus the appropriate offset). Finally we add box \mult@rightbox and we
are done. Again we may have to update \dimen\tw@.

953 \ifdim\dp\mult@rightbox>\dimen\tw@

954 \global\dimen\tw@\dp\mult@rightbox \fi

If the colaction option is given we write out status information about the last column, otherwise the next
command does nothing.

955 \mc@lastcol@status@write

956 \box\mult@rightbox

957 }

Assembling the boxes for right to left typesetting is far more complicated. When I first tried to build a
solution for this my thinking was that all that is necessary to do is to reverse the order of the columns. But
such an approach produces a subtle bug: If we work this way then the first column put on the page will be
the last column of the text to read. and this means that the order in which TEX executes write statements
or assembles mark material will not happen in the order of the textual flow. So if, for example each column
contains a section command then these sections will appear in reverse order in the table of content.
For this reason some amount of gymnastics is needed to add the columns in their natural flow.

958 \def\RL@column@boxes{%

First step is to put all rules in the right place (without adding the comes which are instead represented by
a space of \hsize.

959 \process@cols\mult@firstbox{%

960 \hskip\hsize

961 \hss{\columnseprulecolor\vrule

962 \@width\columnseprule}\hss

963 }%

964 \hskip\hsize

At this point in the code our typesetting reference point is at the right end of the rightmost column (or
rather where that column should appear).
We are now typesetting all columns by first backing up by their width (which is \hsize) then typesetting

the box and then backing up again, but this time further, i.e., also across the column separation. That will

31

then enable us to typeset the next column using the same approach until we are done with all but the final
column.

965 \process@cols\mult@firstbox{%

966 \ifdim\dp\count@>\dimen\tw@

967 \global\dimen\tw@\dp\count@ \fi

968 \hskip-\hsize

969 \mc@col@status@write

970 \box\count@

971 \hskip-\hsize

972 \hskip-\columnsep

973 }%

The approach for the final column is similar only that we do not have to back up over any column gap.

974 \ifdim\dp\mult@rightbox>\dimen\tw@

975 \global\dimen\tw@\dp\mult@rightbox \fi

976 \hskip-\hsize

977 \mc@lastcol@status@write

978 \box\mult@rightbox

979 \hskip-\hsize

However we do have to move the reference point to its right place: to make the rules appear at the expected
places, we should get the typesetting position to the far right again. As we at the moment at the far left we
skip to the far right like this:

980 \hskip\full@width

981 }

Macros to switch between left-right and right-left typesetting. In LR typesetting the \LR@column@boxes is
used to combine the columns. When typesetting right to left the \RL@column@boxes is used instead.

982 \newcommand\RLmulticolcolumns

983 {\let\mc@align@columns

984 \RL@column@boxes}

985 \newcommand\LRmulticolcolumns

986 {\let\mc@align@columns

987 \LR@column@boxes}

The default is left-to-right:

988 \LRmulticolcolumns

7.4 Supporting \docolaction
Whenever we want to do something that depends on the current column we execute \docolaction. This
command takes one optional and three mandatory arguments. The mandatory ones denote what to do if
this is a “left”, “middle”, or “right” column and the optional one is simply there to say what to do if we
don’t know (default is to use the “left” column action in that case).

We use one counter \mc@col@check@num to generate us unique label names. Each time we execute
\docolaction we increment this counter to get a new name.

989 \newcount\mc@col@check@num

The generated “labels” are named

\mc@col-\the\mc@col@check@num

and they hold as values the numbers 1, 2, or 3 denoting the current column type.

32

The \docolaction scans for a star and optional argument and 3 mandatory ones, but we do this in chunks
(not having xparse available).16

990 \newcommand\docolaction{%

First check is the support is enabled.

991 \ifx\mc@col@status@write\relax

992 \PackageError{multicol}%

993 {Option ’colaction’ not selected}%

994 {\string\docolaction\space

995 requires the use of the ’colaction’

996 option on the package}%

997 \fi

Then prepare \mc@col@type.

998 \global\advance\mc@col@check@num\@ne

999 \edef\mc@col@type{\expandafter\ifx

1000 \csname mc@col-\the\mc@col@check@num

1001 \endcsname\relax

1002 0\else

1003 \csname mc@col-\the\mc@col@check@num

1004 \endcsname

1005 \fi}%

Finally check for a star, record this information and then call \@docolaction to do the rest.

1006 \@ifstar

1007 {\@docolactionstartrue \@docolaction}%

1008 {\@docolactionstarfalse\@docolaction}%

1009 }

1010 \newcommand\@docolaction[4][1]{%

How does the column number get associated with our label? We do this by writing another line into the
aux file. Here are the preparations.

1011 \edef\@docolactioncheck{\write\@auxout

1012 {\string\mc@set@col@status

1013 {mc@col-\the\mc@col@check@num}%

1014 {\mc@col@type}}}%

Where we do the actual \write depends on the whether or not we gave seen a *. If yes, we do it first and
then execute the code argument, otherwise we execute that code first and check at the point after that.

1015 \if@docolactionstar \@docolactioncheck \fi

We prefix with 0 so that an unknown label (that returns \relax) will result in case 0

1016 \ifcase \mc@col@type\relax

If column is unknown we use the default action or the action denoted by the optional argument (so that arg
can take the value 1, 2, 3).

1017 \ifcase #1\or #2\or#3\or#4\fi

1018 \or

Otherwise we know (or think we know) that this is a first, middle, or last column:

1019 #2% % 1 First col

1020 \or

1021 #3% % 2 any middle col

1022 \or

1023 #4% % 3 last col

1024 \else

1025 \ERRORwrongdefaultgiven

1026 \fi

16We can do better now, as \NewDocumentCommand is part of the kernel. So this should be cleaned up one day.

33

1027 \if@docolactionstar \else \@docolactioncheck \fi

1028 }

Here is the if used above:

1029 \newif\if@docolactionstar

Because of extra data writing to the aux file the aux file will now contain something like the following
after the document is processed the first time:

\relax

\mc@col@status{1}

\mc@set@col@status{lcol-1}{0}

\mc@col@status{2}

\mc@set@col@status{lcol-2}{0}

\mc@col@status{3}

\mc@set@col@status{lcol-3}{0}

\mc@col@status{1}

\mc@col@status{2}

\mc@col@status{3}

\mc@set@col@status{lcol-4}{0}

The \mc@col@status line denotes the column type and has been written out just before corresponding
the column box was placed onto the page. The\mc@set@col@status lines have been written out as part
of shipping the column boxes out, e.g., \mc@set@col@status{lcol-1}{0} was therefore somewhere within
the first column as it appears between \mc@col@status{1} and \mc@col@status{2} The second argument
in that line is the value used in the previous run (or zero if there was no previous run. We can use this to
determine if a rerun is necessary.
Thus with this knowledge we can set things up to get the labels working.

When the aux file is read in \mc@col@status is used to set \mc@curr@col@status:

1030 \def\mc@col@status#1{%

1031 \gdef\mc@curr@col@status{#1}}

And when \mc@set@col@status is executed we can simply set up the label by associating it with the
\mc@curr@col@status and ignore the second argument:

1032 \def\mc@set@col@status#1#2{%

1033 \global\expandafter\let\csname #1\endcsname

1034 \mc@curr@col@status}

The above definition is being used when the .aux file is read in at the beginning. At the end we need a
different definition to test if another typesetting run is needed. There we compare the value used in the
current run (stored in the second argument) with the value used on the next run. If those two values differ
we set @tempswa to false which will trigger the “Label(s) may have changed” warning.

1035 \AtEndDocument{\def\mc@set@col@status#1#2{%

1036 \ifnum #2=\mc@curr@col@status\else

1037 \@tempswatrue

1038 \fi}%

1039 }

Finally, as part of determining in which column we are, we used a switch inside \mc@col@status@write to
determine if we are in the first column or not.

1040 \newif\ifmc@firstcol

1041 \mc@firstcoltrue

7.5 Using the new mark mechanism

7.5.1 Helpers

1042 \ExplSyntaxOn

34

1043 ⟨@@=mc⟩

Counter for tracking the current column number. At the start of a multicols environment is holds the number
of columns for which there is currently mcol-... data (i.e., the number of columns in the last multicols
environment).

1044 \int_new:N \g_@@_curr_col_int

For now we reuse the internal debugging interface of ltmarks, this will probably change

1045 \cs_new:Npn \@@_debug_marks:n #1 { __mark_debug:n {#1} }

Helper function to update the mcol-... regions when we finish a page while within a multicols environment
or when we finish the multicols and return the balanced columns back to the galley.

1046 \cs_new_protected:Npn \@@_update_mcol_structures: {

1047 \@@_debug_marks:n

1048 { \typeout{Marks:~ update~ mcol~ structures~ (multicol)} }

It might be possible that there was a previous multicols (either before the current one, or a boxed one inside)
and that one might have had more columns than the current one. If so, we should make these column
structures an error as they are no longer valid (or at least empty them, not sure what is better).

1049 \int_step_inline:nnn {\col@number + 1} { \g_@@_curr_col_int }

1050 { \mark_set_structure_to_err:n { mcol - ##1 } }

There is no need to do anything to mcol-1 up to mcol-⟨\col@number ⟩ because those regions get new
data in a second.
Once we have done this we reset the column counter for further processing.

1051 \int_gset:Nn \g_@@_curr_col_int {1}

Now we loop through all the assembled column material, using the column and previous-column regions
as an intermediate holding area.

1052 \process@cols\mult@firstbox

1053 {

1054 \mark_update_structure_from_material:nn

1055 %fmi {mcol}

1056 {column}

1057 {\unvcopy\count@}

Once the column region got updated we copy it to mcol-⟨\g_@@_curr_col_int ⟩ and then increment the
counter.

1058 \mark_copy_structure:nn

1059 {mcol - \int_use:N\g_@@_curr_col_int }

1060 %fmi {mcol}

1061 {column}

1062 \int_gincr:N \g_@@_curr_col_int

1063 }

The above loop takes care of all columns, except for the last one (which is stored in \mult@rightbox. So
we have to do that separately.

1064 \mark_update_structure_from_material:nn

1065 %fmi {mcol}

1066 {column}

1067 {\unvcopy\mult@rightbox}

1068 \mark_copy_structure:nn

1069 { mcol - \int_use:N\g_@@_curr_col_int }

1070 %fmi {mcol}

1071 {column}

Two more aliases to take care of: first-column and last-column and we are done:

1072 \mark_copy_structure:nn{first-column}{mcol-1}

1073 %fmi \mark_copy_structure:nn{last-column} {mcol}

1074 \mark_copy_structure:nn{last-column} {column}

1075 }

35

If we are making a page while inside a multicols environment, we also have to take care of the page region.

1076 \cs_new_protected:Npn \@@_update_page_structures: {

1077 \@@_debug_marks:n

1078 {

1079 \typeout{Marks:~ update~ page~ structure~ (multicol)}

1080 }

Since for the page region we are only interested in the top, first, and last marks on the whole page regardless
in which column they appear, we simply string together all columns in a big box and update the structure
from that.

1081 \mark_update_structure_from_material:nn

1082 {page}

1083 {

And we better not forget the \partial@page in case this is the first page of the multicols (on later pages
this box will be void).

1084 \unvcopy\partial@page

1085 \process@cols \mult@firstbox { \unvcopy\count@ }

1086 \unvcopy\mult@rightbox

1087 }

1088 }

When finishing a multicols environment, we have to return marks (in then boxed columns) to the current
page so that they are available when that page is produced. This is what this helper does.

1089 \cs_new_protected:Npn \@@_prepare_mark_reinserts: {

1090 \@@_debug_marks:n

1091 { \typeout{Marks:~ prepare~ for~ reinserting~ marks~ (multicol)} }

We are only interested in the top, first, and last marks of each class regardless in which column they
appeared, so we can copy all column boxes together and process them in one go. The result is returned
in \l_@@_first_marks_tl and \l_@@_last_marks_tl in form of \mark_insert:nn statements so we can
later execute such token lists directly (and if there were no marks they will be empty).

1092 \mark_get_marks_for_reinsertion:nNN

1093 {

1094 \process@cols \mult@firstbox { \unvcopy\count@ }

1095 \unvcopy\mult@rightbox

1096 }

1097 \l_@@_first_marks_tl

1098 \l_@@_last_marks_tl

1099 }

And here are the token lists used above.

1100 \tl_new:N \l_@@_first_marks_tl

1101 \tl_new:N \l_@@_last_marks_tl

So reinserting it just means executing the token lists (with some surrounding debugging statements).

1102 \cs_new_protected:Npn \mc@reinsert@marks{

1103 \@@_debug_marks:n

1104 { \typeout{Marks:~ --~ reinsert~ marks~ (multicol)} }

1105 \l_@@_first_marks_tl \l_@@_last_marks_tl

1106 \@@_debug_marks:n

1107 { \typeout{Marks:~ --~ finished~ reinserting~ marks~ (multicol)} }

1108 }

7.5.2 Interfaces used in the multicols code and its output routines

When a multicols environment starts we need to clear the column region as it may contain quite old data.
Otherwise, that data would be used to generate the top marks and that would be obviously wrong for the
first column.

1109 \cs_new_protected:Npn \mc@prepare@mark@regions {

36

However, before we do this we need to save away the current column data in case this is a boxed multicol,
because when that finishes we need to restore the previous state — this is not necessary for a normal multicols
environment, because there the column region is overwritten in the standard output routine by copying the
page region.

1110 \legacy_if:nT { @boxedmulticols }

1111 { \mark_copy_structure:nn{saved-column}{column} }

1112 \@@_debug_marks:n

1113 { \typeout{Marks:~ empty~ mcol~ regions~ (multicol)} }

1114 \mark_clear_structure:n {column}

1115 }

If a multicols ends the columns are balanced and then returned to the galley. in that situation we do have
to prepare the mcol-... regions and also do this reinsertion.

1116 \cs_new_protected:Npn \mc@handle@marks@and@reinserts #1 {

1117 \@@_update_mcol_structures:

Show the current region status when debugging:

1118 \@@_debug_marks:n { __mark_status:nn {#1} {\the\col@number} }

Then prepare for reinserting the marks:

1119 \@@_prepare_mark_reinserts:

Finally, we restore the column region in case this was a boxed multicols environment.

1120 \legacy_if:nT { @boxedmulticols }

1121 { \mark_copy_structure:nn {column}{saved-column} }

1122 }

1123

If a page is generated while we are processing a multicols then we have to update the mcol-... regions but
also the page region.

1124 \cs_new_protected:Npn \mc@handle@col@andpage@marks #1 {

1125 \@@_update_mcol_structures:

1126 \@@_update_page_structures:

Once done we display the current status of the marks.

1127 \@@_debug_marks:n { __mark_status:nn {#1} {\the\col@number} }

1128 }

We change the legacy \leftmark and \rightmark to use the new mark mechanism. For now we do this only
if pkgmulticol is loaded, but eventually this will move to the kernel which then also simplifies the definitions
for \markboth and friends.
These commands should be expandable, so no protection.

1129 \cs_set:Npn \leftmark {\mark_use_last:nn{page}{2e-left}}

1130 \cs_set:Npn \rightmark {\mark_use_first:nn{page}{2e-right}}

1131 ⟨@@=⟩

7.6 Tagging support

Here we collect adjustments necessary for tagging support, e.g., before the 2024-11-01 release it was necessary
to allocate two float sockets. By now they are part of the kernel and their plugs are currently defined by
tagpdf.

1132 %\IfSocketExistsF {tagsupport/float/end}

1133 % {

1134 % \NewSocket{tagsupport/float/end}{0}

1135 % \NewSocket{tagsupport/float/hmode/end}{0}

1136 % }

This one is only relevant for multicol so declared here.

1137 \NewSocket{tagsupport/page@sofar}{0}

37

The plug definition for now just uses the definition from tagpdf. There has to be a decision where such
plugs should be implemented: in the package (like now) then they functions used from tagpdf should become
public, in tagpdf, or in lttagging in the kernel.

1138 \NewSocketPlug {tagsupport/page@sofar}{default}

1139 {

1140 % __tag_check_typeout_v:n {====>~In~\string\page@sofar} % some similar debug message if wanted.

1141 \process@cols\mult@firstbox

1142 { \tag_mc_add_missing_to_stream:Nn \count@ {multicol} }

1143 \tag_mc_add_missing_to_stream:Nn \mult@rightbox {multicol}

1144 }

In the LuaTEX engine there is no need to do anything special in this socket.

1145 \sys_if_engine_luatex:TF

1146 { \AssignSocketPlug{tagsupport/page@sofar}{noop} }

1147 { \AssignSocketPlug{tagsupport/page@sofar}{default} }

1148 \ExplSyntaxOff

Index

Numbers written in italic refer to the page where the corresponding entry is described; numbers underlined
refer to the code line of the definition; numbers in roman refer to the code lines where the entry is used.

Symbols
\@@_debug_marks:n 1045
\@@_prepare_mark_reinserts:

. 1089
\@@_update_mcol_structures:

. 1046
\@@_update_page_structures:

. 1076
\@Mvi 245
\@footnotetext . . 884

B
\balance@columns 562
\balance@columns@out

. 525

C
\c@collectmore . . 293
\c@columnbadness 864
\c@finalcolumnbadness

. 864
\c@minrows 862
\c@unbalance 294
\col@number 293
\colbreak@box . . . 943
\columnbreak 910
\columnsep 3
\columnseprule 3
\columnseprulecolor

. 3, 365

D
\docolaction 990
\doublecol@number 293

E

\emergencystretch 812

\endmulticols . . . 247

\endmulticols* . . 897

\enough@room 144

F

\flushcolumns . . . 520

G

\g_@@_curr_col_int

. 1044

I

\if@boxedmulticols 141

\ifshr@nking 520

\init@mult@footins 230

L

\leave@mult@footins

. 451

\leftmark 1129

\LR@column@boxes 945

\LRmulticolcolumns 982

M

\maxbalancingoverflow

. 779

\mc@align@columns 982

\mc@boxedresult . 293

\mc@col@check@num 989

\mc@col@status . 1030

\mc@firstcol . . . 1040

\mc@handle@col@andpage@marks

. 1124

\mc@handle@marks@and@reinserts

. 1116

\mc@prepare@mark@regions

. 1109

\mc@reinsert@marks

. 1102

\mc@set@col@status

. 1032

\mult@@cols 104

\mult@cols 101

\mult@firstbox . . 781

\mult@footnotetext

. 98, 884

\mult@gfirstbox . 781

\mult@grightbox . 781

\mult@info 877

\mult@rightbox . . 781

\multi@column@out 370

\multicol@leftmargin

. 244

\multicolbaselineskip

. 3, 293

\multicolmindepthstring

. 364

\multicolpretolerance

. 3, 293

\multicols 77

\multicols* 884

\multicolsep . . 3, 293

\multicoltolerance

. 3, 293

N

\newcolumn 928

P

\page@free 293

\page@sofar 327

\partial@page . . . 293

\postmulticols 3, 293

\premulticols . 3, 293

\prepare@multicols 161

\process@cols . . . 318

\process@deferreds 510

R

\raggedcolumns . . 520

\reinsert@footnotes

. 366

\remove@discardable@items

. 830

\rightmark 1129

\RL@column@boxes 958

\RLmulticolcolumns 982

S

\set@floatcmds . . 817

\set@mult@vsize . 234

\setemergencystretch

. 812

\speci@ls 458

V

\vfilmaxdepth . . . 368

38

Change History

v1.0c

\enough@room: Penalty 0 added to empty the
contribution list. 11

v1.0d

General: All lines shortened to 72 or less. 1

v1.0e

General: Redefinition of description env. to use
\descriptionmargin=5pt in
documentation. 1

\prepare@multicols: \textwidth changed to
\linewidth. 13

Setting of \columnwidth removed. 13

So this file will work with the ‘twocolumn’
command. 13

v1.0f

General: Changed \z@ to 0pt in redefinition of
description. 1

v1.1a

General: \multicolssep changed to
\multicolsep. 1

\flushcolumns: \flushedcolumns renamed to
\flushcolumns. 21

v1.2a

\balance@columns: Group around main loop
removed. 23

\prepare@multicols: \pretolerance -1
because it nearly never succeeds. 13

\set@floatcmds added. 13

\setemergencystretch added. 13

\vbadness 10001 now. 13

\set@floatcmds: Macro added. 27

\setemergencystretch: Macro added. 27

\speci@ls: Float boxes freed. 20

v1.3a

\balance@columns: Changed \vtop to \vbox. . 26

v1.3b

\endmulticols: Do \penalty with \addpenalty 15

\enough@room: Do \penalty with \addpenalty 11

\multicols: Minimum of two columns 9

v1.3c

\balance@columns: \global\advance left over
from older code . 24

Limit column height to \@colroom 26

\endmulticols: Check closing env. 15

\multi@column@out: \unboxing avoided. 19

Check if footnotes are actually present before
issuing a warning. 19

Unnecessary code removed 19

\prepare@multicols: \null inserted and
removed in output 12

\reinsert@footnotes: \unboxing avoided. . . . 18

v1.3d

\c@unbalance: \col@number set to one 16

v1.4a

General: Added support for multicol in inner
mode . 1

\balance@columns: Changed to proper
\endlinechar in\message 24

\mult@@cols: Forgotten braces added 10

\prepare@multicols: Checking for text losses. 12

Conditional code for boxed mode added. . . . 12

v1.4d

\balance@columns: New algorithm for start
height . 22

v1.4e

\endmulticols: But ignore \@nobreak in
\addpenalty . 15

\enough@room: But ignore \@nobreak in
\addpenalty . 11

\mult@@cols: Typeset optional arg inside group 10

\prepare@multicols: Using 13

v1.4f

\balance@columns: \on@line added to tracing
info . 23

\mult@@cols: \on@line added to tracing info . 10

\par added to allow for correct inner test . . 10

v1.4g

\mult@@cols: \global was probably wrong but
at least unnecessary 11

v1.4h

General: Added mark tracing with
tracingmulticols≥ 2 1

v1.4j

\setemergencystretch: Setting of
\emergencystretch on top removed. 27

v1.4k

\multicols: Maximum of 5 columns (temp) . . . 9

v1.4l

\mult@@cols: \@totalleftmargin now in
\prepare@multicols 11

\page@sofar: use \multicol@leftmargin

instead of \@totalleftmargin 16, 17

\prepare@multicols: saved
\@totalleftmargin 11

v1.4m

\endmulticols: Check \partial@page being
emptied . 15

v1.4o

\prepare@multicols: \topskip locally zeroed. 12

v1.4p

\multi@column@out: Use different \vsize
setting . 19

\prepare@multicols: Code moved to
\set@mult@vsize 12

Use different \vsize setting 12

\set@mult@vsize: Macro added. 14

39

v1.5?

\balance@columns: Allow columns to come out
a bit long or short 22

Do splitting to zero here 22

Initialize \last@try 23

Show natural size . 24

\endmulticols: Splitting off zero box moved to
\balance@columns 14

\leave@mult@footins: Macro added 20

\mult@@cols: Penalty moved to later point . . . 11

\multi@column@out: Use \leave@mult@footins 18

\prepare@multicols: Use \init@mult@footins 12

v1.5a

\balance@columns: New box mechanism 23

\LR@column@boxes: New box mechanism 31

\multi@column@out: New box mechanism . 18, 19

\multicols: Allow 10 columns again 9

\page@sofar: New box mechanism 16, 17

\prepare@multicols: Add offset to
\doublecolnumber 12

v1.5b

\balance@columns: New badness mechanism . . 23

v1.5c

\balance@columns@out: added penalty at
output routine exit 22

\endmulticols: Again use \penalty 15

\multi@column@out: Support \clearpage 18

\speci@ls: Support \clearpage 20

v1.5e

\enough@room: Assign arg to skip register to be
able to output value 11

v1.5g

\set@floatcmds: Updated since floats have
changed . 27

v1.5h

\page@sofar: Check for void boxes 16

v1.5i

\page@sofar: But don’t remove original code. . 16

v1.5j

\set@floatcmds: Updated since floats have
changed again . 27

v1.5l

General: Try hard to explain unresolved
reference that happens if \OnlyDescription
is used . 7

\set@floatcmds: Added \@largefloatcheck . . 27

v1.5n

General: Applied improvement of
documentation, kindly done by Robin
Fairbairns. 1

v1.5o

\@footnotetext: Redefinition added pr/2664. . 28

\prepare@multicols: Setting of \columnwidth
added again pr/2664. 13

v1.5p

\multicols: Redefinition of \@footnotetext
only within env pr/2689. 10

v1.5q
\balance@columns: Do not reset

\mult@gfirstbox (pr2739) 24
Removed setting \dimen@ (pr2739) 26

\endmulticols*: Macro added 29
\mult@@cols: And removed the group again six

years later . 10
\multicols*: Macro added 28

v1.5r
\@footnotetext: Use \@footnotetext but with

local change to \columnwidth. 28
\mult@footnotetext: Macro removed again. . . 28
\multicols: Use \@footnotetext but with

local change to \columnwidth. 10
v1.5s

\speci@ls: check for \stop penalty pr/2873 . . 20
v1.5u

\balance@columns@out: Support \columnbreak 21
\colbreak@box: Macro added 30
\columnbreak: Macro added 30
\multi@column@out: Support \columnbreak . . 18
\speci@ls: Support \columnbreak 20

v1.5v
\balance@columns: Added tracing statements

for trial unsuccessful 24
Check last column if it contains forced break
and reject trial if that is the case 25

\balance@columns@out: Added debug
statements for column break support 21

\multi@column@out: Added debug statements
for column break support 18

\speci@ls: Added debug statements for column
break support . 20

v1.5w
\multicols: Make \@footnotetext long to

allow multi-paragraph footnotes. 10
v1.5x

\endmulticols: Detect and fix problem if a
multicols ends at the top of a page 15

v1.5y
\balance@columns: Limit column height only in

unrestricted mode (pr/3212) 26
v1.5z

\page@sofar: Ensure that column rule has
always \normalcolor 17

v1.5z1
\c@finalcolumnbadness: Change wrong default

for \multicolovershoot to zero (pr/3465). 28
\mult@@cols: Add a kern to cancel potential

depth of previous line 10
\page@sofar: Suppress interline glue at this

point . 17
v1.6a

General: New option grid 9
\LR@column@boxes: Preparing for adjusting

\prevdepth . 31
\mult@@cols: Adjust spacing 10
\page@sofar: Preparing for adjusting

\prevdepth . 17

40

v1.6b
\page@sofar: Different info display 16

v1.6c
\set@mult@vsize: Collect one line per column

more . 14
v1.6d

\endmulticols: Catch problem with
\columnbreak in last line 14

v1.6e
\multicols: Avoid self-referencing definition of

\@footnotetext (pr/3618) 10
v1.6f

\balance@columns: /colbreak guard in the
wrong position . 25

need to use \mult@grightbox in the loop . . 24
\columnseprulecolor: Make the color of the

rule a hook . 17
\page@sofar: Make the color of the rule a hook 17

v1.6g
\set@floatcmds: Added \@minipagefalse . . . 27

v1.6h
\set@floatcmds: Use \@endfloatbox to better

support the modifications done by the float
package . 27

v1.7a
General: RL language support added 31

v1.7b
General: RL language support fixed 31
\page@sofar: RL language support fixed 17

v1.8a
\balance@columns: Balancing concept improved 26
\balance@columns@out: Balancing concept

improved . 21
Support for \enlargethispage 22

\maxbalancingoverflow:
\maxbalancingoverflow parameter added 26

\multi@column@out: Only re-add output
penalty if it was explicitly set 19

Support for \enlargethispage 18
v1.8b

\balance@columns: Remove discardable items
at the end of split boxes 23

\multi@column@out: And 20odd years later
conclude that this was wrong and unboxing
is always needed. 19

Remove discardable items at the end of split
boxes . 19

v1.8c
\endmulticols: Add \color@endgroup to

prevent color leak 14
\mult@@cols: Add \color@setgroup to prevent

color leak . 11
v1.8d

\multi@column@out: Reset \@mparbottom after
page finishes . 19

v1.8e
General: Support \docolaction 9, 32
\LR@column@boxes: Support \docolaction . . . 31
\RL@column@boxes: Support \docolaction . . . 32

v1.8f

\endmulticols: Discard spaces before adding
\color@endgroup 14

v1.8g

\page@sofar: Now adjusting \prevdepth 17

Resetting \prevdepth in the right place . . . 17

Warn if value is exceeded not when equal . . 17

v1.8h

\balance@columns: All column boxes should
obey \maxdepth (pr/4395) 22

Do not report overfull 23

Use \vfilmaxdepth 25, 26

\endmulticols: Set \prevdepdth for current
vlist when returning from multicols
environment . 15

\endmulticols*: Use \vfilmaxdepth 29

\multi@column@out: Use \vfilmaxdepth 19

\vfilmaxdepth: Macro added (pr/4395) 18

v1.8i

\endmulticols*: Add \null to hide the final
fill and only add vertical space if not doing
\raggedcolumns 29

v1.8j

\balance@columns: Use \vfil in this case . . . 25

\endmulticols*: Redesign the whole approach. 29

\multi@column@out: Set \boxmaxdepth 18

\vfilmaxdepth: Use only ‘0.0001fil’ for
stretching . 18

v1.8k

General: The new switch 28

\balance@columns: . 25

\remove@discardable@items removed 22

Do not use \remove@discardable@items here 23

Finish the new conditional 26

Init \ifforcedbreak@leftover 23

Watch out for columns growing too far in
case of forced breaks 25

\balance@columns@out: Add
\remove@discardable@items at the end of
the last column when balancing. 21

No additional penalty here 22

Use \@Mv and not \break in case this forced
break is not used on this page 21

\endmulticols*: And a bit more redesign
because of the change in
\remove@discardable@items 29

\multi@column@out:
\remove@discardable@items removed . . . 19

\speci@ls: Remove discardable items just
before a forced break 20

v1.8l

\balance@columns: Added additional tracing if
column overflows 25

v1.8m

\remove@discardable@items: Another rewrite
of \remove@discardable@items hopefully
okay now . 27

41

v1.8n
\multi@column@out: Reset

\@textfloatsheight after page finishes . . 19
v1.8o

\c@unbalance: \col@number already initialized
in the kernel, so not initializing it in the
package in case the document is in
two-column (pr/4435) 16

\endmulticols*: Ensure we are back in vmode
before using \prevdepth (pr/4448) 29

v1.8p
\multi@column@out: Reset \boxmaxdepth 19

v1.8q
\prepare@multicols: Make \clearpage behave

like \newpage (pr/4511) 13
v1.8r

\@Mvi: Macro added 14
\balance@columns@out: Re-add the final

penalty . 21
\endmulticols: Use special penalty to signal

end of environment 15
\speci@ls: Handling end of env through special

penalty . 20
v1.8s

\endmulticols: Support for \docolaction
(issue/39) . 15

v1.8t
\multicols*: Re-add end penalty for

multicols* environment to guard against
leftovers (git/53) 29

v1.8u
\docolaction: Support star with \docolaction 33

v1.8v
\multi@column@out: Removed dead code, the

case where this can go wrong is too obscure
to worry about it (gh/101) 18

v1.8w
\balance@columns: Provide minrows counter

for balancing . 23
\c@minrows: Provide minrows counter for

balancing . 28
v1.8x

General: Use \@maxdepth not \maxdepth
(gh/190) . 9

\balance@columns: Use \@maxdepth not
\maxdepth (gh/190) 22

\speci@ls: Use \@maxdepth not \maxdepth
(gh/190) . 20

\vfilmaxdepth: Use \@maxdepth not \maxdepth
(gh/190) . 18

v1.8y

\mult@gfirstbox: Allow for 20 columns
(gh/237) . 26

\multicols: Allow for 20 columns (gh/237) . . . 9

v1.9a

\columnbreak: Added optional argument for
conditional break 30

\newcolumn: Macro added 30

v1.9b

General: Swap names \mult@gfirstbox and
\mult@firstbox (gh/701) 1

\columnbreak: Corrected error message text
(gh/703) . 30

\mult@gfirstbox: Drop one unnecessary box
allocation (gh/701) 26

v1.9c

General: Added rollback to v1.8 1

v1.9d

\newcolumn: Guard the \vfill (sx/624940) . . 30

v1.9e

\endmulticols: Delay returning boxed
multicols (gh/1002) 14, 15

v1.9f

\multicolmindepthstring: Make column min
depth customizable (gh/698) 17

\page@sofar: Make column min depth
customizable (gh/698) 17

v1.9i

\set@floatcmds: Added tagging support 27

v2.0a

General: Add \DebugMarksOn to the show
options . 9

Added tagging socket and use public tagpdf
function . 38

Using the new mark mechanism 34

\balance@columns@out: Use new mark
mechanism . 22

\endmulticols: Use new mark mechanism . . . 14

\multi@column@out: Use new mark mechanism 19

\page@sofar: Addedd tagging socket 17

\rightmark: Use the new mark mechanism . . . 37

42

	1 Introduction
	2 The User Interface
	2.1 Balancing columns
	2.2 Not balancing the columns
	2.3 Manually breaking columns
	2.4 Floats inside a multicols environment
	2.5 Support for right-to-left typesetting
	2.6 Warnings
	2.7 Tracing the output

	3 Prefaces to older versions
	3.1 Preface to version 1.4
	3.2 Preface to version 1.2

	4 The Implementation
	4.1 The documentation driver file
	4.2 Identification and option processing
	4.3 Starting and Ending the multicols Environment
	4.4 The output routines
	4.5 The box allocations

	5 New macros and hacks for version 1.2
	6 Fixing the \columnwidth
	7 Further extensions
	7.1 Not balancing the columns
	7.2 Manual column breaking
	7.3 Supporting right-to-left languages
	7.4 Supporting \docolaction
	7.5 Using the new mark mechanism
	7.5.1 Helpers
	7.5.2 Interfaces used in the multicols code and its output routines

	7.6 Tagging support

	Index
	Symbols
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	P
	R
	S
	V

	Change History

