
Prototype reimplementation of LATEX2ε’s block
environments using templates

LATEX Project∗

v0.9j 2025-07-09

Abstract

Contents
1 Introduction 2

2 Template types and templates for blocks and lists 2
2.1 Template types . 2

2.1.1 The template type ‘block’ . 2
2.1.2 The template type ‘para’ . 3
2.1.3 The template type ‘list’ . 3
2.1.4 The template type ‘item’ . 3
2.1.5 The template type ‘blockenv’ . 3

2.2 Templates . 4
2.2.1 The blockenv template ‘display’ 4
2.2.2 The block template ‘display’ . 5
2.2.3 The para template ‘std’ . 6
2.2.4 The list template ‘std’ . 6
2.2.5 The item template ‘std’ . 7

3 Declaration of standard block environments 8
3.1 The center, flushleft, and flushright environments 8
3.2 The quote and quotation environments 8
3.3 The verbatim and verbatim* environments 8
3.4 The itemize environment . 9
3.5 The enumerate environment . 9
3.6 The description environment . 9
3.7 The list environment . 10
3.8 The verse environment . 10
3.9 The trivlist environment . 10
3.10 Environments declared through \newtheorem 10

4 Adjusting the layout of standard block environments 10
∗Initial reimplementation of lists done by Bruno Le Floch, generalized second version with tagging

support by Frank Mittelbach.

1

5 Tagging support 11
5.1 Paragraph tags . 11
5.2 Tagging recipes . 12

6 Debugging 14

7 New and redefined kernel command 14

Index 15

1 Introduction
The list implementation in LATEX2ε serves a dual purpose: it implements real lists such
as itemize or enumerate, but it is also used as the basis for vertical blocks, i.e., to specify
the vertical spacing and paragraph handling after such block, e.g., in environments like
center, quote, verbatim, or in the theorem environments. They are all implemented as
“ trivial” lists with a single (hidden) item.

While this was convenient to get a consistent layout using a single implementation
it is not adequate if it comes to interpreting the structure of a document, because envi
ronments based on trivlist should not advertise themselves as being a “ list” — after
all, from a semantic point of view they aren’t lists.

The approach taking here is therefore to offer separate template types: block (hor
izontally or vertically oriented data that needs some handling at the start and the end),
para (that deals with different paragraph layouts), list (that handles list related pa
rameters, and item (for item layouts and handling). To address the independent aspects
we have the template type blockenv that ties them together as necessary.

For example, a quote environment would make use of a (display) block and some
para instnce while an standard enumerate would make use of a display block, a list,
and an item and para instance. An inline list (like enumerate* from the enumitem
package) would be using the same list instance but a different (horizontally oriented)
block instance build from a different template.

2 Template types and templates for blocks and lists
2.1 Template types
2.1.1 The template type ‘block’

Arg: 1 key/value list to alter the default block parameters

Semantics:

Handle the layout aspects of a block of data. In case of a “ display” block (i.e., vertically
oriented) the spacing and page breaking as well as the handling if the block starts a
paragraph or ends one, that is, if text is immediately following the block without being
separated by an empty line, then this text is considered to be in the same paragraph as
the block.

2

In case of a horizontally oriented block it covers any special handling at the start
and end of the block, e.g, extra spacing, prohibitying or encuraging line breaks, and so
forth.

2.1.2 The template type ‘para’

Arg: 1 key/value list to alter the default item parameters

Semantics:

Sets up paragraph-specific parameters for H&J, e.g., to implement justification variations,
the behavior of \\ etc. The instances are used in higher-level templates, e.g., in a block.

2.1.3 The template type ‘list’

Arg: 1 key/value list to alter the default item parameters

Semantics:

Handle the aspects related to list design, e.g., the use and formatting of counters, etc.
Note that this does not cover block-related aspects, i.e., a list instance could be used

both for a display list or for an inline line.

2.1.4 The template type ‘item’

Arg: 1 key/value list to alter the default item parameters

Semantics:

A sub-type used as part of list to easily cover alternative layout for list items.

2.1.5 The template type ‘blockenv’

Arg: 1 key/value list to alter the default parameters of the template instances used by
the particular block environment

Semantics:

This template type is used to implement document-level environments. It defines a
block instance to handle the layout at the “ edge” of the environment data, possibly
some paragraph setup through a para instance, potentially an “ inner” instance for more
complicated environments (such as lists), and possibly some additional setup code for
certain environments.

It also defines how the blockenv behaves with respect to nesting, e.g., does it change
when nested and if so how many levels of nesting are supported, etc.

Finally, the template type defines how it appears in a tagged PDF document, what
tag names are used, how they are rolemapped and whether it adds additional attributes,
etc.

3

2.2 Templates
2.2.1 The blockenv template ‘display’

Attributes:

name (tokenlist) Name of the environment used in tracing and error messages.

tag-name (tokenlist) Name of the tag used for the block inside the PDF. If not explicitly
given the name is defined by the tagging-recipe. Note that in case of tagging-
recipe=basic no tag for the block is produced, so any key settings are ignored.

Default: ⟨empty⟩

tag-attr-class (tokenlist) An explicit tag class attribute. Default: ⟨empty⟩

tagging-recipe (tokenlist) Defines the way tagging is done. Currently the values
basic, standard, and list are supported. Default: standard

increment-level (boolean) Does this blockenv increase the block level if it is nested
in an outer block? Default: true

setup-code (tokenlist) Initial setup code. This is executed after legacy defaults (from
\@listi, \@listii, etc.) are used but before the block instance is called.

Default: ⟨empty⟩

block-instance (tokenlist) Part of the name of the block instance that is called. The
full name has a -⟨level⟩ appended. Default: displayblock

para-instance (tokenlist) Paragraph settings to use within the environment. If ⟨empty⟩
then outer values are retained. However, the block template resets some values,
which may not be the right thing to do. Default: ⟨empty⟩

inner-level-counter (tokenlist) Name of an existing (!) counter that is incremented
and used to determine final name of the inner-instance or empty if always the
same inner instance should be used.

max-inner-levels (tokenlist) Maximum number of nested environments of this kind.
Only relevant if there is a inner-level-counter specified. Default: 4

inner-instance-type (tokenlist) Template type of the inner instance. Default: list

inner-instance (tokenlist) Name of the inner instance (if any). If there is an inner-
level-counter then the instance name gets -⟨counter value⟩ appended.

Default: ⟨empty⟩

tagging-suppress-paras (boolean) describe Default: false

final-code (tokenlist) Final setup code Default: \ignorespaces

4

Semantics & Comments: This blockenv template supports the legacy list setting
that are found in many document classes in the macros \@listi, \@listii, up to
\@listvi. It also uses the counter \@listdepth to track nesting of block, again mainly
to support legacy setups (internally it gives it a more appropriate name but it remains
accessible through the LATEX2ε name).

It first checks that nothing is too deeply nested. If the level should increase then
the increments the \@listdepth counter and calls the corresponding \@list... macro
to update the legacy defaults. If increment-level is set to false this is bypassed.

It then sets up the tagging via the tagging-recipe setting and executes any code
in setup-code.

Afterwards it calls the appropriate block instance based on block-instance and
current level, e.g., displayblock-1. Then it sets up paragraph parameters if a para-
instance was specified (otherwise they stay as they are).

If a inner-instance was specified this is called next, or more precisely: if no inner-
level-counter was specified the instance inner-instance is called.

Otherwise, the inner-level-counter is incremented and the instance with the name
inner-instance-inner-level-counter is called.

Finally, the final-code is executed (by default \ignorespaces).

The maximum number of blockenvs that can be nested into each other is restricted
by the LATEX counter maxblocklevels with a default value of 6. If this value is increased
then it is necessary to provide additional instances, e.g., displayblock-7, etc. Decreasing
is, of course, always possible, then some of the instances defined are not used and instead
the user gets an error that there is too much nesting going on.

If the key increment-level is set to false then such an environment doesn’t alter
the nesting level and therefore you can nest those environments as often as you like (a
typical example would be flushleft anywhere in the nesting hierarchy, that would have
no effect on hitting the boundary).

2.2.2 The block template ‘display’

Attributes:

begin-vspace (skip) Default: \topsep

begin-extra-vspace (skip) Default: \partopsep

para-vspace (skip) Default: \parsep

end-vspace (skip) Default: value from begin-vspace

end-extra-vspace (skip) Default: value from begin-extra-vspace

item-vspace (skip) The space in front of an item if the block is a list; if not the setting
has no effect Default: \itemsep

begin-penalty (integer) Default: \@beginparpenalty

end-penalty (integer) Default: \@endparpenalty

left-margin (length) Default: \leftmargin

right-margin (length) Default: \rightmargin

para-indent (length) Default: 0pt

5

Semantics & Comments: The idea of a heading key needs some further thoughts
and therfore has been removed for now. Maybe instead the template type should accept
a second argument and receive input for such a heading from the document level instead.

The names of the keys need further thoughts and some decision. Right now it is
a mixture of those with hyphens and those that match legacy register names (the way
enumitem did its keys).

2.2.3 The para template ‘std’

Attributes:

para-indent (length) Default: \parindent

begin-hspace (skip) Default: 0pt

left-hspace (skip) Default: 0pt

right-hspace (skip) Default: 0pt

end-hspace (skip) Default: \@flushglue

fixed-word-spaces (boolean) Default: false

final-hyphen-demerits (integer) Default: 5000

newline-cmd (tokenlist) Default: \@normalcr

para-attr-class (tokenlist) Default: justify

2.2.4 The list template ‘std’

Attributes:

counter (tokenlist) Counter name to be used in a numbered list or empty, if the list is
unnumbered

item-label (tokenlist) Label “ string” for a fixed label or as generated from the current
counter value

start (integer) Start value for the counter if the list is numbered, otherwise irrelevant
Default: 1

resume (boolean) Should a numbered list be resumed from the last instance?
Default: false

item-instance (instance) Instance of type item to be used to format the label string
Default: basic

item-vspace (skip) The space in front of an item in the list. If not specified the value
specified in the block template instance is used

6

item-indent (length) Horizontal displacement of the item. Default: 0pt

item-penalty (integer) Penalty for breaking before an item (except the first)
Default: \@itempenalty

label-width (length) Width reserved for the formatted item labelDefault: \labelwidth

label-sep (length) Horizontal separation between label and following text
Default: \labelsep

legacy-support (boolean) Is formatting the label via \makelabel supported?
Default: false

2.2.5 The item template ‘std’

Attributes:

counter-label (function1) unused Default: \arabic{#1}

counter-ref (function1) unused Default: value from counter-label

label-ref (function1) unused Default: #1

label-autoref (function1) unused Default: item #1

label-format (function1) Formatting of the label, questionable the way it is used
Default: #1

label-strut (boolean) Add a \strut to the label? Default: false

label-align (choice) Supported values left,center, right, and parleft. Only partly
implemented Default: right

label-boxed (boolean) Should the label be boxed? Default: true

next-line (boolean) Default: false

text-font (tokenlist) unused

compatibility (boolean) Default: true

Semantics & Comments: This template is only rudimentary implemented at the mo
ment. It probably needs other keys and the existing ones need a proper implementation.

7

3 Declaration of standard block environments
3.1 The center, flushleft, and flushright environments
The center environment is defined through the blockenv instance center which makes
use of the block instance displayblock-⟨level⟩ and the para instance center. The
block nesting level is not incremented. With respect to tagging, text separated by \par
commands (or empty lines) inside the environment is not tagged as separate paragraphs,
i.e., the whole environment is considered to be part of an outer paragraph. The default
implementation is

 \DeclareInstance{blockenv}{center}{display}
 {
 name = center,
 tagging-recipe = basic,
 tagging-suppress-paras = true ,
 increment-level = false,
 block-instance = displayblock ,
 para-instance = center ,

 }

The flushleft and flushright environments are defined in a similar way.

3.2 The quote and quotation environments
The quote environment is defined through the blockenv instance quote which makes
use of the block instance quoteblock-⟨level⟩. The paragraph setup is inherited. The
block nesting level is incremented. The default implementation is

 \DeclareInstance{blockenv}{quote}{display}
 {
 name = quote,
 tag-name = quote,
 tagging-recipe = standard,
 increment-level = true,
 block-instance = quoteblock ,

 }

The implementation of quotation is similar but uses quotationblock-⟨level⟩.

3.3 The verbatim and verbatim* environments
Both the verbatim environment is defined through the blockenv instance verbatim
which makes use of the block instance verbatimblock-⟨level⟩ and the para instance
justify. The block nesting level is not incremented. Verbatim processing requires
various catcode changes, etc. and as a consequence a special parsing routine that grabs
the whole environment while these catcodes are in force. This setup is done in the final-
code key and its last action is to initiate the special parsing. The default implementation
is

8

 \DeclareInstance{blockenv}{verbatim}{display}
 {
 name = verbatim,
 tag-name = verbatim,
 tagging-recipe = standard,
 tagging-suppress-paras = true,
 increment-level = false,
 block-instance = verbatimblock ,
 para-instance = justify ,
 final-code = \legacyverbatimsetup

 \@setupverbinvisiblespace \@vobeyspaces
 \@xverbatim

 }

The implementation of verbatim* is similar using the blockenv instance verbatim*. Its
final-code sets up visible spaces and a slightly diffeent parsing that grabs everything
up to \end{verbatim*}. Otherwise the setup is identical.

3.4 The itemize environment
The itemize environment is defined through the blockenv instance itemize which
makes use of the block instance list-⟨level⟩, and an inner instance itemize-⟨inner-
level⟩ of type list. The paragraph setup is inherited. The ⟨inner-level⟩ is deter
mined through \@itemdepth. The block nesting level and the inner list nesting level are
incremented. The default implementation is

 \DeclareInstance{blockenv}{itemize}{display}
 {
 name = itemize,
 tag-name = itemize,
 tag-attr-class = itemize,
 tagging-recipe = list,
 inner-level-counter = \@itemdepth,
 increment-level = true,
 max-inner-levels = 4,
 block-instance = listblock ,
 inner-instance = itemize ,

 }

3.5 The enumerate environment
The enumerate environment is similar to itemize but uses the blockenv instance
enumerate, the block instance list-⟨level⟩, and the inner instance enumerate-⟨inner-
level⟩. The ⟨inner-level⟩ is determined through \@enumdepth.

3.6 The description environment
The description environment uses the blockenv instance description, the block in
stance list-⟨level⟩, and the inner instance description (no dependency on the nesting
level), i.e., the environment has the same appearance on all nesting levels.

9

3.7 The list environment
The generic list environment of LATEX2ε is modeled with a blockenv instance named
list, a block instance named list-⟨level⟩, and an inner instance named legacy (with
no dependency on the nesting level). This environment has two arguments and cus
tomization of the layout is expected to be directly set in the second argument. For this
reason this legacy instance is something that shouldn’t be changed (all that is attempted
to provide a way to support legacy setups).

To set up the default settings (as they were used in LATEX2ε) the setup-code key
gets \legacylistsetupcode assigned, so the default setup (that should probably not be
changed) looks as follows:

 \DeclareInstance{blockenv}{list}{display}
 {
 name = list,
 tag-name = list,
 tagging-recipe = list,
 increment-level = true,
 setup-code = \legacylistsetupcode ,
 block-instance = listblock ,
 inner-instance = legacy ,

 }

3.8 The verse environment
The verse environment is currently still implemented as a list without real items (as in
LATEX2ε. That needs updating.fix

3.9 The trivlist environment
In LATEX2ε trivlist was used to define various display environments that aren’t really
lists at all. To support such legacy definitions (even though they shuld be updated to
achieve proper tagging) we continue to support and implement it as a list environment
with a few hardwired settings mimicking the original behavior.

3.10 Environments declared through \newtheorem

to document

4 Adjusting the layout of standard block environ
ments

to document

10

5 Tagging support
5.1 Paragraph tags
Paragraphs in LATEX can be nested, e.g., you can have a paragraph containing a display
quote, which in turn consists of more than one (sub)paragraph, followed by some more
text which all belongs to the same outer paragraph.

In the PDF model and in the HTML model that is not supported — a limitation
that conflicts with real live, given that such constructs are quite normal in spoken and
written language.

The approach we take to resolve this is to model such “ big” paragraphs with a
structure named <text-unit> and use <text> (rollmapped to <P>) only for (portions
of) the actual paragraph text in a way that the <text>s are not nested. As a result we
have for a simple paragraph the structures

 <text-unit>
 <text>

 The paragraph text …
 </text>

 </text-unit>

The <text-unit> structure is rollmapped to <Part> or possibly to <Div> so we get a
valid PDF, but processors who care can identify the complete paragraphs by looking for
<text-unit> tags.

In the case of an element, such as a display quote or a display list inside the para
graph, we then have

 <text-unit>
 <text>

 The paragraph text before the display element …
 </text>
 <display element structure>

 Content of the display structure possibly involving inner <text-unit> tags
 </display element structure>
 <text>

 … continuing the outer paragraph text
 </text>

 </text-unit>

In other words such a display block is always embedded in a <text-unit> structure,
possibly preceded by a <text>…</text> block and possibly followed by one, though
both such blocks are optional.

Thus an itemize environment that has some introductory text but no text imme
diately following the list would be tagged as follows:

 <text-unit>
 <text>

 The intro text for the itemize environment …
 </text>

11

 <itemize>

 <Lbl> label </Lbl>
 <LBody>

 The text of the first item involving <text-unit> as necessary …
 </LBody>

 The second item …

 … further items …

 </itemize>
 </text-unit>

The <itemize> is rollmapped to <L>.
For some display blocks, such as centered text, we use a simpler strategy. Such

blocks still ensure that they are inside a <text-unit> structure but their body uses
simple <text> blocks and not <text-unit><text> inside, e.g., the input

This is a paragraph with some
\begin{center}
 centered lines

 with a paragraph break between them
\end{center}
followed by some more text.

will be tagged as follows:

 <text-unit>
 <text>

 This is a paragraph with some
 </text>
 <text /O /Layout /TextAlign/Center>

 centered lines
 </text>
 <text /O /Layout /TextAlign/Center>

 with a paragraph break between them
 </text>
 <text>

 followed by some more text.
 </text-unit>

5.2 Tagging recipes
There are a number of different tagging recipes that implement different tagging ap
proaches. They are selected through the tagging-recipe of the blockenv template.
Currently the following values are implemented:

12

standalone This recipe does the following:

• Ensure that the blockenv is not inside a <text-unit> structure. If
necessary, close the open one (and any open <text> structure).

• Text inside the body of the environment start with <text-unit><text>
unless the key tagging-suppress-paras is set to true (which is most likely
the wrong thing to do because we then get just <text> as the structure).

• At the end of the environment close </text> and possibly an inner
</text-unit> if open.

• Finally, ensure that after the environment a new <text-unit> is started, if
appropriate, e.g., if text is following.

basic This recipe does the following:

• Ensure that the blockenv is inside a <text-unit> structure, if necessary,
start one.

• If inside a <text-unit><text>, then close the </text> but leave the
<text-unit> open.

• Text inside the body of the environment start with <text-unit><text> if
tagging-suppress-paras is set to false, otherwise just with <text>.

• At the end of the environment close </text> and possibly an inner
</text-unit> if open.

• Then look if the environment is followed by an empty line (\par). If so, close
the outer </text-unit> and start any following text with
<text-unit><text>. Otherwise, don’t and following text restarts with a just
a <text> (and no paragraph indentation)

standard This recipe is like the basic one as far as handling <text-unit> and <text>
is concerned. In addition

• it starts an inner tagging structure (i.e., which is therefore a child of the
outer <text-unit>).

• By default this structure is a <Div> unless overwritten by the key tag-name.
If that key is used, a suitable rolemap needs to be provided for the name
given.

• At the end of the environment that inner structure is closed again so that we
are back on the <text-unit> level from the outside.

• Then the lookahead for an empty line is done as described previously.

list This recipe is like the standard one except that

• the inner structure is a list (<L>).
• Furthermore everything is set up so that we have list items () with

suitable substructures (<Lbl> for the item labels and <LBody> for the item
bodies).

• If the key tag-name is specified, this is used as the tag name for the whole
list instead of <L>. Of course, it should then have a suitable rollmap.

• If the key tag-attr-class is specified then this is used as the class
attribute. Again, this requires a suitable setup on the outside.

13

• At the end of the environment the </LBody>, , and </L> (or the tag
name used) are closed.

• Then the lookahead for an empty line is done as described previously.

6 Debugging

These commands enable/disable debugging messages.\DebugBlocksOn
\DebugBlocksOff
\block_debug_on:
\block_debug_off:

7 New and redefined kernel command

The original LATEX2ε command is augmented to allow for tagging.\@doendpe

to be documented\legacyverbatimsetup
\legacylistsetupcode

A counterpart definition to the kernel command \@setupverbinvisiblespace, needed
as we need to handle real space chars in verbatim.

\@setupverbinvisiblespace

to be documentedendblockenv
\g_block_nesting_depth_int

Redefined to make theorems tagging aware.\newtheorem
\@thm
\@begintheorem

The \item is redefined.\item
\@itemlabel

A counter to increase or decrease the number of supported level. If increased, one needs
to supply additional level instances.

\c@maxblocklevels

The \begin is slightly redefined to handle \@doendpe better. TODO: move to kernel\begin

14

TODO: consider name, document\para_end:

The para/begin hook is enhanced to support list endspara/begin

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

B
\begin . 14
block commands:
 \block_debug_off: 14
 \block_debug_on: 14
 \g_block_nesting_depth_int 14

D
\DebugBlocksOff 14
\DebugBlocksOn 14

E
endblockenv . 14

I
\item . 14

L
\legacylistsetupcode 10, 14
\legacyverbatimsetup 14

N
\newtheorem 10, 14

P
\par . 8
para commands:
 \para_end: 15
para/begin . 15

T
TEX and LATEX2ε commands:
 \@beginparpenalty 5

 \@begintheorem 14
 \@doendpe . 14
 \@endparpenalty 5
 \@enumdepth . 9
 \@flushglue . 6
 \@itemdepth . 9
 \@itemlabel 14
 \@itempenalty 7
 \@list... 5
 \@listdepth . 5
 \@listi . 4, 5
 \@listii . 4, 5
 \@listvi . 5
 \@normalcr . 6
 \@setupverbinvisiblespace 14
 \@thm . 14
 \arabic . 7
 \begin . 14
 \c@maxblocklevels 14
 \ignorespaces 4, 5
 \item . 14
 \itemsep . 5
 \labelsep . 7
 \labelwidth . 7
 \leftmargin . 5
 \makelabel . 7
 \par . 13
 \parindent . 6
 \parsep . 5
 \partopsep . 5
 \rightmargin 5
 \strut . 7
 \topsep . 5

15

	Contents
	1 Introduction
	2 Template types and templates for blocks and lists
	2.1 Template types
	2.1.1 The template type `block'
	2.1.2 The template type `para'
	2.1.3 The template type `list'
	2.1.4 The template type `item'
	2.1.5 The template type `blockenv'

	2.2 Templates
	2.2.1 The blockenv template `display'
	2.2.2 The block template `display'
	2.2.3 The para template `std'
	2.2.4 The list template `std'
	2.2.5 The item template `std'

	3 Declaration of standard block environments
	3.1 The center, flushleft, and flushright environments
	3.2 The quote and quotation environments
	3.3 The verbatim and verbatim* environments
	3.4 The itemize environment
	3.5 The enumerate environment
	3.6 The description environment
	3.7 The list environment
	3.8 The verse environment
	3.9 The trivlist environment
	3.10 Environments declared through \newtheorem

	4 Adjusting the layout of standard block environments
	5 Tagging support
	5.1 Paragraph tags
	5.2 Tagging recipes

	6 Debugging
	7 New and redefined kernel command
	Index
	B
	D
	E
	I
	L
	N
	P
	T

