
sin cos tan max exp ceil x2 x! xy rad

asin acos atan min ln floor sqrt round 1/x deg

7 8 9 / del

4 5 6 * E

1 2 3 – pop

0 . - + push

n

min

max

total

mean

sdev

new new +n –n

–x random pi e dup exit info

new +m –m mem grow



The Calculator

This calculator is stack based, which means that one enters values and invokes an action that acts on the value(s) last entered.

Subtracting 10 from 20 using (–) for instance comes down to clicking:

10 in 20 –

while calculating a sinus (sin) results from entering:

.89 sin

The left column of fields (numbers) shows the Stack. One uses push to push a value on the stack and pop to remove a value. Clicking

new removes them all and the del button can be used to undo the last entered digit. When a dyadic operation is applied, the top value

is used as y. The grow key toggles between two different visualizations of the stack.

The stack is considerably larger than the screen representation suggests. In the rare occasion that one encounters the message

exhausted, the amount of stack entries already has totaled far beyond 50 and one probably already has forgotten what the values first

entered represent.

The right column of fields reports the statistic calculations. By clicking on the tag, one pushes the value on the Stack. The lower

buttons are used to reset (new), enter (+) and remove (–) values to be taken into account when calculating those statistics.

This document is produced by ConTEXt, a macro package written in TEX. The graphics are METAPOST graphics. The graphics, the PDF

objects and the form fields as well as JavaScript code were generated and inserted at run time. Originally we used PDFTEX and MkII

to process this document but this one is done by LuaTEX and MkIV. We kept the design and code original so that it reflects how things

were done (for readability we updated some TEX definitions).

Hans Hagen, PRAGMA ADE, ConTEXt 18/2/1998–25/9/2018

mailto:pragma@xs4all.nl



Calculate the sine of the topmost stack entry.



Calculate the cosine of the topmost stack entry.



Calculate the tangent of the topmost stack entry.



Calculate the arcsine of the topmost stack entry.



Calculate the arccosine of the topmost stack entry.



Calculate the arctangent of the topmost stack entry.



Calculate the square of the topmost stack entry.



Calculate the square root of the topmost stack entry.



Calculate the exponential function of the topmost stack entry.



Calculate the natural logaritm of the topmost stack entry.



Calculate xy where y is the topmost stack entry.



Calculate 1/x using the topmost stack entry.



Add an observation to the statistics.



Remove an observation from the statistics.



Reset the statistics.



Push the number of observations to the stack.



Push the sum of encountered values to the stack.



Push the lowest encountered value to the stack.



Push the highest encountered value to the stack.



Push the mean value to the stack.



Push the standard deviation to the stack.



Negate the topmost stack entry.



Set the topmost stack entry to the next integer.



Set the topmost stack entry to the previous integer.



Set the topmost stack entry to the nearest integer.



Take the minumum of the two topmost stack entries.



Take the maximum of the two topmost stack entries.



Push 2.71828182845905 onto the stack.



Push 3.14159265358979 onto the stack.



Convert radians into degrees.



Convert degrees into radians.



Generate a random number in the range 0–1.



Add a digit 0 to the current stack entry.



Add a digit 1 to the current stack entry.



Add a digit 2 to the current stack entry.



Add a digit 3 to the current stack entry.



Add a digit 4 to the current stack entry.



Add a digit 5 to the current stack entry.



Add a digit 6 to the current stack entry.



Add a digit 7 to the current stack entry.



Add a digit 8 to the current stack entry.



Add a digit 9 to the current stack entry.



Calculate the recursive multiplication of n, n–1, n–2, etc.



Add a sign to the current stack entry.



Add a period to the current stack entry.



Start setting the exponent part of the current stack entry.



Delete the last entered digit of the current stack entry.



Erase the memory buffer.



Add to the memory buffer.



Substract from the memory buffer.



Copy the memory buffer to the stack.



Push a new entry to the stack.



Remove the topmost entry from the stack.



Erase the whole stack.



Duplicate the topmost stack entry.



Add the two topmost stack entries.



Subtract the topmost stack entry from the one below.



Multiply the two topmost stack entries.



Divide the pre-last stack entry by the topmost one.



Toggle grow mode, another way of stacking.



Close this document.


	Stack.8: 
	Stack.7: 
	Stack.6: 
	Stack.5: 
	Stack.4: 
	Stack.3: 
	Stack.2: 
	Stack.1: 
	Stats.n: 
	Stats.min: 
	Stats.max: 
	Stats.total: 
	Stats.mean: 
	Stats.sdev: 
	Stats.mem: 


