
LUAMETAFUN
the new interfaces

context 2021 meeting



luametafun — context 2021 meeting — three subsystems

Three subsystems

• The core of the engine in still TEX. It all starts there.

• The TEX internals are opened up via Lua. We can call out to Lua from TEX and to some extend
from Lua to TEX. Quite often we push back something via the input channels.

• The MetaPost library is accessed from Lua. So from within TEX there is always Lua in between.
Results go back via Lua. The library can also call out to Lua and from there to TEX.

• Thismeans that all threemajor components of LuaMetaTEX can talk to each other and use each
others capabilities.

• With Lua in the center, we also have access to other mechanism, for instance fonts, graphics
and libraries.

• In ConTEXt the Lua language also permits using xml, json, csv, sql databases and other input
that can be dealt with programmatically.

• All has been reasonably optimized for efficiency and performance.



luametafun — context 2021 meeting — the (luatex) library

The (LuaTEX) library

• Turning MetaPost into a library has been a subproject of the LuaTEX project. The semi-official
team (Taco, Jacko, Hans, Luigi) got John Hobbies blessing.

• This was a rather massive (and impressive) operation by Taco because multiple number mod­
els were to be supported and the internals had to be made such that different backends were
possible. All with remaining perfect (DEK) compatibility.

• The MetaPost library serves both the stand alone program and LuaTEX.

• That means the PostScript backend is built in plus some basic (Type1) font handling. We sup­
port pdf output via theMetaPost Lua backend (inMkII that is done by parsing the PostScript and
specials).

• In addition there is png and svg output. It helps that MetaPost output is rather simple.

• The LuaTEX engine uses the Lua backend which represents the result in Lua tables resembling
the MetaPost internal representation.

• The library supports scaled and double (internal) but also binary and decimal number models
that use (linked in) libraries.



luametafun — context 2021 meeting — the (luametatex) library

The (LuaMetaTEX) library

• We don't need the PostScript backend (which only does Type1 anyway).

• We also have no use for svg and png output.

• The binary number model has no advantages over the decimal one but brings quite some de­
pendency with it (library code).

• The Type1 font support is not used in ConTEXt because we handle text differently.

• All this means that we can do with a smaller (simplified) MetaPost library.

• The codebase has been overhauled. We still have .w files (cweb) but use a Lua script to convert
that to C whichmeans that we have better control over how it comes out.

• As with LuaTEX the file io, message handling etc. now largely goes via Lua; it is more integrated.

• The same is true for scanning interfaces and return values (injectors). That alsomade formore
symbolic coding.

• Memorymanagement (allocation) is under engine control (as with TEX and Lua); we use a com­
mon high performance allocator library.



luametafun — context 2021 meeting — the (luametatex) library

The (LuaMetaTEX) library

• Some already present mechanism have been extended, for instance clips have pre- and post­
scripts.

• A grouping wrapper has been added (handy for some graphic trickery supported in the back­
end.)

• The runscript primitive supports symbolic references to functions (of course to be provided
at the Lua end).

• The runscript return values can be more native, in addition to the already present (default)
scantokens support.

• Internals are extended with booleans and strings.

• Output (paths, clips etc) can be stacked in a different order.

• There are additional statistics available.

• In some places performance could be improved.

• In themeantime it can be considered amajor upgrade and (for various reasons) backporting to
LuaTEXmakes no sense. And yes, all errors are mine.



luametafun — context 2021 meeting — the luafication

The Luafication
See Taco's presentation where he gives some examples.



luametafun — context 2021 meeting — callbacks

Callbacks
We need to hook in some functions:

find_file (name,mode,kind) locate a file (usually within the tds setup)
f open_file (name,mode,kind) open given file

close_file (handle) close opened file
s read_file (handle,size) read from file

write_file (handle,str) write to file

s run_script (code,size,index) run the given string as Lua script
s make_text (str,size,mode) process btex/etex

run_internal (action,index,kind,name) act on internal definition

n run_overload (property,name,mode) process overload check

run_logger (target,str,size) process log message
run_error (message,help,interaction) handle error (message)
run_warning (message) handle warning



luametafun — context 2021 meeting — two calling methods

Two calling methods
The runner can be called as:

1 runscript("mp.MyFunction()")

which implies at the Lua end:

1 function mp.MyFunction()
2 ...
3 end

Here the callback function is responsible for loading the string and executing it.

Alternatively one can say:

1 runscript <number>

The number can be intercepted at the Lua end to do some associated action.



luametafun — context 2021 meeting — variables

Variables
We can do:

1 lua.mp.MyFunction("foo",123,true)

which in the end is equivalent to:

1 runscript("mp.MyFunction('foo',123,true)")

Alternatively one can pick up values by scanning: like scannext, scanexpression, scantoken,
scansymbol, scannumeric, scaninteger, scanboolean, scanstring, scanpair, scancolor,
scancmykcolor, scantransform, scanpath, scanpen, etc.



luametafun — context 2021 meeting — return values

Return values
The runner can return:

• a string that gets fed into the scantokens primitive

• a numeric or boolean that gets injected as native MetaPost object

• a table that gets concatenated and fed into the scantokens primitive

• true and a second argument that gets converted into a native MetaPost object

• in the last case the number of table elements determines the object

Instead of returning a value one can inject: injectnumeric, injectinteger, injectboolean,
injectstring, injectpair, injectcolor, injectcmykcolor, injecttransform, injectpath,
injectwhatever, etc. and these accept one or more values and/or tables.

Thesemechanismsmight evolve a bit over time. Lots of examples can be found in themlib-*.lmt
files.



luametafun — context 2021 meeting — parameters

Parameters

• The new interfaces permit us to programquite robust parameter driven interfaces that (sort of)
match the way we do things at the TEX end.

• The distribution has several examples of usage andmore will be added.

• Macros that use the newmechanisms can be recognized by the lmt_ prefix.

1 lmt_mytrick [
2 somestring = "test",
3 somenumeric = 123,
4 someboolean = true,
5 somecolor = (1, 0, 1),
6 somepath = fullsquare scaled 10cm,
7 somelist = { (0, 0), (1, 3), (8, 9) },
8 sometable = [
9 somenumeric = 321,
10 ],
11 ] ;

Show the pattern of defining these at the Lua end and in MetaPost files.


