
LATEX document interface to the l3sys-query script:
System queries for LaTeX using Lua∗

LATEX project

2024-03-28

Contents
1 Introduction 1

2 The document level key-value interface 2
2.1 Examples . 3

3 The L3 programming layer interface 3

4 The l3sys-query Lua script 3
4.1 The command line interface . 3

4.1.1 ls [⟨args⟩] . 4
4.1.2 pwd . 5

4.2 Spaces in arguments . 5
4.3 Wildcard expansion handling . 6

5 The LATEX 2ε package implementation 6
5.1 \QueryWorkingDirectory . 6
5.2 \QueryFiles and \QueryFilesTF . 7

1 Introduction
TEX engines provide only very limited access to information about the system they are
used on: using primitives, one can for example get the size of a single file, but not a
list of files in a given location. For most documents, this is not an issue as they are
self-contained. However, for cases where “dynamic” construction of parts of a document
is needed based on file lists or other system-dependent data, methods to obtain this from
(restricted) shell escape are desirable.

Security considerations mean that directly querying the system shell is problematic
for general use. Instead, restricted shell escape may be used to get many details, pro-
vided a suitable tool is available to provide the information in a platform-neutral and
security-conscious way. The Java program texosquery, written by Nicola Talbot, has
been available for a number of years to provide this facility. As well as file system insight,

∗This file has version number v1.0a, last revised 2024-03-28.

1

texosquery also provides for example locale data and other system information. How-
ever, the requirement for Java means that the script is not automatically usable when a
TEX system is installed.

The LATEX team have therefore provided a Lua-based script, l3sys-query, which
conforms to the security requirements of TEX Live using Lua to obtain the system in-
formation. This means that it can be used “out of the box” across platforms. The
facilities provided by l3sys-query are more limited than texosquery, partly as some
information is available in modern TEX systems using primitives, and partly as the aim
of l3sys-query is to provide information where there are defined use cases. Requests
for additional data interfaces are welcome.

This package provides a document level Key-Value interface to The l3sys-query
functionality, although as a convenience it also summarizes the documentation for the L3
programming interface layer (prvided by the l3sys module of l3kernel, and of the command
line Lua script l3sys-query which is distributed separately and provides the underlying
functionality.

2 The document level key-value interface
This provides an interface to l3sys-query based on l3keys that allows the options to be
specified and checked individually. Internally the supplied key values are used to build up
the arguments to the commands described above in the L3 programming layer commands
described in section 3

Results containing path separators always use /, irrespective of the platform in use.

\QueryWorkingDirectory {⟨result cmd⟩}

Defines supplied command ⟨result cmd⟩ to hold the absolute path to the current working
directory of the TEX system. This is the directory (folder) from which TEX was started,
so usually the location of the main document file.

\QueryWorkingDirectory

\QueryFiles [⟨options⟩] {⟨spec⟩} {⟨function⟩}
\QueryFilesTF [⟨options⟩] {⟨spec⟩} {⟨function⟩} {⟨pre code⟩} {⟨empty list code⟩}

This generates a file list based on the ⟨spec⟩ and ⟨options⟩. The command then applies
⟨function⟩ to each item in the sequence of filenames. The ⟨function⟩ should be a macro
body which will be passed the file path as #1.

The TF version executes the T (⟨pre code⟩) argument before iterating over the list
and the F (⟨empty list code⟩) argument if the list is empty.

\QueryFiles
\QueryFilesTF

Note that this interface in mapping directly over the sequence of filenames does
not allow some uses which are provided by the programming interface described in the
following section, which allows the sequence to be manipulated before being used.

The defined keys map very closely to the options of the l3sys-query command
which is described in section 4.

• The keys recursive, ignore-case, reverse, pattern take no values and map
directly to the command line options of the same name.

• The key sort accepts the values date and name.

• The key type accepts d or f.

2

• The key exclude accepts a glob (or Lua pattern) matching files to be excluded.
The package arranges that the quoting of the argument is automatically added if
unrestricted shell escape is enabled.

Within the main ⟨spec⟩ argument, and the value of the exclude key, the following
characters may need special handling. ~ may be used (which kpathsea uses to denote
the users home directory). \%, or at the top level %, may be used to produce a literal %
which may be especially useful if the pattern key is used as % is the escape character in
Lua patterns.

2.1 Examples
• Include every png file in the current directory.

\QueryFiles{*.png}{\includegraphics{#1}\par}

• Input every TEX file with a filename matching chapter[0-9].tex.

\QueryFiles[pattern]{chapter%d.*%.tex}{\input{#1}}

3 The L3 programming layer interface

\sys_get_query:nN {⟨cmd⟩} {⟨tl var⟩}
\sys_get_query:nnN {⟨cmd⟩} {⟨spec⟩} {⟨tl var⟩}
\sys_get_query:nnnN {⟨cmd⟩} {⟨options⟩} {⟨spec⟩} {⟨tl var⟩}

Sets the ⟨tl var⟩ to the information returned by the l3sys-query ⟨cmd⟩, potentially
supplying the ⟨options⟩ and ⟨spec⟩ to the query call. The valid ⟨cmd⟩ names are at
present

• pwd Returns the absolute path to the current working directory

• ls Returns a directory listing, using the ⟨spec⟩ to select files and applying the
⟨options⟩ if given

The ⟨spec⟩ should be a file glob and will automatically be passed to the script without
shell expansion.

\sys_get_query:nN
\sys_get_query:nnN
\sys_get_query:nnnN

\sys_split_query:nN {⟨cmd⟩} {⟨seq⟩}
\sys_split_query:nnN {⟨cmd⟩} {⟨spec⟩} {⟨seq⟩}
\sys_split_query:nnnN {⟨cmd⟩} {⟨options⟩} {⟨spec⟩} {⟨seq⟩}

Works as described for \sys_get_query:nnnN, but sets the ⟨seq⟩ to contain one entry
for each line returned by l3sys-query.

\sys_split_query:nN
\sys_split_query:nnN
\sys_split_query:nnnN

4 The l3sys-query Lua script
4.1 The command line interface
The command line interface to

l3sys-query ⟨cmd⟩ [⟨option(s)⟩] [⟨args⟩]

3

where ⟨cmd⟩ can be one of the following:

• ls
• ls ⟨args⟩
• pwd

The ⟨cmd⟩ are described below. The result of the ⟨cmd⟩ will be printed to the terminal in
an interactive run; in normal usage, this will be piped to the calling TEX process. Results
containing path separators always use /, irrespective of the platform in use.

As well as these targets, the script recognizes the options

• --exclude Specification for directory entries to exclude

• --ignore-case Ignores case when sorting directory listings

• --pattern (-p) Treat the ⟨args⟩ as Lua patterns rather than converting from
wildcards

• --recursive (-r) Enables recursive searching during directory listings

• --reverse Causes sorting to go from highest to lowest rather than lowest to highest

• --sort Sets the method used to sort entries returned by ls

• --type Selects the type of entry returned by ls

The action of these options on the appropriate ⟨cmd(s)⟩ is detailed below.

4.1.1 ls [⟨args⟩]

Lists the contents of one or more directories, in a manner somewhat reminiscent of the
Unix command ls or the Windows command dir. The exact nature of the output will
depend on the ⟨args⟩, if given, along with the prevailing options. Note that the options
names are inspired by ideas from the Unix commands ls and find as well as the Windows
command dir: they therefore do not map directly to those of any one of the command
line tools that they somewhat mirror.

When no ⟨args⟩ are given, all entries in the current directory will be listed, one
per line in the output. This will include both files and subdirectories. Each entry will
include a path relative to the current directory: for files in the current directory, this
will be ./. The order of results will be determined by the underlying operating system
process: unless requested via an option, no sorting takes place.

As standard, the ⟨args⟩ are treated as a file/path name potentially including ? and
* as wildcards, for example *.png or file?.txt.

l3sys-query ls ’*.png’

Some care is needed in preventing expansion of such wildcards by the shell or texlua
process: these are detailed in Section 4.3. In this section, ’ is used to indicate a character
being used to suppress expansion: this is for example normal on macOS and Linux.

Removal of entries from the listing can be achieved using the --exclude option,
which should be given with a ⟨xarg⟩, for example

l3sys-query ls --exclude ’*.bak’ ’graphics/*’

4

Directory entries starting . are traditionally hidden on Linux and macOS systems: these
“dot” entries are excluded from the output of l3sys-query. The entries . and .. for the
current and parent directory are also excluded from the results returned by l3sys-query
as they can always be assumed.

For more complex matching, the ⟨args⟩ can be treated as a Lua pattern using the
--pattern (-p) option; this also applies to the ⟨xarg⟩ argument to the --exclude option.
For example, the equivalent to wildcard *.png could be obtained using

l3sys-query ls --pattern ’^.*%.png$’

The results returned by ls can be sorted using the --sort option. This can be set
to none (use the order from the file system: the default), name (sort by file name) or
date (sort by date last modified). The sorting order can be reversed using --reverse.
Sorting normally takes account of case: this can be suppressed with the --ignore-case
option.

The listing can be filtered based on the type of entry using the --type option. This
takes a string argument, one of d (directory) or f (file).

As standard, only the path specified as part of the ⟨args⟩ is queried. However,
if the --recursive (-r) option is set, the query is applied within all subdirectories.
Subdirectories starting with . (macOS and Linux hidden) are excluded from recursion.

For security reasons, only paths within the current working directory can be queried,
thus for example graphics/*.png will list all png files in the graphics subdirectory, but
../graphics/*.png will yield no output.

4.1.2 pwd

Returns the current working directory from which l3sys-query is run. From within
a TEX run, this will (usually) be the directory containing the main file, assuming a
command such as

pdflatex main.tex

The pwd command is unaffected by any options.

4.2 Spaces in arguments
Since l3sys-query is intended primarily for use with restricted shell escape calls from
TEX processes, handling of spaces is unusual. It is not possible to quote spaces in such a
call, so for example whilst

l3sys-query ls "foo *"

does work from the command prompt to find all files with names starting foo␣, it would
not work via restricted shell escape. To circumvent this, l3sys-query will collect all
command line arguments after any ⟨options⟩, and combine these as a space-separated
⟨args⟩, for example allowing

l3sys-query ls foo ’*’

to achieve the same result as the first example. The result is that the ⟨args⟩ will only
every be interpreted by l3sys-query as a single argument. It also means that spaces
cannot be used at the start or end of the argument, nor can multiple spaces appear
between non-space arguments.

5

4.3 Wildcard expansion handling
The handling of wildcards needs some further comment for those using l3sys-query
from the command line: the expl3 interface described in Section 3 handles this aspect
automatically for the user.

On macOS and Linux, the shell normally expands globs, which include the wildcards
* and ?, before passing arguments to the appropriate command. This can be suppressed
by surrounding the argument with ’ characters, hence the formulation

l3sys-query ls ’*.png’

earlier.
On Windows, the shell does no expansion, and thus arguments are passed as-is to the

relevant command. As such, ’ has no special meaning here. However, to allow quoting
of wildcards from the shell in a platform-neutral manner, l3sys-query will strip exactly
one set of ’ characters around each argument before further processing.

It is not possible to use " quotes at all in the argument passed to l3sys-query from
TEX, as the TEX system removes all " in \input while handling space quoting.

Restricted shell escape prevents shell expansion of wildcards entirely. On non-
Windows systems, it does this by ensuring that each argument is ’ quoted to ensure
further expansion. Thus a TEX call such as

\input|"l3sys-query ls ’*.png’"

will work if --shell-escape is used as the argument is passed directly to the shell, but
in restricted shell escape will give an error such as:

! I can’t find file ‘"|l3sys-query ls ’*.png’"’.

The LATEX interfaces described above adjust the quoting used depending on the
shell-escape status.

5 The LATEX 2ε package implementation
1 ⟨∗package⟩

2 \ExplSyntaxOn
3 ⟨@@=queryfiles⟩

The package should eventually work in restricted shell escape but will do nothing
useful if the process was started with --no-shell-escape.

4 \sys_if_shell:F{
5 \PackageWarningNoLine{l3sys-query}
6 {Shell ~Escape ~is ~disabled.\MessageBreak All ~queries ~will ~return ~empty ~results}
7 }

5.1 \QueryWorkingDirectory
\QueryWorkingDirectory is a direct call to the pwd command provided by l3sys-query.

8 \NewDocumentCommand\QueryWorkingDirectory {m} {
9 \sys_get_query:nN {pwd} #1

10 }

6

5.2 \QueryFiles and \QueryFilesTF
The declarations of these commands are done in two steps to allow catcode chanes before
the arguments are read. This allows the use of % and ^^ in patterns at least if the
command is not nested in another command argument. (\% may be used to generate %
in all cases).

Variables for saving the current definition of \% and ~.
11 \tl_new:N\l_query_percent_tl
12 \tl_new:N\l_query_tilde_tl

Allow % and ^^ at the top level.
13 \NewDocumentCommand\QueryFiles {} {
14 \group_begin:
15 \char_set_catcode_other:N \%
16 \char_set_catcode_other:N \^
17 \QueryFiles_inner
18 }

19 \char_set_catcode_active:N \~

20 \NewDocumentCommand\QueryFiles_inner {O{}m}{
21 \group_end:
22 \tl_set:Nn\l_tmpa_tl{}
23 \cs_set_eq:NN \l_query_percent_tl \%
24 \cs_set_eq:NN \% \c_percent_str
25 \cs_set_eq:NN \l_query_tilde_tl ~
26 \cs_set_eq:NN ~ \c_tilde_str
27 \keys_set:nn{QueryFiles}{#1}
28 \exp_args:NnV\sys_split_query:nnnN {ls} \l_tmpa_tl {#2} \l_tmpa_seq
29 \cs_set_eq:NN \% \l_query_percent_tl
30 \cs_set_eq:NN ~ \l_query_tilde_tl
31 \seq_map_inline:Nn\l_tmpa_seq
32 }

This duplicates rather than shares code so as to read the function and TF arguments
with normal catcode regime. (This could probably be optimised.)
33 \NewDocumentCommand\QueryFilesTF {} {
34 \group_begin:
35 \char_set_catcode_other:N \%
36 \QueryFilesTF_inner
37 }

38 \NewDocumentCommand\QueryFilesTF_inner {O{}m}{
39 \group_end:
40 \tl_set:Nn\l_tmpa_tl{}
41 \cs_set_eq:NN \l_query_percent_tl \%
42 \cs_set_eq:NN \% \c_percent_str
43 \cs_set_eq:NN \l_query_tilde_tl ~
44 \cs_set_eq:NN ~ \c_tilde_str
45 \keys_set:nn{QueryFiles}{#1}
46 \exp_args:NnV\sys_split_query:nnnN {ls} \l_tmpa_tl {#2} \l_tmpa_seq
47 \cs_set_eq:NN \% \l_query_percent_tl
48 \cs_set_eq:NN ~ \l_query_tilde_tl
49 \seq_if_empty:NTF \l_tmpa_seq \use_iii:nnn __queryfiles_aux:nnn
50 }

51 \char_set_catcode_space:N \~

7

52 \cs_new:Npn __queryfiles_aux:nnn #1#2#3 {
53 #2
54 \seq_map_inline:Nn\l_tmpa_seq {#1}
55 }

Defining the keys. Most take no value and simply add a l3sys-query -- option to
the command linebeing constructed.
56 \keys_define:nn {QueryFiles} {

57 recursive .code:n =\tl_put_right:Nn \l_tmpa_tl {--recursive ~ } ,
58 recursive .value_forbidden:n = true ,

59 ignore-case .code:n =\tl_put_right:Nn \l_tmpa_tl {--ignore-case ~ } ,
60 ignore-case .value_forbidden:n = true ,

61 reverse .code:n =\tl_put_right:Nn \l_tmpa_tl {--reverse ~ } ,
62 reverse .value_forbidden:n = true ,

63 exclude .code:n =\tl_put_right:Ne \l_tmpa_tl {
64 --exclude ~
65 \sys_if_shell_restricted:F’
66 \exp_not:n{#1}
67 \sys_if_shell_restricted:F’
68 ~ } ,
69 exclude .value_required:n = true ,

The type key checks the supplied value is valid d for directories or f for files The
default behaviour lists both.
70 type .choices:nn = {d,f}
71 {\tl_put_right:Nn \l_tmpa_tl {--type ~ #1 ~ }} ,

The sort key checks the supplied value is valid date or name.
72 sort .choices:nn = {date,name}
73 {\tl_put_right:Nn \l_tmpa_tl {--sort ~ #1 ~ }} ,

74 pattern .code:n =\tl_put_right:Nn \l_tmpa_tl {--pattern ~ } ,
75 pattern .value_forbidden:n = true ,

76 }

77 \ExplSyntaxOff

78 ⟨/package⟩

8

	Contents
	1 Introduction
	2 The document level key-value interface
	2.1 Examples

	3 The L3 programming layer interface
	4 The l3sys-query Lua script
	4.1 The command line interface
	4.1.1 ls [<args>]
	4.1.2 pwd

	4.2 Spaces in arguments
	4.3 Wildcard expansion handling

	5 The LaTeX2ε package implementation
	5.1 \QueryWorkingDirectory
	5.2 \QueryFiles and \QueryFilesTF

