May 2004

See the ofsdoc.tex for Czech version of this documentation.

OF'S: The Olsak’s Font System

The OFS is a TgX macro for managing large sets of fonts. You can select the
appropriate fonts comfortably by the names from font catalog used by a font foundry.
It means you don’t have to remember short names of tfm files and/or short names of
NF'SS font families. The user interface of this macro is the same in LaTEX and in plain
but there are two independent implementations of this macro: first and more elaborate:
based only on plain macros; second: based on NFSS macros for LaTgX users.

If a text in this documentation is applicable only for the plainTRX version of the
OFS then the text is introduced by the word prainTEX:. If a text is applicable only for
OF'S version based on NFSS then it is introduced by the word LATEX:.

After the OFS macro is loaded, the following message is printed:

PLAINTEX: OFS (Olsak’s Font System) based on plain initialized. <ver.>
LATEX: OFS (Olsak’s Font System) based on NFSS initialized. <ver.>

Main features of the OF'S:

e The user interface is the same for plain and for LaTgX.

e You can use the \fontusage command which displays a short description of OFS
macros in terminal and in the log file.

e You can use the real font names from font catalog.

e You can use the font divided into two TEX metrics (basic and extended tfm) and
they seem from the user’s point of view to be only one font. This is useful for fonts
with more than 256 characters if you don’t want to use Omega.

e You can choose the TEX internal encoding of fonts for your language in the beginning
of your document. This feature is commonly used for Czech and Slovak languages:
there are TEX fonts which encode the alphabets of these languages by Cork (T1
encoding) or by ISO-8859-2 (IL2 encoding). T1 font encoding is common in LaTeX
world, whereas IL2 encoding is widely used in the Czech and Slovak TEX community.

e The OFS defines the language of declaration files. These files define mapping of
full names of fonts to PLAINTEX: tfm names or LATEX: NFSS short names of the font
families.

e PLAINTEX: You can use individual variants of fonts in an indepent manner in similar
way as in NFSS (family, size, encoding, variant).

e PLAINTEX: You can declare different fonts for different sizes in the declaration files
(usable for Computer Modern family first of all).

e pPLAINTEX: The OFS includes support of the math fonts manipulation when the
PostScript fonts and/or fonts at different sizes are used.

e Interactive macro ofstex.tex enables printing the paragraph samples in the cho-
sen font families, printing the font table, font registers, samples of the mathematic
and the lists of characters, including their TEX sequences. All to do is to write
tex ofstest [allfonts] or csplain ofstest [allfonts] on the command line
and to follow the orders on the terminal.

1.

\rm \bf \it \bi

2.1.

The font families

The most current font families have the four commonly used variants: normal: (\rm),
bold (\bf), italic (\it) and bold italic (\bi). These variants are called “standard
variants” in OFS. After the font family is activated by \setfonts command (see bellow),
you can use the commands \rm, \bf, \it a \bi as a variant switches for the current
font family. The first three commands are well known in plain and the fourth command
switches into Boldltalic variant and it is introduced in the OFS.

Additional “nonstandard variants” can be declared in some font families and vice
versa some “standard variants” can be missing in other font families. Only the \rm
variant has to be present in all families.

The original names of fonts can be a little different from the names mentioned above
in some font families but the font switches names \rm, \bf, \it, \bi can be unchanged.
For example the family Helvetica has the variant “Oblique”, but we are still using the
\it switch for this variant.

If you want to use the font switches from another font families at the same time,
these switches can be declared by the \fontdef command (see bellow).

The font families are declared in the declaration files. These files have the similar
meaning in the plainTEX as fd files in NFSS. The recommended suffix for the files are
PLAINTEX: tex (they map the family names to TEX metrics) or LATEX: sty (they map
the family names to the NFSS short family names). These files can include more than
one font family declaration. The names of these files are chosen in order to you can
recognize which families are declared here. Examples:

PLAINTEX : LATEX:
sjannon.tex, sjannon.sty ... the big Jannon family by stormtype.com
a35.tex, a35.sty ... the basic 35 fonts by Adobe

The user chooses from these files only such files needed by his/her document and
writes the names of these files into the header of the document. For more simplicity,
“global” files include the pLAINTEX: \input or LATEX: the \RequirePackage command
for the single declaration files. Examples:

skatalog.tex, skatalog.sty ... all fonts by stormtype.com
allfonts.tex, allfonts.sty ... all fonts at your TeX installation

The user interface

The header

For example, let us suppose that we will use fonts from Jannon and Dyna-
Grotesk family by Storm Type Foundry. Their declaration files are included in the
storm directory. You can get the TEX metrics plus the OFS macro package from
www.cstug.cz/stormtype. You can buy the real fonts from Storm Type Foundry.
See www.stormtype.com for more details. We need to use PLAINTEX: sjannon.tex,
sdynamo.tex; or LATEX: sjannon.sty, sdynamo.sty. declaration files. The first letter
s in their file name means that the fonts are made by Storm Type Foundry. We can
use the following line in the header of our document:

PLAINTEX: \input ofs [sjannon, sdynamo] % space before "[" is necessary

\showfonts

\fontusage

LATEX: \usepackage [sjannon,sdynamo]{ofs}

Now we can use the families declared in sjannon and sdynamo declaration files. The
\showfonts command writes a list of available families on terminal and to a log file. In
the above case, the \showfonts lists the following text:

OFS (1.1): The list of known font families:

defaults:
[CMRoman/] \rm, \bf, \it, \bi, \sl
[CMSans/] \rm, \bf, \it, -
[CMTypewriter/] \rm, - , \it, -, \sl
[Times/] \rm, \bf, \it, \bi
[Helvetica/] \rm, \bf, \it, \bi, \nrm, \nbf, \nit, \nbi
[Courier/] \rm, \bf, \it, \bi
sjannon.tex:
[JannonAntikva/] \rm, \bf, \it, \bi, \mr, \mi
[JannonText/] \rm, \bf, \it, \bi, \mr, \mi
[JannonCaps/] \rm, \bf, \it, \bi
sdynamo.tex:
[DynaGroteskDXE/] \rm, \bf, \it, \bi
[DynaGroteskRXE/] \rm, \bf, \it, \bi
[DynaGroteskLXE/] \rm, \bf, \it, \bi

(next 15 families of DynaGrotesk)

The first 6 families are declared in OFS internally (you need not write any declaration
file to use them). The next families are declared in specified declaration files.

Beside each family are listed option switches. The first four switches set “standard
variants”. If a standard variant is not available then a dash sign is listed instead of the
switch. The fifth and any other switches correspond to the “nonstandard variants”, if
these exists. For example, the JannonAntikva and JannonText families have the extra
variants medium and medium-italic (\mr and \mi switches are used here).

If you use the \fontusage command, then short description of OFS use is printed
to the terminal and into the log file.

We mentioned the header in the form:

PLAINTEX: \input ofs [(file), (file), ...]
LATEX: \usepackage [(file),(file),...]1{ofs}

Instead of the header of this type you can also include definition files directly. In such
case, the ofs.tex or ofs.sty do not have to be explicitly mentioned:

PLAINTEX: \input (file) \input (file)
LATEX: \usepackage {(file)} \usepackage {(file)} ...

Example:

PLAINTEX: \input sjannon \input sdynamo
LATEX: \usepackage {sjannon} \usepackage {sdynamo}

We don’t recommend to mix the both variants of the header (in LaTgX specially).

2.2,

\setfonts

The \setfonts command

Let us suppose that the sjannon and sdynamo declaration files were given in the
header for the next examples. For example, the command:

\setfonts [JannonText/12pt]

sets the switches \rm, \bf, \it, \bi, \mr and \mi. These switches set variants of the
JannonText family to 12pt font size.

The current variant used before \setfonts command is saved, but the family /size
parameters of the current font are changed by this command. For example, if the
BoldItalic variant for the TimesRoman was a current then the BoldItalic of JannonText
family of size 12pt is current font set by \setfonts [JannonText/12pt]. If the new
family has the current variant switch undeclared then the \rm variant is used.

The \setfonts makes all changes locally, so that TEX returns to the previous font
and font family after the group is ended.

The parameters of the \setfonts[({FamName)/(size)] command can be empty:
the \setfonts[(FamName)/] switches to the new font family but keeps the current
font size and the \setfonts[/(size)] changes the font size for all corresponded variant
switches but keeps the current family unchanged. The command \setfonts[/] is
syntactically correct but without any effect.

The CMRoman/10pt is default (FamName)/(size) after OFS for plainTEX is initial-
ized.

The parameter (FamName), unless not empty has to be the same as the name of
a family listed by the \showfonts. This parameter is case sensitive. If the parameter
does not match any font family from given declaration files, the \setfonts command
acts the same as the \showfonts command: all available families are listed. Thus, you
can use the \setfonts [?/] with the same effect as the \showfonts.

LATEX: The (FamName) parameter can be not only the “long-named” font family
from \showfonts list, but the short name from NFSS can be used too. For example,
the \setfonts[Times/] and the \setfonts[ptm/] has the same effect in LaTEX.

PLAINTEX+LATEX: The parameter (size) can be written in more ways:

(number) ... example: 12, 17.4,

(number)(unit) ... example: 12pt, 17.4pt, 10dd,
at(number)(unit) ... example: at12pt, at17.4pt, at10dd,
scaled(integer) ... example: scaled1200, scaled\magstep3,
mag(decimal number) ... example: magl.2, mag.7, mag2.0.

The first three possibilities have the same meaning. The keyword at is optional and
if you omit the keyword and the unit, the at(number)pt is used. We can use the true. .
unit if we need not the relative unit associated by current \magnification factor: for
example: 17truept. If the at keyword is present then the unit can’t be omitted—it
means: atl2 is not correct, but at12pt or simply 12 are correct values.

The scaled keyword has the same meaning as in TEX primitive \font. For example,
if the design size of the font is 10pt (this is a common value) then scaled1200 is the
same as at12pt.

The last possibility (keyword mag) is a new feature in OFS. The new font size is
calculated from the current font size by multiplying by (decimal number). For example,
by the command \setfonts[/12pt] followed by \setfonts[/mag2.] the current font

2.3.

\fontdef

size is changed to 24 pt. The decimal point is required in the (decimal number). Another
example:

\def\small{\setfonts[/mag.7]}
The text {\small is smaller \small and smaller \small and more smaller}
and the normal size is used here.

Note: the (size) parameter in \setfonts command changes only the font size but
not the \baselineskip. The user has to do the \baselineskip setting by another way.
LATEX: The \setfonts sets the \baselineskip to the current value stored in NFSS. It
means that if you want to change the \baselineskip register for your goal, you have
to do it after \setfonts command in LaTgX.

You can set only one variant of a font family (not the whole family) by the \setfonts
command. This is done if the “~(variant)” is appended to the (FamName) parameter.
In such case, the switches of the current family are not changed and only the new font
is set. The (variant) means the name of variant switch here. Examples:

\setfonts [JannonText-it/12] sets the italics of the JannonText
at 12 pt as the current font.
The \rm, \bf, etc. are unchanged

\setfonts [JannonText-rm/] sets the normal variant of the
JannonText at the current size.
\setfonts [CMTypeWriter-sl/] sets the cmsltt font as the current

font at the current size.

You can omit the family name even if the -(variant) is present. The actual family
is substituted in such case. Examples:

\setfonts [JannonText/12]

\setfonts [-bf/17] ... variant Bold of JannonText, size 17pt.
Selectors \rm, \bf, \it and \bi keeps its
original meaning: they switches between
variants of JannonText in 12pt size. For
example, the next command \setfonts[Times/]
sets the Times family in 12pt size.

BUT:

\setfonts [/17]\bf ... variant Bold of current family, size 17pt.
Selectors \rm, \bf, \it and \bi switches
in 17pt size now.

LATEX: The text above about the keeping of original meaning of variant switches is
not true in LaTgX because it may break the NFSS philosophy. Thus, the commands
\setfonts [-bf/17] and \setfonts [/17]\bf has the same meaning in LaTgX.
The commands \fontdef and \addcmd

The \fontdef command declares a new font switch.

\fontdef \(fontswitch) [(FamName)/(size)]
This declaration is roughly similar to

\gdef \(fontswitch) {\setfonts [(FamName)/(size)]}

\addcmd

PLAINTEX: If the “~(variant)” is appended in (FamName) and the parameter (size) is
not empty and it is not specified by mag keyword then the new declared control sequence
\(fontswitch) is not a macro but it is implemented by \global\font\(fontswitch). It
is called “fixed font” in an OFS terminology. The user can implement his/her native
\(fontswitch) by \fontdef without a knowledge about tfm filename.

LATEX: The declared \(fontswitch) is always implemented as a macro including the
\setfonts command. The reason is that the user access to native \(fontswitch) is not
simply possible in NFSS.

PLAINTEX+LATEX: You can type the exclamation mark instead of (FamName) and
the family current in the moment the \fontdef command was used is substituted. On
the other hand the empty (FamName) means that the family current in the moment
the \(fontswitch) command was used is substituted. You can use the exclamation mark
“I” instead of (size) parameter with the same meaning. Examples:

(L'W

\setfonts [JannonAntikva/]

\fontdef \small [/7] % \small = \setfonts [/7pt]

\fontdef \sffam [DynaGroteskR/] % \sffam = \setfonts [DynagroteskR/]
\fontdef \bigf [Times/17] % \bigf = \setfonts [Times/17pt]
\fontdef \ttfam [Courier/] % \ttfam = \setfonts [Courier/]

\fontdef \mylogo [Times-rm/mag.8] % \mylogo = \setfonts [Times-rm/mag.8]
% the fontsize will be always
% 0.8 times of the current size.
\fontdef \timbf [Times-bf/12] % \timbf = fixed-font, the same as:
% \global\font\timbf=ptmb8z atl2pt

\fontdef \jansmall [!/7] % \jansmall=\setfonts[JannonAntikva/7]
\fontdef \janbi [!-bi/17] % \janbi = fixed-font, the same as:

% \global\font\janbi=sjnbi8z atl7pt
\fontdef \tt [Courier-rm/!] % \tt = fixed-font, the same as

% \global\font\tt=pcrr8u atlOpt

The declaration of the \(fontswitch) by \fontdef command is global but the
\(fontswitch) itself has a local effect in the place where it is used.

Since OFS version Oct. 2002, the \addcmd command is supported, which makes
possible to concentrate whole font management in one place. The format of \addcmd is:

\addcmd \(fontswitch) {{commands)}
The meaning is same as
\def\(fontswitch) {(the original meaning of fontswitch){commands)}

You can include new (commands) into the original content of the macro \(fontswitch).
The control sequence \(fontswitch) has to be defined as a macro without parameters or
as unexpandable control sequence (by \font, \chardef etc.) before \addcmd is used.
The \addcmd redefines \(fontswitch) as a macro without parameters in all cases. You
can apply \addcmd on the same \(fontswitch) more than once.

Examples:

\setfonts [JannonText/]

\fontdef \footnotefont [!/7]

\addcmd \footnotefont {\rm \baselineskip=9pt \relax}
\fontdef \sectionfont [!/12]

2.4.

\knownfam

\ifknownfam

2.5.

\OFSfamily

\OFSfamilydefault

2.6.

\addcmd \sectionfont {\bf \let\it=\bi}

Test of a family name existence

PLAINTEX: You are able to test the font family declaration in your own marcos,
it means whether the font is loaded from the file of declarations. The sequence
\knownfam (FamilyName)? \iftrue is used for such test. This sequence expands to
\iftrue, if the font family is declared otherwise expands to \iffalse. The parameter
(FamilyName) has to be brought in without the variant specification.

PLAINTEX+LATEX: By reason of the backward compatibility with the older version of
OFS the \ifknownfam [(FamilyName)] does the same as \knownchar macro. Since the
version Feb. 2004 of the OFS for plain it is recommended to use \knownfam, because of
correct alignment of the primitives \if*, \else, \fi. LaTEX user can define \knownfam
quite easily.

LaTEX: OFS and NFSS
This section is intended only for LaTgX users. The command
\OFSfamily [(FamName)]
converts the long family name to internal short NFSS family name. For example
\OFSfamily [Times]

expands to ptm. The macro works only on expand processor level thus we don’t get the
error message if the (FamName) is not known. The \OFSfamily expands to the text
“unknown” in such case. If you are using the \OFSfamily in your macro files and the
NESS try to substitute the unknown family then you can be sure that some misspelling
occurs in (FamName) parameter or the required family is not known.

The example:

\usepackage [sjannon, sdynamo] {ofs}
\edef\rmdefault {\OFSfamily [JannonAntikva]}
\edef\sfdefault {\OFSfamily [DynaGroteskR]Z}
\edef\ttdefault {\OFSfamily [Courirer]}

The meaning of the macros \rmdefault, \sfdefault, \ttdefault is described in
the NFSS documentation.
OFS defines the command

\OFSfamilydefault [(FamName)]

which sets the basic family of the whole document. This family is used in the plain text
and in the chapter headers etc. too (if the used class file is made by common LaTgX
conventions). The command \OFSfamilydefault internally does:

\edef\familydefault {\OFSfamily [(FamName)l}
and moreover it also cares for the case of the unknown (FamName). If the (FamName)
is not known then the list of the supported families is printed.
The font encoding
LATEX: The font encoding switching is the subject to the NFSS and OFS defines

nothing more (i.e., packages fontenc and inputenc work as expected).

7

\fotenc

\loadingenc

2.7.

\setmath

\setsimplemath

PLAINTEX (to the end of this section): OFS sets the font encoding into CSfonts encoding by
default. If you need to use fonts encoded in another encoding (T1 by Cork, for example)
then you write \def\fotenc{8t} before the OFS is included and OFS will operate the
fonts with this encoding. The name “8t” is an example of T'1 encoding.

You can even switch the encoding inside the document:

\def\fotenc{8z} \setfonts[/] ... fonts in CSfont encoding
\def\fotenc{8t} \setfonts[/] ... fonts in encoding by Cork

Moreover there are tools in OFS for correct macros expansion, that are dependent
upon the font encoding (for example \v, \’, \ae).

By default, OFS set \loadingenc=0, which means, that font encoding change nor
the command \setfonts does not change of the macros of the type \v, \ae. These
macros hold their original plain meaning. Such a feature will welcome plain users, who
dislikes too inteligent packages.

But, if the document starts with \loadingenc=1, for example:

\input ofs [a35,sjannon] \loadingenc=1

then TEX checks during every run of the \setfont command, whether all necessary files
named ofs-(encoding) .tex are loaded. These files contain macro definitions dependent
on the preset font encoding. If these files are not loaded, TEX loads them during the
run of \setfonts. More informations on this topic can be found in the sections 3.3
to 3.5.

The OFS package contains three basic files with macros definitions dependent on the
encoding: ofs-8z.tex, ofs-8t.tex and ofs-8c.tex. If you use another font encoding,
you can create a new similar file. Commands \accentdef and \characterdef used in
these files are described in details in the section 3.4.

The fonts in mathematics

LATEX: OFS for LaTEX does nothing with the issue of math fonts. You need to use
some LaTEX package or build on the capabilities of NFSS.

PLAINTEX (to the end of this section): The command \setfonts and the control sequences
declared by \fontdef switch fonts in text mode only. Until you use the \setmath
command, all text between dollars is in Computer Modern in 10pt/7 pt/5pt sizes
(text/index/index of index).

The \setmath command has the following syntax:

\setmath [(text size)/(index size)/(indexindex size)]

The parameters set sizes of mathematical fonts and they have same syntax as in the
\setfonts command. The keyword mag means the magnification to the size of the
current textual font. The empty parameter means the following substitution:

o text size: magl.O
e index size: mag0.7
e indexindex size: mag0.5

It means that \setmath[//] has the same effect as \setmath[magl./mag.7/mag.5].
The \setsimplemath command is defined in OFS as the equivalent of the \setmath[//]
command.

\fomenc

\fomenc

\mathversion

The \setmath sets the mathematical fonts depending on the values of the macros
\fomenc and \mathversion. The \fomenc means the mathematical encoding and the
\mathversion means the version of the math-families set.

Mathematical encoding is set by the value of the macro \fomenc.. There exist
following possibilities:

o If the default value \def\fomenc{PS} (PostScript fonts) is used then \setmath
sets the italic from the current font family as a mathematical italic (\fam1). It
uses \rm from the current font family for digits and a some other symbols. The
variant selectors \rm, \it, \bf and \bi work in math mode too. Moreover, when
\def\fomenc{PS} is used then the math symbols from \fam2 and Greek symbols
(originally located in \fam1) are used from PostScript Symbol font. This font is much
better visual compatible with most Postscript fonts than the Computer Modern
symbols. Other symbols (e.g., big operators and big braces) stay in Computer
Modern font because unfortunately there is no common alternative for these glyphs.

o If \def\fomenc{CM} is used then \setmath command keeps the Computer Modern
fonts in math formulae. It sets only the desired sizes given in the parameters.

e [t is possible to use \def\fomenc{AMS} after loading the file amsfn.tex. Mathematic
symbols are the same as while using CM, but in addition you can use all mathematics
symbols from AMSTEX.

e After loading the file txfn.tex, you can use two new encodings: \def\fomenc{TX}
or \def\fomenc{PX}. In both cases the free TXfonts are used for mathematics, they
are compatible with the font families Times and Helvetica. If you choose the value TX
then pure TXfonts are used for all mathematic symbols, whereas the value PX means
that TXfonts are going to be combined with italics and with the basic fontface of
the actual font family (similar to PS encoding). OFS supports all control sequences
of the mathematic symbols, as is mentioned in the TXfonts reference. There are all
symbols from the AMSTEX and many more there. There are hunderts sybols from
TXfonts.

e After loading the file mtfn. tex, it is possible to use \def\fomenc{MT}. Mathematics
will contain italics and basic fontface of the actual font family as well. And it will
be combined with the characters of the commercial version of the mathematics fonts
MathTimes.

OFS supports two versions of math formulae as default: normal and bold version.
The user can define another versions—see section 3.6. The current version is set by
the contents of the \mathversion macro. You can say \def\mathversion{normal} or
\def\mathversion{bold} before \setmath command. The normal version is used as
default. Examples:

\setmath [//] $formula$ % formula in "normal" version
$\def\mathversion{bold}\setmath[//] formula$ % formula in "bold" version

3.1.

\nofontmessages
\logfontmessages
\displayfontmessages

\detailfontmessages

\displaymessage

3.2.

The inside of OFS for insiders

LATEX: All auxiliary macros of OFS are defined in ofs.sty file with the name
\ofs@macroname in order to avoid the confusion with other style files. The macros
used in declaration files have the name \OFSmacroname. Moreover OFS defines user-
level macros \fontdef, \showfonts, \fontusage, \rm, \bf, \it and \bi.

PLAINTEX: All auxiliary macros of OFS are defined in ofs.tex file and they are listed
in index at the end of this document. The convention with the @ character is not used
because I personally hate this character in macro names.

Debugging
LATEX: Use the standard NFSS package tracefnt for tracing purposes.

PLAINTEX: There are four commands for tracing OFS:

\nofontmessages sets no tracing info.

\logfontmessages sets the tracing info to log file only.

\displayfontmessages sets the tracing info to log file and to terminal.
\detailfontmessages sets the detailed tracing info to log and to terminal (all \font
primitives are traced).

The \logfontmessages is initialized by default.

The warnings about unaccessible characters or encodings are always displayed on
the terminal and they are written into the log file. If you want log output only, you
can write \let\displaymessage=\wlog, because OFS uses this sequence for displaying
messages on the terminal.

The robust and fragile commands

LATEX: LaTREX2e has its conventions to define robust commands. The command
\setfonts and the \(fontswitches) declared by \fontdef are robust, of course. They
can be used in texts for table of contents, indexes etc.

PLAINTEX (to the end of this section): PlainTEX does not solve the problem of fragile com-
mands and its users have their own solutions without any standardization. One solution
is used in OFS.

What is a fragile command? We sometimes need to send some part of text to
auxiliary file (for table of contents, index, etc.). We are doing it by \write primitive and
in second run of TEX this file is \input-ted. The problem is that the \write primitive
prints the text to the file after all macro expansions and it may cause problems. For
example, if the font switch is implemented as a complicated macro and it is used in
\write parameter then the macro is stored in the file after its expansion. The error can
occurs in most cases during the \input of such file. We say that the “fragile” command
was used in \write parameter and that this command “was got spilt” in auxiliary file.

If the (potentially) fragile command defined in OFS is being sent to the file then
the following message is printed on the terminal and to the log file during the \input
of the file:

ERROR !! The fragile command in the toc/ind/aux or similar file.
You can solve this problem by the following steps:

1. Remove the auxiliary file with this command.

2. Include the following macro code into your document header:

10

\expandaction

\fragilecommand!

\fragilecommand

3.3.

\OFSprocessoptions

\let\orishipout=\shipout
\def\shipout#1#2{\setbox0=#1{#2}\bgroup
\let\expandaction=\noexpand \orishipout\box0O \egroup}
3. Run TeX on your document again and again...
See the OFS documentation for more info.
| The fragile command in auxiliary file

You can follow this hint to remove the problem.
The detail explanation of this behavior follows. The \setfonts and other (poten-
tially) fragile macros are implemented in OFS by the following way:

\def\macro {%
\ifx\expandaction\noexpand
\noexpand\macro
\else
\csname fragilecommand!\endcsname
(the macro code)
\fi

If \expandaction does not have the meaning \noexpand then the \else part of
the macro code is performed. The \csname fragilecommand!\endcsname expands to
\fragilecomand! and this text occurs in auxiliary file. If this file is included in next
TEX run then the \fragilecomand runs and this command prints the message with the
hint mentioned above.

If the user follows the hint then the \expandaction has the meaning of \noexpand
when the \shipout is active (it means during the no-immediate \write parameter
expansion). The \macro expands to \macro and this text is stored in auxiliary file.

The \shipout is not re-defined in OFS by default—only a suggestion is printed if
fragile command in the \write parameter occurs. The reason is that a plainTEX user
may have his/her own redefinitions of \output routine or \shipout primitive thus OFS
for plain does not do any redefinitions at this level itself. Unlike LaTEX users the plain
user needs exactly to know how his macros work.

The code above illustrate the definition of an abstract macro \macro. The sim-
ilar code is used for the following actual macros in OFS: \setfonts (section 2.2),
\setmath (section 2.7), \(fontswitches) declared by \fontdef macro (section 2.3),
\setextrafont, \printcharacter, \printaccent (section 3.4), \accentabove and
\accentbelow (section 3.6). If you use the hint above then these macros become “ro-
bust” in LaTEX sense of this word.

Declaration files

LATEX: The declaration files for OFS are common LaTgX style files which includes
mapping from long family names to NFSS family names of one or more font families.
These NFSS families are declared in common fd files. Use NFSS documentation to
create fd files. You can use the following commands in the OFS declaration files:

e \OFSprocessoptions: This macro is undefined by default but it has the meaning
\relax during ofs. sty file is scanned and its options are included. You can test by
\ifx the value of this control sequence in order to skip the \RequirePackage{ofs}.

11

\OFSextraencoding

\OFSputfamlist

\OFSdeclarefamily

\OFSnormalvariants

\protectreading

\ofsputfamlist

\ofsdeclarefamily

\loadtextfam

\newvariant

\modifyenc

\fosize

\fotenc

\OFSextraencoding {(extra encoding)}: The macro stores the (extra encoding)
into memory and does \input {(extra encoding)ini.def}. We assume that the cor-
responding definitions for (extra encoding) are included in this file. See selini.def.
This file includes the declarations for extra encoding SE1 for fonts by Storm Type
Foundry. If the (extra encoding)ini.def file was included already it is not included
again. Attention: use uppercase letters for (eztra encoding) parameter but use
lowercase letters in filename.

\OFSputfamlist {(text)}: The macro adds the (text) into the list of family names.
This list is printed by \showfonts command or if unknown family is used in
\setfonts.

\OFSdeclarefamily [(FamName)]l {(NFSS-name)} This macro does an actual
mapping from (FamName) (long family name) to the (NFSS-name) (short NFSS
family name). Moreover, it stores the line about this family name to the list of
family names which is printed by \showfonts command.

\OFSnormalvariants: This macro stores the list of standard switches \rm, \bf,
\it, \bi into the list of family names which is printed by \showfonts command.

PLAINTEX (to the end of this section): The declaration files have the extension tex and we

assume that there is a locking code in them so that the file will not be read twice. If the
ofs.tex is not included already then it have to be included at the begin of declaration

file.

You have to define the mapping from long family names to tfm names in the decla-

ration files. You can use the following commands:

\protectreading (filename)(space) — the flag about the (file) reading is saved
in the memory. If the command is run with the same parameter once more, the
\endinput is executed. It means that next declarations are protected against the
multiple reading.

\ofsputfamlist {(tezt)}: The macro adds the (tezt) into the list of family names.
This list is printed by \showfonts command or if unknown family is used in
\setfonts.

\ofsdeclarefamily [(FamName)]l {(commands)}: This macro declares the new
font family with the name (FamName). The (FamName) is stored into the list of
family names which is printed by \showfonts command. If this family is used by
\setfonts then the (commands) are performed. We assume that the (commands)
include \loadtextfam command and (zero or more) \newvariant commands.
\loadtextfam: This macro loads four fonts with given metrics. See below for the
syntax and the detail explanation of this command.

\newvariant(digit) \(switch) ({Variant)) (space) (metric);(extra-enc);: This
macro sets the “nonstandard” variant for given font family. See below for the detail
explanation of this command.

\modifyenc (encoding): (identifier); — the exceptions are added with respect to
the basic encoding, see section 3.5.

\fosize: The information about the actual font size of the last selected font family
is stored in this macro. The value of this macro can be in one of the two forms:
at(dimen) or scaled(number). This depends on the form of (size) parameter given
in \setfonts command.

\fotenc: The actual encoding is stored in this macro. The common values are: 8z
for encoding by CS-fonts (by ISO-8859-2) or 8t for encoding by Cork. The part
of tfm name (where encoding is specified) is recommended for values of \fotenc

12

\extraenc

\defaultextraenc

\setfontshook

\registertfm

\registerenc

\loadtextfam

macro. If \fotenc is undefined at the time of OFS is initializing, the OFS makes
\def\fotenc{8z} else the \fotenc is unchanged.

e \extranec — macro, that stores the information about the extra encoding. This
information is copied from the parameter (extra-enc), that is located in the
\laodatextfam command.

e \defaultextraenc — if you redefine this macro, the extra encoding of the basic
families and the families from a35.tex can be changed. The default value of this
macro is 8c.

e \setfontshook: This macro is called from \setfonts macro before (commands)
from \ofsdeclarefamily are performed.

e \registertfm (symbolic name) (from)-(to) (real metric): You can declare differ-
ent tfm names for different font sizes. See section 3.7 for more details.

e \registerenc (FamilyName): (encoding) (space) — enables the limitation of us-
age the font families only for certain encodings. See section 3.9.

The \loadtextfam command used in declaration files has the following syntax:

\loadtextfam ((Variant-rm)) (space) (metric-rm);%
((Variant-bf)) (space) (metric-bf);%
((Variant-it)) (space) (metric-it);%
((Variant-bi)) (space) (metric-bi); (extra-enc) ;%

The percent characters at the ends of lines here mean that no spaces are allowed after
semicolons. You can save the long name of the used variant by ((Variant-..)) pa-
rameter. This name us used only when the OFS is traced by \logfontmessages or
others commands. The parameters “((Variant-..)) (space)” are optional. If this pa-
rameter is omitted then default value is stored: rm: (), bf: (Bold), it: (Italic),
bi: (BoldItalic).

The parameters (metric-..) are the names of the tfm files for the appropriate variants.
The \loadtextfam does roughly the following work:

\font\tenrm=(metric-rm) \fosize
\font\tenbf=(metric-bf) \fosize
\font\tenit=(metric-it) \fosize
\font\tenbi=(metric-bi) \fosize

We assume that all (metric-..) parameters are written with the \fotenc macro in order
to make the switching to others encodings possible.

The (extra-enc) parameter is the name of the extra encoding. If this parameter is
non-empty then the \loadtextfam command redefines temporally the \fotenc macro:
\def\fotenc{(extra-enc)} and it expands all parameters (metric-rm), (metric-bf),
(metric-it) and (metric-bi) again. The results of these expansions are stored into mem-
ory. They are the “extra metrics” connected to the “basic metrics”. If the (extra-enc)
parameter is empty then there are no “extra metrics” connected to “basic metrics”.
One can use a macro which can need the access to the extra metric concerned to the
basic metric of the current font. The macro for \euro character is the good example of
these needs.

Some (metric-..) (except of (metric-rm)) can be omitted. When the (metric-XX) is
empty then the \loadtextfam command does roughly the following work:

\def\tenXX{\message{WARNING: the needed font variant is missings}}

13

\setfonts
\tenrm \tenbf \tenit
\tenbi

\currentvariant

\loadingenc

\newvariant

It means that if the user needs the omitted variant then the message is printed to the
log file and to the terminal and no font change is done.

The \setfonts command does not change the meaning of the macros \rm, \bf,
\it and \bi. It only changes the font switches \tenrm, \tenbf, \tenit, and \tenbi
respectively. The first three font switches are known in plain and the last one is in-
troduced in OFS. The macros \rm, \bf, \it and \bi store the information about last
selected variant into control sequence \currentvariant. This information has the
form of the letter M (for \rm), F (for \bf), T (for \it) and I (for \bi). It is stored by
\let\currentvariant=(letter) because this code is not expanded. Thus we need not
to implement a special “robust” code to the macros for variant switches.

Note that the \loadtextfam command sets the font switches \tenrm, \tenbf,
\tenit and \tenbi to the fonts of arbitrary size given by the contents of the \fosize
macro. The word “ten” in names of font switches is used only for the historical reasons
and it does not mean that the font is loaded at 10 pt size.

You can object that the repetitive calls of \setfonts runs the font loading on the
four fonts in given font family again and again. This can be time consuming operation.
But you are not right. TEX stores the font information from font loading in its internal
memory and if the \font primitive is applied again to the same font then TEX uses the
information stored before and it needs not to load the font again.

If \loadingenc>0 the command \loadtextfam reads the file of s-\fotenc.tex be-
fore fonts loading. If the parameter (extra-enc) is non-empty, it loads moreover the file
ofs-(extra-enc).tex. These files are read only once. Empty lines and ends of lines are
ignored during reading. Reading is performed inside the group. The character categories
are locally set in accordance to plainTEX (and \catcode‘@=11). The \globaldefs=1 is
set. It means, that all macros and values from the file ofs-(encoding) . tex are defined
globally. That does not matter, because newly loaded encoding files do not conflict
with the previous ones (see the commands \characterdef and \accentdef in sec-
tion 3.4). It does not matter at all, if there are loaded more files, than is necessary
at a given instant. It is not wise to read the encoding file repeatedly, when the com-
mand {...\setfonts...} is executed. This is the reason of the global definition. If
the user dislikes the global predefined macros (he/she wants to add the article into the
proceedings, where such a predefined macros can collide with other articles), he lets
the \loadingenc=0. In this case, the declaration files have to be loaded manually by
\input command at the beginning of the article.

You can declare a nonstandard variant in (commands) of the \ofsdeclarefamily
by the \newvariant command. The \newvariant command does roughly the following:

\font\ten(switch)=(metric) \fosize
\def \(switch) {\let\currentvariant=(digit) \ten(switch)}

Moreover the \newvariant stores the “extended metric” connected to the “basic metric”
if the (extra-enc) is not empty.

If the OFS needs to return to the last “nonstandard variant” then it does it by the
value of the \currentvariant. If the new family has the “nonstandard variant” with
the same (digit) as a previous family then this variant is used and OFS does not switch
to the \rm variant. You can declare the variants of various families but the similar
“type” with the same (digit). There are only ten digits thus we can distinguish only
ten different “types” of “nonstandard variants”.

The macro \setfonts can change the meaning of the macros \loadtextfam and
\newvariant if the —(variant) is specified in (FamName) parameter of \setfonts. It is

14

\setfonts

\currentfamily

\runmodifylist

3.4.

\setextrafont

\extrafont

\extchar

\characterdef

sufficient to load only one font in such case but not the whole family. If the “~(variant)”
is “standard” then \newvariant is redefined so that it do nothing and \loadtextfam
is redefined in order to load only one font of the variant specified. If the —(variant) is
is “nonstandard” then \loadtextfam do nothing and \newvariant loads the font only
if it loads the variant specified.

We describe the operations of \setfonts [(FamName)/(size)] command here in
detail. This command calculates and defines the \fosize macro by the (size) parameter.
If the (FamName) is not empty and the —(variant) is not given then \setfonts performs
\def\currentfamily{(FamName)}. On the other hand, if the (FamName) is empty
then the \currentfamily is used for restoring the family name. If the -(variant)
is given then \setfonts redefines the \loadtextfam and \newvariant macros at the
temporary time. This behavior is described in previous paragraph. Then the \setfonts
runs \setfontshook and (commands) specified as a parameter of \ofsdeclarefamily
of the appropriate (FamName). It also runs macro \runmodifylist, that at certain
circumstances sets the exceptions from the chosen encodings (see section 3.5). Finally
the \setfonts runs \ignorespaces at the end of its run in order to ignoring the possibly
forgotten space after “]7.

The font encoding and the character declaration

PLAINTEX: You can use the macro \setextrafont to switch to the extra metric of
the current font. If the extra metric connected to the metric of current font is stored
in TEX memory (by \loadtexfam or \newvariant command) then \setextrafont do
roughly the following work:

\font\extrafont=(extra metric connected to the current metric) \extrafont

LATEX: You can use the macro \setextrafont to switch to the extra encod-
ing declared by \OFSextraencoding command. If this encoding is declared then
\setextrafont do roughly the following work:

\fontencoding{(extra encoding)}\selectfont

PLAINTEX+LATEX: If you need to print the character from extra metric/encoding from
slot of (number) position then you can use the macro \extchar (number).

PLAINTEX (to the end of this section): You can use the commands \characterdef and
\accentdef to declare the macros which depend on font encoding. See the ofs-8t.tex
and ofs-8z.tex for a good illustration.

The \characterdef has the following syntax:

\characterdef \(sequence) (encoding) (space) (number)

% example:

\characterdef \promile 8z 141

% or

\characterdef \(sequence) (encoding) (space) {(commands)}

% example:

\characterdef \promile 8t {\/\char24 }

\characterdef \promile * {\vrule heightlex widthlex\relax}
% in another encodings

If the current encoding is the same as (encoding) then \(sequence) will expand to the
token of category 12 with the code (number) or it expands to the (commands). All work

15

\printcharacter

\printcharacterwarn

is done at expand processor level when \(sequence) is used. You can declare the same
\(sequence) for more encodings, see the \promile declarations in previous examples:

\def\fotenc{8z} \promile % expands to the token with the code 141
\def\fotenc{8t} \promile % expands to the commands \\char24

Moreover you can simply declare the access to the extra encoding:

\characterdef \euro 8z 134
\characterdef \euro 6s 37

\def\fotenc{8z} \euro % expands to the token of the code 134
\def\fotenc{8t} \euro % expands to: {\setextrafont (token with 37 code)}

The second example is working only if the extra metric connected to the current
metric exists (see \loadtextfam and \newvariant commands) and the extra metric
has the 6s encoding. If this is not valid then the \euro prints the warning about
inaccessibility of the \euro character to the terminal and to the log file.

Now, we explain the behavior of the \characterdefed macros in more details. The
\characterdef command defines the \(sequence) as \printcharacter{(sequence)},
it means that \promile expands to \printcharacter{promile} and \euro to
\printcharacter{euro} in our examples. If you use the \characterdef twice to
the same \(sequence) then it does not matter because the definition is still the
same. Moreover, \characterdef defines the special macro \(sequence):-(encoding)
in order to this macro expands to the token of given (number) code or to the given
(commands). The more work is done by the \printcharacter macro. This macro
checks if the \(sequence):-\fotenc is defined. If it is true then \printcharacter
expands to the contents of this macro. Else \printcharacter checks if the extra
metric is connected to the current font. If it is true then \printcharacter checks if
the \(sequence): -(extra-enc) is defined where (extra-enc) is the encoding of the extra
metric. If it is true then \printcharacter expands to

{\setextrafont \(sequence):-{extra-enc)}

If all attempts fail then the \printcharacter try to print the default character inde-
pendent on encoding. It means, the \printcharacter checks if the \(sequence):—* is
defined and if true, it expands to this macro.

If this is false then the \printcharacterwarn{(sekvence)} is run. The implicit value
of this macro prints out a warning, that the character (sequence) is not available. It is
printed on the terminal and into the log file. No character is printed to dvi output.

If we want to omit the warning printing, we can redefine the \printcharacterwarn
for example by following way:

\def\printcharacterwarn #1{7(#1)7}

The \characterdef does not redefine the defined control sequences since the version
OFS Mar. 2004. It defines only sequences, that have the meaning \undefined or
\relax. Otherwise (and also if the sequence is not defined by previous \characterdef)
it prints the warning, that the definition is ignored. The reason is that the encoding files
declares by \characterdef command enormous amount of new control sequences. But
the programmer have not to know all of them. It is possible, that he/she uses the same
name for his/her own macro. In this case, the \characterdef keeps the macro defined
by the programmer and lets the appropriate character unaccessible. You have to write

16

\safelet

\safeletwarn

\accentdef

\printaccent

\printaccentwarn

\let\(sequence)=\relax befor of the \characterdef command if it is really necessary
to redefine some control sequences (this procedure is needed for macros dependent on
the encoding and defined in plainTEX).

The macro \safelet has been added into OFS for the same reasons. It acts similar
to \let, but resists to redefine the predefined control sequences. The warning is printed
by \safeletwarn macro instead of redefinition.

You can use \accentdef command to declaration of the accent macros \’, \v, etc.
depend on encoding. This command has the following syntax:

\accentdef \(sequence) (char) (optional space) (encoding) (space) (number)

% example:

\accentdef \v E 8z 204 % Ecaron
\accentdef \v e 8z 233 % ecaron
% or

\accentdef \(sequence) (char) (optional space) (encoding) (space) {(commands)}
% example:

\accentdef \v * 8z {\accent20 } Y default caron in 8z

\accentdef \v * * {\blackbox } % default caron

If the current encoding is the same as (encoding) then \(sequence) followed by (char)
expands to the token of category 12 with the code (number) or to the (commands). This
work is done at expand processor level. If the declared (char) is * then the \(sequence)
expands to the token of given (number) code or to the given (commands) in the case of
the actual (char) does not match with all declared (chars).

The possibility of the use of the extra metric is the same in \accentdef-ed macros
as in the \characterdef-ed macros.

Now, we explain the functionality of the \accentdef-ed macros in more details.
The \accentdef command defines the \(sequence) as a macro with one non sepa-
rated parameter #1 which expands to the \printaccent{(sequence)}{#1}. For ex-
ample, \v E expands to \printaccent{v}{E}. Moreover, \accentdef defines the
macro \(sequence):(char):-(encoding) in order to this macro expands to the token
of given (number) code or to the given (commands). The more work is done by the
\printaccent macro. This command checks if the \(sequence):(char):-\fotenc is
defined. If it is true then \printaccent expands to the contents of this macro. Else
the \printaccent checks if the extra metric is connected to the current font. If it is
true and if this extra metric has (extra-enc) encoding then \printaccent checks if the
\(sequence): (char):-(extra-enc) is defined. If it is true then \printaccent expands to
{\setextrafont \(sequence):(char):-(extra-enc)}. Else \printaccent checks if the
macros \(sequence):*:-\fotenc and \(sequence) : *:-(extra-enc) are defined in this or-
der. If the first one is defined then \printaccent expands to this macro and appends
the (char). If only the second one is defined then \printaccent expands to:

{\setextrafont \(sequence):*:-(extra-enc) (normalfont) (char)}

where (normalfont) is the font switch to the current font at the start of \printaccent
macro. If all attempts fail so far then \printaccent try to use the macros
\(sequence): (char):-* or \(sequence):*:=* (char) in this order. If all the previ-
ous commands fail, the \printaccentwarn{(sequence)}{(character)} is run. The
default value of this macro prints out on the terminal and into the log file the warning
about the unaccessibility of the accented character and no character is printed on dvi
output.

17

\characterdel

\accentdel

3.5.

\loadingenc

\modifydef

\modifyenc

\newmodifylist

Note that the character from extra metric inside the word breaks the kerning around
this character and breaks the possibility of hyphenation of this word. It is extremely
recommended that a basic metric encodes all alphabet used in current language in order
to minimize switching to extra metric. For example, the 8t and 8z encodings are good
choice as basic metric for Czech and Slovak languages.

If we want to take out predeclared character (see so called (exceptions) in the
next section), we can use the commands\characterdel and \accentdel. These com-
mands have to have the same parameters like \characterdef and \accentdef re-
spectively and they take out the command definition \(sequence):-(encoding) and
\(sequence): (char):-{encoding) respectively.

PLAINTEX: Macro files dependent on the encoding and encoding exceptions

Commands \characterdef and \accentdef described in the previous section rede-
fines macros dependent on the encoding (\v, \ae, etc.). In this section, we are going to
describe the conception of placement these macros.

Macros declarations by means of \characterdef and \accentdef have to be writ-
ten into the files called ofs-(encoding).tex (so called encoding files). The command
\loadtextfam (called from the \setfonts macro) reads these declarations from these
files while \loadingenc=1 is set.

Every encoding contains its own basic set of characters and accented types. This
set is registered in the encoding file by the \characterdef and \accentdef commands.
Particular font families can contain some additional characters or some characters can
be missing in reference to that basic set. These exceptions are declared by means of the
command \modifydef:

\modifydef (encoding):(identifier); {({exceptions)}

The (exceptions) contain the commands \characterdef, \accentdef, \characterdel
and \accentdel. The *del commands have to contain the the same value of the
character in the argument as in basic encoding set. If any character has to be redefined,
the commands *del and *def corresponding to this character must be written one
after another.

The command \modifyenc used in the pearameter of the \ofsdeclarefamily macro
is a “link to (exceptions)”. You can mark by \modifyenc command that the family
contains (exceptions) with respect to the basic encoding set. The command has following
notation:

\modifyenc (encoding): (identifier) ;%

You can list more of one command for every font family (these commands can contain
different (encoding) as well). Nothing is done, if this command links to (ezceptions),
that were not yet declared.

An example of the exceptions declaration 8z:csfonts can be found in the file
ofs-8z.tex and links to them are used in families CM* in the file ofsdef . tex.

Commands \modifyenc are run at each \setfonts. As the matter of fact these
commands only stores their parameters into so called “list of links” (to the macro
\newmodifylist). At each start of the \setfonts, the new list of links is created.
The \modifyenc command stores its parameter into this list only if (encoding) is
equal to \fotenc or \extraenc. The exception handling provides the command

18

\runmodifylist
\modifylist

\skipfirststep

\lccodes

\1lccodesloop

\modifyread

\runmodifylist that is run on the end of the \setfonts command. Its activity is an
object of the next paragraphs.

The macro \runmodifylist compares the “list of links” of the previous family
(\modifylist) with the “list of links” of the newly set family (\newmodifylist). The
\runmodifylist finishes its activity, if both lists are the same or \modifylist has
the meaning \relax. Otherwise, the setting of exceptions is run: At first, meanings
of \characterdef«s\characterdel and \accentdef«>\accentdel are exchanged and
\modifylist is run. In other words, the macros dependent on the encoding are re-
turned to the initial state (without exceptions). During this activity, the deleting of
the character is ignored, if the character was declared immediatelly before (see the rule
about character redefinition above). Next, the command \runmodifylist returns the
\characterdef and \accentdef into the initial state and run \newmodifylist. All
the redefinitions, that takes place during this activity, are just local. The mechanism of
two lists ensures, that for example:

\setfonts [Familyl/] ... \setfonts [Family2/]

the exceptions of the actual encoding will be correctly set even for the Family2, even-
though the Familyl has another set of exceptions than Family?2.

The control sequence \modifylist has the meaning of the empty macro after the
OFS startup. The macro programmer can set \let\modifylist=\relax to override ev-
ery set of exceptions. Note, that declaration commands \modifydef store (exceptions)
into the memory and execute them in order to define all declared sequences correspond-
ing to \printcharacter and \printaccent respectively. It means, that every control
sequence from all exceptions is defined (the message undefined control sequence is
not displayed). Moreover OFS has perfect view whether the control sequence is avail-
able or not in the actual family. The macro programmer can then redefine macros
\print*warn.

The command \modifydef slightly changes commands \accentdef, \accentdel,
etc. for a temporary time and then it executes the (exceptions). The control sequence
\skipfirststep forbids the execution of the macros in the (exceptions) during the
activity of \modifydef. It acts just like \relax, but during the execution of the
(exceptions) by means of \modifydef the whole part of (exceptions) behind this se-
quence is omited.

Identifiers (encoding):1lccodes and (encoding):ienc are reserved for usage in the
macros out of OFS. OFS does not consider the setting of the characters \lccode,
\uccode. A macro package taking care of these values can properly define commands
\lccodes and \lccodesloop and runs \csname (encoding):lccodes\endcsname.
These above mentioned commands are not defined in OFS at all. The declarations
(encoding) :1ccodes are loceted in the files ofs-8t.tex and ofs-8z.tex, eventhough
they are not used in OFS. It bears upon the text fonts encoding. An example of
(encoding) :1ccodes usage is placed in the macro called lang.tex. Macro inec.tex
uses (encoding):ienc. More informations can be found in the appropriate documenta-
tion.

The declarations of the most commonly used exceptions are written directly into
the encoding files. The declarations of the less usual exceptions (related only to some
font families) can be written behind \endinput of the declaration files. You can use a
command \modifyread in (commands) of \ofsdeclarefamily:

\modifyread (filename);%

19

\modifytext

\knownchar

3.6.

\accentabove

\accentbelow

\ofshexbox

\ofshexboxdef

This command reads the file from the first apperance of the sequence \modifytext, but
only if the \loadingenc is positive. It is suitable to place the \modifytext sequence
behind \endinput, so the \modifyread command reads only that part of the file, which
has not been read before. Assigning is global during the reading, the empty lines and
ends of lines are omited. The file is not loaded repeatedly.

This command gives you chance to concentrate the font families declarations and
encoding exceptions declarations into the single file. TEX reads the exceptions in the
time it needs them, so the TEX memory is spared. An example is placed in the file
slido.tex.

OFS offers testing macro as well, whether the control sequence corresponds to the
character, that is available in the font or not:

\knownchar (character or accent+character)? \iftrue character is available
\else character is unavailable or undefined \fi

% example:

\def\tryeuro{\knownchar \euro? \iftrue \euro \else Euro\fi}

The auxiliary macros for accents and characters

You can declare the default accents in OFS not only by the \accent primitive but
by the macros \accentabove and \accentbelow too. The syntax follows:

\accentabove {(accent char)}{{vertical skip)}{(base char)}
\accentbelow {(accent char)}{(vertical skip)}{(base char)}

The \accentabove command put the (accent char) above the (base char) with the
(vertical skip) between them. The \accentbelow command does the same work, but
put the (accent char) below the (base char). In both cases characters are placed on the
joint vertical axis and if the font is slanted then this axis is slanted too. The width of
the resulting character is derived from the width of the (base char) only. The macros
are implemented by the \vbox, \vtop and \halign primitives with the calculation of
the (possibly) slanted axis.

The accented characters for accent above are commonly designed in the height 1ex
for most fonts. It means, that placing such character by \accentabove command needs
the -1ex compensation:

\accentabove {(accent char)}{-1ex}{(base char)}

In such case, the \accentabove has the same behavior as the \accent primitive.
The difference is that you can compose more than one accent by \accentabove and
\accentbelow macros. You can try:

\it \accentabove {.}{.1lex}{\accentabove {,}{.1ex}{\v A}}

PLAINTEX: Unfortunately, the declaration macro \accentdef is not able to declare
a macros which construct more than two accents. Moreover, the first accent has to
be to join to the (base char) as one compact character in the font. If you needs more
accents then you can use the macros \accentabove and \accentbelow directly in the
document.

PLAINTEX: Since the version OFS Feb. 2004, the macro \ofshexbox is available.
It acts very similar to the plain one \mathhexbox, furthermore it can set the font in
accordance to actual version. You can declare the family of four metrics by means of
the command \ofshexboxdef:

20

3.7.

\setmath
\textfosize
\scriptfosize
\scriptscriptfosize

\mathfonts

\mathchars

\loadmathfam

\ofshexboxdef (family){(metrics-rm)}I{(metrics-bf) (metrics-it)}H(metrics-bi)}
% example:
\ofshexboxdef 2 {cmsy}t{cmbsyl0}{cmsy}{cmbsyl10} % an examle

The command \ofshexbox (family)(heza-code) prints out the requested character. Its
font is one of four declared ones and its size is defined by the command \fosize. The
font choice depends on the actual version. If the version is different than \bf, \it, \bi,
the (metrics-rm) is used.

OFS declares only (family) = 2 by default, because plain uses only \mathhexbox2. ..
The purpose of this macro was to define characters \S, \dag, \ddag, \P for CM-
fonts/CSfonts. The way of the definition has to be independent on actual setting of
mathematical fonts, but dependent on actual size and version. See the file ofs-8z.tex.

We can easily define the \euro symbol by means of \ofshexbox for every font
encoding, where it is unavailable:

\ofshexboxdef {TS1}{tcrm1000}{tcbx1000}{tcti1000}{tcbi1000}
\characterdef \euro * {\ofshexbox{TS1}BF}

pLAINTEX: The fonts in mathematics (the second apperance)

The user interface to the math fonts was described in section 2.7. Now, it is the
time to describe the principles of math fonts in detail.

The \setmath command calculates the text, index and indexindex sizes from its
parameters. The results are stored into macros \textfosize, \scriptfosize and
\scriptscriptfosize. The values are in the form at(dimen) or scaled(number)
depending on the format of the parameters. Then the \setmath runs the macro
\mathfonts. You can define the math fonts loading here but some conventions are
recommended, see below. If the macro \setmath is run for the first time or the value
\fomenc has been changed, then the \setmath runs the macro \mathchars. You can
define the math encoding by the \matchcode, \mathchardef etc. primitives here but
some conventions are recommended, see below. The OFS serves the default values of
the \mathfonts and \mathchars macros, see below.

You can load a whole math family (text, index and indexindex size of one font) in
\mathfonts macro by the \loadmathfam command. This command has the following
syntax possibilities:

hte % font is declared by::
\loadmathfam (family)[/(metrics)] % metrics

\loadmathfam (family)[-(version)/] % actual family version
\loadmathfam (family) [(switch)/] % textual font switch
\loadmathfam (family)[X(switch)/] 7, extending switch metrics
Examples:

\loadmathfam O[tenrm/] % metrics is in accordance to the switch \tenrm

\loadmathfam 5[-bi/] % actual text family metrics, version bi
\newmathfam \symbfam
\loadmathfam \symbfam [/psyr] % psyr metrics

\newmathfam \extitfam
\loadmathfam \extitfam [Xtenit/] J extending metrics for tenit switch

This example shows, that the textual font with the \tenrm font switch is used for math
family 0. In the family 5, fonts are initiated just like in the case of \setfonts [-bi/].

21

\newmathfam

\lastfam

\noindexsize

\loadCMnormalmath
\loadCMboldmath
\loadPSnormalmath
\loadPSboldmath
\setCMmathchars
\setPSmathchars

A new family \symbfam is declared as well. Fonts of the metric psyr are initiated into
it.

There exist a slight difference between usage of \loadmathfam 5[tenbi/] and
\loadmathfam 5[-bi/] command. In the first case, OFS finds out a metrics of the
\tenbi switch and the same metrics is then used for all font sizes. The only modifica-
tion is done by the key word at(dimen). The other case means, that different sizes can
use different metrics, but only if such a font ability is declared (see section 3.8).

The new family was in the example declared by means of the \newmathfam. It is an
alternative commnd to \newfam. The reason for such a solution is evident. The plain
macro \newfam is defined as \outer one. It means that it is not possible to use it inside
any definition. Moreover the macro \newmathfam is local, so it spares some place for user
families, than plain one \newfam. New mathematical families are in the basic mathe-
matical encodings defided exactly by \chardef. The command \lastfam=(number) sets
the maximal used value. Such a structure guarantees, that user can use \newmathfam
later on and the new family numbers are alocated with numbers greater than \lastfam.

Lets check out the the principle of the \loadmathfam macro activity. This macro
finds out a metrics, that corresponds to a given parameter. Next, the primitive \font
is executed three times:

\font \(name)-Mt = (metric) \textfosize

\font \(name)-Ms = (metric) \scriptfosize

\font \(name)-Mss = (metric) \scriptscriptfosize
\textfont (math fam) = \(name)-Mt

\scriptfont (math fam) = \(name)-Ms
\scriptscriptfont (math fam) = \(name)-Mss

Nevertheless (name) is the text of the parameter \loadmathfam, that declares metrics
(switch, version or metrics).

The (name) is generated as name of the (fontswitch) or the name of the (metric) if
only the (metric) is given as parameter of the \loadmathfam.

The fonts of math family 3 are loaded without of the size changes of index and
indexindex fonts in plainTEX. If you need this feature then you can use the prefix
\noindexsize before \loadmathfam. The macro \loadmathfam loads all three fonts at
the same \textfosize size. Example:

\noindexsize\loadmathfam 3[tenex/]’ Standard extra symbols from CM

OFS defines four different macros for math font loading. Look at ofsdef.tex file
for these definitions. Which of these four macros is used depends on the contents of
macros \fomenc and \mathversion We assume two possibilities of \fomenc: CM or PS
and two possibilities of \mathversion: normal and bold. OFS defines two macros with
mathcodes. Which macro is used depends on the contents of the macro \fomenc. The
list of these macros follows:

\loadCMnormalmath — loads CM fonts in “normal” version.

\loadCMboldmath — loads CM fonts in “bold” version.

\loadPSnormalmath — loads PostScript fonts in “normal” version.
\loadPSboldmath — loads PostScript fonts in “bold” version.

\setCMmathchars — keeps the mathcodes from plain.

\setPSmathchars — sets the mathcodes in order to some characters are used from
Symbol font.

22

\defaultmathfonts
\defaultmathchars

\mathencread

\mathencdef

\mathcharsback

OFS sets the following defaults in the ofsdef . tex file:

\ifx \fomenc\undefined \def\fomenc{PS}\fi

\def\mathversion{normal}

\def\defaultmathfonts{\csname load\fomenc\mathversion math\endcsname}
\def\defaultmathchars{\csname set\fomenc mathchars\endcsname}
\def\mathfonts{\defaultmathfonts}

\def\mathchars{\defaultmathchars}

It is possible to add the another math families to the list of loaded math families in
\loadmath and \mathchars macros. You can do it, for example, by the following code:
The example how to add the Euler fraktur from AMS follows:

\input amsfn % here are declared metrics eufm and eufb
\addcmd\mathfonts{\def\tmpa{bold}’
\ifx\mathversion\tmpa \def\tmpa{b}\else\def\tmpa{b}\fi
\newmathfam\frakfam \loadmathfam\frakfam [/euf\tmpal}
\def\frak#1{{\fam\frakfam#1}}

Another examples of mathematical families declaration are located in files amsfn.tex,
txfn.tex and mtfn.tex. These files define the implicit groups of the mathematical
fonts for AMS, TX, PX, MT encodings. Finally they also contain comments (including
examples), how to load additional font families by means of the command \addcmd.

I would like to load all OF'S font declarations in the iniTEX (see the OKTEX project),
but I want to spare the TEX memory as much as possible too. So I suggest not to load
the large definitions containing declarations of mathematical fonts encodings by means
of \mathchardef, etc. immediately, but during the first use in the document. So the
OFS version Apr. 2004 contains redefined macro \setPSmathchars:

\def\setPSmathchars{\mathencread ofs-ps;}

The command \mathencread (file); loads the encoding commands included in the
file (file.tex). The file ofs-ps.tex contains encoding commands for PS encoding,
ofs-ams.tex contains encoding commands for AMS encoding, etc.

The files ofs-ps.tex, ofs-tx.tex etc. contain encoding commands “packed” into
groups and defined by the \mathencdef command. By default, this command acts this
way: “define, run and forget”. Such a model spares the memory, but a disadvantage
of its procedure is, that during repeated changes, encoding files are read over and over
again. Mostly it does not matter at all, because the mathematical encoding is the same
for the whole document. If this model is for somebody not suitable, the solution can
be found in the macros \mathencread and \mathencdef. They can be redefined by
the way, that the files are read only once and during new execution of \mathchars,
encoding commands are read out of remembered macros.

The command \mathencread (file); works in group. The catcodes are set in ac-
cordance to plainTEX (\catcode‘@=11 excluded) and the (file).tex is read. The
\globaldefs=1 are during the reading, the empty lines and ends of lines are ignored.
The commands \mathencdef run and forget defined macros after group enclosure. It
means, that these macros run the \mathchardef commands in the sense of local settings.

Let us explain an ensurance of restoring the delault values during switching between
mathematical encodings. The command \setmath runs the macro \mathcharsback in
a time instant before \mathchars. It serves the restoring of the mathematical encoding
to the default state in accordance to plainTEX. This macro is set to \relax by default,

23

\hex

\safemathchardef

\safemathaccentdef

\mathaccentdef

\pickmathfont

because the mathematical encoding is set in accordance to plainTEX. If the command
\set(fomenc)mathchars changes the values preset in the plainTEX, it should also define
the \mathcharsback macro. A procedure of setting the values into the initial state
have to be stored in it. A command \mathencread ofs-cm; can be used in the macro
\mathcharsback, because the file of s-cm.tex contains declarations of the mathematical
encoding in accordance to plainTEX.

If we insist on declaring our own mathematical encodings (different from preprepared
PS, CM, AMS etc.), the next principle has to be fullfiled: in all versions of mathematical
fonts (normal/bold/etc.) should be set the numbers of the mathematical families by
the same way and ended by the same \lastfam. Such a principle is necessary, be-
cause after the version switching, the macro \mathchars is not run again. It is not
recomended to change especially the family numbers, that are linked with the macro
\set(encoding)mathchars.

Let us now descibe another macros, that helps us with the mathematical encoding
declaration. Macro \hex converts a number to a singledigit hexadeximal number. The
usage of such a macro can be found in the files ofs-ps.tex, ofs-tx.tex, etc.

You can define the control sequences which are working in both: text mode and math
mode. You can use the \safemathchardef macro instead \mathchardef primitive in
\mathchars macro for this purpose:

\safemathchardef \(sequence) (number)

If the \(sequence) is not defined then \safemathchardef does the same work as
\mathchardef primitive. If the \(sequence) is defined (we assume that this defini-
tion is used in text mode) then \safemathchardef saves the meaning of \(sequence)
in \T(sequence), it performs \mathchardef \M(sequence) = (number) and it defines
\(sequence) by the following way:

\def \(sequence) {\ifmmode \expandafter \M(sequence)
\else \expandafter \T(sequence) \fi}

Now, the \(sequence) works in both: text and math mode. If the \safemathchardef
is applied on the same \(sequence) repetitively, then the second and another use of
\safemathchardef does nothing.

We assume that all declarations of characters in text mode are performed before the
first use of \setmath and that the \safemathchardef macros are used in \mathchars
macro.

The \safemathaccentdef performs similar as \safemathchardef. Only the
\mathaccentdef macro is used instead \mathchardef primitive. This macro does
roughly the following:

\def \(sequence) {\mathaccent(number) }

If you do not want to declare the whole new math family for only one character or a
few characters (the number of math families is restricted to 16 for one formula in TEX)
then you can use the \pickmathfont macro. This macro has the following syntax:

\pickmathfont {(metric)}{(text)}
% example:
\mathbin {\pickmathfont {psybo}{\char"C4}}

The \pickmathfont command uses the \font primitive with the given (metric) and it
prints the (text) in this font. The result is an atom of type Ord in the math list. The

24

3.8.

\registertfm

\registerECfont

\registerECTTfont

3.9.

\registerenc

appropriate size is set (text/index/indexindex) because the \mathchoice primitive is
used by \pickmathfont macro and the \font is loaded three times for each size.

The different metrics for different sizes of font

LATEX: This problem is solved in NFSS, see the syntax of the fd files in NFSS
documentation. OFS for LaTEX does no more things.

PLAINTEX (to the end of this section): There exist special font families (Computer Modern,
for instance) where the different metrics are used for the different font sizes. This feature
is implemented in OFS too. The (metric) parameter of the commands \loadtextfam,
\loadmathfam and \pickmathfont can be only the (symbolic name) and not the name
of tfm file exactly. In such case, the (real metric) is calculated from the font size and
from the data stored by a set of \registertfm commands. The \registertfm has a
following syntax:

\registertfm (symbolic name) (space) (from)-(to) (space) (real metric) (space)

The (from) and (to) parameters have to include the unit and they declares the
interval of sizes with the following property: if the desired size of font is in interval
(from)-(to) then the (real metric) is used instead the (symbolic name). You need to
use more \registertfm commands to the same (symbolic name) in order to use differ-
ent (real metric) for different (from)-(to) intervals. The (from)-(to) interval is closed
interval (including the boundary values) but the next \registertfm has a precedence
over previous one. Then you can construct the non closed intervals by the choose of the
right order of \registertfm commands. See the ofsdef.tex file for an example.

If the both parameters (from) and (to) are empty then the (real metric) is used
when the scaled keyword is given in desired font size or if desired font size does not
lie in any declared interval. You can use the * symbol in (f0) parameter—it means the
infinity.

The command \registertfm (name) (space) - (space) - (space) erases the pre-
vious registrations for a given (name). Moreover, it marks (name) as an unavailable
font. OFS then acts, as if the corresponding variant has not been declared at all. It
gives us a possibility to mark nonexisting variants of a declared family, but only for
certain encodings (see cmssbxti in the file ofsdef. tex).

The parameters (symbolic name) and (real metric) are expanded during the com-
mand \registertfm is working. Thus the \fotenc macro should not be used in these
parameters. But you can use an \edef construction if necessary.

The macro \registerECfont is an abbreviation of the repeated execution of the
command \registertfm to all EC fonts sizes between 0500 up to 3583. The macro
\registerECTTfont is an abbreviation for sizes 0800 do 3583, that are used for the type-
writer fonts. Definitions and usage of these macros are located in the file ofsdef . tex.
Macros can be used for another fonts as well. But they have to have similarly scaled sizes
like EC fonts (LH fonts with Russian alphabet or the fonts derived from CM super).

The limitations of usage the font family for certain encodings

LATEX: The usage of a family in a given encoding is dependent on the existence of £d
file. It is all controlled by NFSS.

PLAINTEX (to the end of this section): The OFS version Feb. 2004 introduces a command
\registerenc. This command limits the usage of a declared font family only for a
certain encoding. If the user writes \setfonts and requires the family in an unregistered

25

\registeredfam

\setfontsOK

encoding, the OFS prints out a warning on the terminal and does not switch to the
requested family. It avoids an attempt to loading a nonexisting font metrics. The
command \registerenc has two parameters.

\registerenc (FamilyName): (encoding)(space)
\registerenc Times: 8t 7 example
\registerenc Times: 8z % Times is registered for two encodings

If the family is not registered for any encoding, OFS then suggests, that it is available
in every encoding (dingbats fonts for example).

The family usage is limited for a certain encoding by \registerenc in declara-
tion files. The user can add another encoding by the command \registerenc. The
command \registerenc (FamilyName): * means, that the family is available for
arbitrary encodings.

The parameter (FamilyName) can remain empty. In such case, the \registerenc
uses the family declared in the last command \ofsdeclarefamily.

It is possible to find out, whether the family is registered for actual value of the
\fotenc:

\registeredfam (Family Name)? \iftrue
Family has the \fotenc registered or any encoding is enabled
or is not declared at all.
\else Family has registered the encoding,
but \fotenc is not among them
\fi

If \setfonts [(FamilyName)/] is run for an undeclared family or for a family with
unavailable encoding then OFS prints out a warning on the terminal and returns the
\setfontsOK with the value \undefined. The \setfontsOK has asigned the value
\relax, whenever the font is successfully set.

The license

The OFS package may be used by everybody without any license fees. Everybody
can re-distribute this package, if no changes in files readme.ofs, ofs.tex, ofsdef . tex,
ofs.sty, ofs-8z.tex, ofs-8t.tex, a3b.tex, a35.sty, ofsdoc.tex, ofsdoc-e.tex,
ofsmtdef.tex are done and all these files are included in the re-distribution. Only the
author has a right to change these files and to change version of this package. If you need
to change the content of any file mentioned above, you have to rename it. This package
is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY.

Prague 08/16,/2001 the author: Petr Olsak

26

History

8/16/2001 — the first version introduced

10/24/2002 — some petty changes realized in documentation, considering the changes
in the version OFS Oct. 2002. The command \addcmd has been added. The optional
parameters ((Variant)) in the command \loadtextfam were enabled.

12/29/2002: the English documentation in the file ofsdoc-e.tex is written. This
is more or less the translation of the Czech original documentation from the file
ofsdoc.tex. Sorry for my poor English.

I want to say a word of thanks to Matéj Cepl (www.ceplovi.cz) who has made a
proofreading of this English version.

2/10/2004 — All modifications consider only OFS for plain:

+ Handling the macro declarations dependent on encoding has been improved as well
as the exception declarations and registering of the encoding for a chosen family.
See section 3.5 and section 3.9.

+ Added the possibility to redefine the family (by the additional loading the declaring
file, that modifies the properties of the default families).

+ Declaration of CMRoman, CMSans and CMTypewriter for 8t encoding by means of
EC fonts.

+ Added the support for extended encoding 8c.

+ Modified the declaration of the mathematical encoding called PS. \int, \sum and
\prod produces greater characters in the display mode.

+ Defined a macro \ofshexbox and \ofshexboxdef.

+ A new version of the interactive macro ofstest.tex.

+ Introduced the directory \examples/. There will be continuously added the exaples
of OFS usage there.

3/12/2004 — OF'S for plain:

+ Encoding files are read directly from the \loadtextfam. That means the possibility
to place the mapping metrics into the encoding files by means of the command
\registerenc (I will use this ability for LANG).

+ \characterdef respects predefined macro an does not redefines it.

+ \showfonts reimplemented. It spares the memory and time, when operates with
the large font lists. Warning: if you have used macros, that plays upon the internal
macro \listfamilies, this will not operate any more. Since this version is not the
obsolete ofscatal.tex functional too. Instead of it is possible to use ofstest.tex.

+ ofstest.tex modified. It operates with the newly imlemented list of families
\ofslistfamilies.

4/2/2004 — \plaincatcodes added before reading the files ofs-(encoding) . tex.

+ \safelet and \protectreading introduced.

+ The space behind the (character) in the \accentdef is optional.

+ Added the option \loadmathfam (family)[-(version)/]. The declaration for math-
ematical encodings CM, PS, AMS, TX, PX, MT has been extended and remade.

+ English documentation upgraded. Thaks to Tomas Komarek.

27

Index of macros defined in OFS

This index includes only the pointers to the pages where the macro is introduced
(not only mentioned). The macro name is written in the margin on that place. The
index is generated after first run of TEX.

The internal or auxiliary macros in ofs.tex are listed here too but they are not
mentioned in the text, thus they have no pointer to the page in this index. Only a short
comment is appended here. The version of OFS (PLAIN or LATEX) is listed near the each
macro name in this index.

\accentabove (PLAIN) 20

\accentbelow (PLAIN) 20

\accentdef (PLAIN) 17

\accentdel (PLAIN) 18

\accentdefori, \accentdelori (PLAIN) internal, stores the default macro purport
\accentnodef (PLAIN) internal, \def\<macro>#1{\printaccent{(macm)}{#l}}
\addemd (PLAIN+LATEX) 6

\bf (PLAIN+LATEX) 2

\bi (PLAIN+LATEX) 2

\bifam (PLAIN) internal, math family for BoldItalic

\calculatemetricfile (PLAIN) internal, defines \metricfile by fontsize
\catcodesloop (PLAIN) internal, sets the character categ. according to a given num.
\characterdef (PLAIN) 15

\characterdel (PLAIN) 18

\characterdefori, \characterdelori (PLAIN) internal, stores default macro purport
\characternodef (PLAIN) internal, \def\<macm>{\printcharacter{<mac7’o>}}
\currentfamily (PLAIN) 15

\currentfomenc (PLAIN) internal, the name of last used math. encoding
\currentvariant (PLAIN) 14

\declaredfamily (PLAIN) internal, contains the name of the last declared family
\defaultextraenc (PLAIN) 13

\defaultmathchars (PLAIN) 23

\defaultmathfonts (PLAIN) 23

\defpttotmpa (PLAIN) internal, does \def\tmpa{pt}, if the unit is omited
\detailfontmessages (PLAIN) 10

\displayfontmessages (PLAIN) 10

\displaymessage (PLAIN) internal 10

\docharacterdef (PLAIN) internal, for use of \characterdef macro

\doextchar (PLAIN) internal, for use of \extchar macro

\dosafemathdef (PLAIN) internal, for use of \safemath*def macros
\donumbercharacterdef (PLAIN) internal, for use of \characterdef macro
\endOFSmacro (PLAIN) internal, the reading of [<ﬁle> , ...] after \input ofs
\expandaction (PLAIN) 11

\extchar (PLAIN+LATEX) 15

\extraenc (PLAIN) 13

\extrafont (PLAIN) 15

\fontdef (PLAIN+LATEX) 5

\fontloadmessage (PLAIN) internal, the tracing of \font primitives
\fontmessage (PLAIN) internal, three values: nothing, \wlog or \displaymessage
\fontprefix (PLAIN) internal, two values: nothing or \global

\fontusage (PLAIN+LATEX) 3

\fosize (PLAIN) 12

\fomenc (PLAIN) 9,9

\fotenc (PLAIN) 8§, 12

\fragilecommand (PLAIN) 11

\fragilecommand! (PLAIN) 11

28

\hex (PLAIN) 24

\ifknownfam (PLAIN4LATEX) 7

\isunitpresent (PLAIN) internal, solves the case of empty unit

\it (PLAIN+LATEX) 2

\knownchar pl 20

\knownfam pl 7

\lastfam pl 22

\lccodes, \lccodesloop (PLAIN) 19

\loadCMboldmath (PLAIN) 22

\loadCMnormalmath (PLAIN) 22

\loadingenc (PLAIN) 8§, 14,18

\loadmathfam (PLAIN) 21

\loadPSboldmath (PLAIN) 22

\loadPSnormalmath (PLAIN) 22

\loadtextfam (PLAIN) 12,13

\logfontmessages (PLAIN) 10

\mathaccentdef (PLAIN) 24

\mathchars (PLAIN) 21

\mathcharsback (PLAIN) 23

\mathencdef (PLAIN) 23

\mathencread (PLAIN) 23

\mathfonts (PLAIN) 21

\mathversion (PLAIN) 9

\metricfile (PLAIN) internal, the metric name if \font primitive is used
\metrictmpa (PLAIN) internal, expands to the metric of \tmpa font
\modifydef (PLAIN) 18

\modifyenc (PLAIN) 12,18

\modifylist (PLAIN) 19

\modifyread (PLAIN) 19

\newfamily (PLAIN) auxiliary, the given family name

\newmathfam (PLAIN) 22

\newmodifylist (PLAIN) 18

\newvariant (PLAIN) 12,14

\nofontmessages (PLAIN) 10

\noindexsize (PLAIN) 22

\noPT (PLAIN) internal, removes pt from \the<dimen> [TBN, pg. 80]
\ofsaddenctolist (PLAIN) internal, adds parameter into the list \newmodifylist
\OFSdeclarefamily (LATEX) 12

\ofsdeclarefamily (PLAIN) 12

\OFSextraencoding (LATEX) 12

\OFSfamily (LATEX) 7

\OFSfamilydefault (LATEX) 7

\ofshexbox (PLAIN) 20

\ofshexboxdef (PLAIN) 20

\ofsinput (PLAIN) internal, reads file with \globaldefs=1, ignores endlinechars
\ofslistfamilies (PLAIN) internal, family list for \showfonts
\ofslistfamily (PLAIN) internal, envokes the family in \listfamilies
\ofslistvariants (PLAIN) internal, text for listing of variants to the log
\ofslisttext (PLAIN) interni, envokes the text in \listfamilies
\ofsloadfont (PLAIN) internal, loads one font

\ofsloadfontori (PLAIN) internal, loads one font

\ofsmeaning (PLAIN) internal, removes the word letter/character from \meaning
\ofsmessageheader (PLAIN) internal, header of the messages
\OFSnormalvariants (LATEX) 12

\OFSprocessoptions (LATEX) 11

\OFSputfamlist (LATEX) 12

\ofsputfamlist (PLAIN) 12

29

\ofsremovefromlist (PLAIN) internal, erases the family from the list
\OFSversion (PLAIN+LATEX) internal, date and version of OFS

\orifosize (PLAIN) auxiliary, saves \fosize value

\origTeX (PLAIN) internal, original definition of TEX logo

\oriloadfam (PLAIN) auxiliary, saves loadtextfam value

\pickmathfont (PLAIN) 24

\plaincatcodes (PLAIN) internal, sets the chars categories according to plainTEX
\printaccent (PLAIN) 17

\printaccentwarn (PLAIN) 17

\printcharacter (PLAIN) 16

\printcharacterwarn (PLAIN) 16

\processOFSoption (PLAIN) internal, for use of “endOFSmacro
\protectreading (PLAIN) 12

\readfamvariant (PLAIN) internal, checks if the variant is given
\readfirsttoken (PLAIN) internal, returns the first token of text separed by :\end
\readfosize (PLAIN) internal, inserts the \fosize value to \dimenO

\readmag (PLAIN) internal, calculates \fosize if mag(decimal number> is given
\readOFSoptions (PLAIN) internal, for use of \endOFSmacro

\readothertokens (PLAIN) internal, returns the second and other tokens to :\end
\readsixdigits (PLAIN) internal, for rounding algorithm

\registeredfam (PLAIN) 26

\registerECfont (PLAIN) 25

\registerECTTfont (PLAIN) 25

\registerenc (PLAIN) 13,25

\registertfm (PLAIN) 13,25

\restorefontid (PLAIN) internal, restores font name, see \savefontid

\rm (PLAIN+LATEX) 2

\runmodifylist (PLAIN) 15,19

\safelet (PLAIN) 17

\safeletwarn (PLAIN) 17

\safemathaccentdef (PLAIN) 24

\safemathchardef (PLAIN) 24

\savefontid (PLAIN) internal, saves font name for Overfull messages
\savetokenname (PLAIN) internal, similar to \string without backslash
\scriptfosize (PLAIN) 21

\scriptscriptfosize (PLAIN) 21

\separeofsvariant (PLAIN) internal, separes the (< Variant>) in \loadtextfam
\setextrafont (PLAIN+LATEX) 15

\setCMmathchars (PLAIN) 22

\setfonts (PLAIN+LATEX) 4, 14,15

\setfontshook (PLAIN) 13

\setfontsOK (PLAIN) 26

\setfontfamily (PLAIN) internal, \setfonts, if variant is not given
\setfosize (PLAIN) internal, calculate the value of \fosize

\setmath (PLAIN) 8§, 21

\setPSmathchars (PLAIN) 22

\setsimplemath (PLAIN) 8

\setsinglefont (PLAIN) internal, \setfonts, if the variant is given
\setsinglefontname (PLAIN) internal, removes the possible at<dimen> from <metm’c>
\sgfamily (PLAIN) internal, the information about the family name
\sgvariant (PLAIN) internal, the information about the variant

\showfonts (PLAIN+LATEX) 3

\singlefont (PLAIN) internal

\singlefontname (PLAIN) internal, removes the at(dimen> from metric name
\skipfirststep (PLAIN) 19

\slantcorrection (PLAIN) internal, for use of \accentabove and \accentbelow
\storeofsvariant (PLAIN) internal, separes optional parameter of \loadtextfam

30

\switchdeftodel (PLAIN) internal, switches \accent/characterdef with *del
\tenbi (PLAIN) 14

\tenbf (PLAIN) 14

\tenit (PLAIN) 14

\tenrm (PLAIN) 14

\testOFSoptions (PLAIN) internal, for use of \endOFSmacro

\testtfmsize (PLAIN) internal, for use of \registertfm macro

\testtfmsizeat (PLAIN) internal, the auxiliary value of \testtfmsize
\testtfmsizescaled (PLAIN) internal, the auxiliary value of \testtfmsize
\textfosize (PLAIN) 21

\tryloadenc (PLAIN) internal, loads encoding files

\tmpa (PLAIN+LATEX) temporary

\tmpb (PLAIN+4+LATEX) temporary

\tmpc (PLAIN) temporary

\warnmissingfont (PLAIN) internal, message about missing variant

\warnM, \warnF, \warnT, \warnI, (PLAIN) internal, message about missing variant
\warnunregistered (PLAIN) internal, print out, disabled encoding of a chosen family

References

[TBN] Petr Olsék TgXbook naruby, Konvoj 1. ed. 1997 (ISBN 80-7302-007-6), 2. ed.
2001 (ISBN 80-85615-64-9), Brno, 466 pages. Czech language. PDF version of
this book is free available on http://math.feld.cvut.cz/olsak/tbn.html.

31

