prooftrees
Version v0.9 (SVN Rev: 10525)

Clea F. Rees*
2024/10/24

Abstract

prooftrees is a IATEX 2¢ package, based on forest, designed to support the typesetting of logical tableaux —
‘proof trees’ or ‘truth trees’ — in styles sometimes used in teaching introductory logic courses, especially
those aimed at students without a strong background in mathematics. One textbook which uses proofs of
this kind is Hodges (1991). Like forest, prooftrees supports memoize out-of-the-box.

Note that this package requires version 2.1 (2016/12/04) of forest (Zivanovié¢ 2016). It will not
work with versions prior to 2.1.

I would like to thank Zivanovié both for developing forest and for considerable patience in answering my questions,
addressing my confusions and correcting my mistakes. The many remaining errors are, of course, entirely my
own. This package’s deficiencies would be considerably greater and more numerous were it not for his assistance.

*Bug tracker: codeberg.org/cfr/prooftrees/issues | Code: codeberg.org/cfr/prooftrees | Mirror: github.com/cfr42/
prooftrees

=y))

S -T, T+ -Rfz S« R (F2)((Vy)(Py = (z = y)) - Px) |z (32)(Vy)(Py & (x
1. S+ -TV pr. 1. (32)((Vy)(Py = (x=y)) - Px) v'd pr.
2. T+ -RV pr. 2. ~(3z)(Vy)(Py < (x =y)) \d - conc.
3. (S R) vV — conc. 3. (Vy)(Py = (d=vy))- Pd v 13E
T 4. (Vy)(Py = (d=1y)) \c 3-E
4. s -9 1&E - rd 3B
5. T v 1 &E 6. ~(Vy)(Py < (d=y)) v 2 ~3E
/\ /\ 7. ~(Pece (d=c) v 6 ~VE
6. 2B T
7. ﬂR ﬂﬂR v ﬁR ﬂﬂR vV 2%E S df;(f dNPC ; ~ @g
& . c =c ~ &
5,6 ,/\V A ‘) .) 10. | Pc 5,9 =
8. =S S -5 T 3 & h; 5 =K 11. Pec = () v ® AVE
9. R -R R —-R ® 3«E 8,10
10. ® R ® ® 68 7--E SN
48 o 7,9 4,8 12. ~Pc d=c 11 =E
9,10 13. ® d#d 9,12 =
8,12 ®
13

— 1 of J6 —

https://codeberg.org/cfr/prooftrees/issues
codeberg.org/cfr/prooftrees/issues
https://codeberg.org/cfr/prooftrees
codeberg.org/cfr/prooftrees
https://github.com/cfr42/prooftrees
github.com/cfr42/prooftrees
https://github.com/cfr42/prooftrees
github.com/cfr42/prooftrees

1 Raison d’étre

Contents
1 Raison d’étre 2
2 Assumptions & Limitations 6
3 Typesetting a Proof Tree 6
4 Loading the Package 15
5 Invocation 15
6 Proof Tree Anatomy 15
7 Options 16
7.1 Global Options e 16
7.2 Local Options 21
8 Macros 24
9 Memoization 25
10 Compatibility 26
11 Version History 26
T 0.9 . o o 26
1.2 0.8 . o o e 26
1.3 0.7 o o 26
R T 26
11.5 0.9 . o o o 26
1.6 0.41 . . . o e e e 26
1.7 0.4 o 27
1.8 0.3 . o o e 27
A Implementation 29

1 Raison d’étre
Suppose that we wish to typeset a typical proof tree demonstrating the following entailment

{PV(QV-R),P—-R,Q——-R}--R

We start by typesetting the tree using forest’s default settings (box 1) and find our solution has several
advantages: the proof is specified concisely and the code reflects the structure of the tree. It is relatively
straightforward to specify a proof using forest’s bracket notation, and the spacing of nodes and branches is
automatically calculated.

Despite this, the results are not quite what we might have hoped for in a proof tree. The assumptions should
certainly be grouped more closely together and no edges (lines) should be drawn between them because these
are not steps in the proof — they do not represent inferences. Preferably, edges should start from a common
point in the case of branching inferences, rather than there being a gap.

Moreover, proof trees are often compacted so that non-branching inferences are grouped together, like as-
sumptions, without explicitly drawn edges. Although explicit edges to represent non-branching inferences are
useful when introducing students to proof trees, more complex proofs grow unwieldy and the more compact
presentation becomes essential.

Furthermore, it is useful to have the option of annotating proof trees by numbering the lines of the proof on
the left and entering the justification for each line on the right.

— 2 0f 46 —

1 Raison d’étre

forest is a powerful and flexible package capable of all this and, indeed, a good deal more. It is not enormously
difficult to customise particular trees to meet most of our desiderata. However, it is difficult to get things
perfectly aligned even in simple cases, requires the insertion of ‘phantom’ nodes and management of several
sub-trees in parallel (one for line numbers, one for the proof and one for the justifications). The process
requires a good deal of manual intervention, trial-and-error and hard-coding of things it would be better to
have IWTEX 2 manage for us, such as keeping count of lines and line references.

prooftrees aims to make it as easy to specify proof trees as it was to specify our initial tree using forest’s default
settings. The package supports a small number of options which can be configured to customise the output.
The code for a prooftrees proof tree is shown in box 2, together with the output obtained using the default
settings.

More extensive configuration can be achieved by utilising forest (Zivanovié¢ 2016) and/or TikZ (Tantau 2015)
directly. A sample of supported proof tree styles are shown in box 3. The package is not intended for the
typesetting of proof trees which differ significantly in structure.

forest: default settings

\begin{forest}
[$P \vee (Q \vee \1not R)$
[$P \1if \1lnot R$
[$Q \1if \1not R$ PVv(@QV _‘R)
[$\1not\1lnot R$ |
[P P—-R
[$\1not P$] |
] [$\1not R$] 0— R
[$Q \vee \lnot R$ |
[$\1not Q$]
[$\1not R$] / \
] P QV-R

/N /N

-P -R @ -R

/\

[$\1not R$]
]
]
]
]
]
\end{forest}

[Q | R

1 Raison d’étre

prooftrees: default settings

\begin{tableau}
{

R}
}

[P \1if \1not R, just=Ass, checked
[Q \1if \1not R, just=Ass, checked,
name=last premise

name=not conc
[P, just={\vee Elim: 'uuuu}
[\1not P, close={:'u,'c}]

to prove={\{P \vee (Q \vee \lnot R), P \1lif
\lnot R, Q \1if \1not R\} \sststile{}{} \1lnot

[P \vee (Q \vee \lnot R), just=Ass, checked

[\1not\lnot R, just={\lnot Conc},

{PV(QV-R),P—-R,Q——-R}--R

1. PVv(QV-R)V Ass

2. P—-RV Ass

3. Q— RV Ass

4 -=R - Conc
5. P QV-R 1 Vv Elim

-P -R /\ 2 — Elim
(¢

[\1not R, close={:not conc,!c}, 6.
just={$\1if$ Elim: 'uuuul}]] 7. ® Q -R 5 V Elim
[Q \vee \1not R 5,6 4,6 ®
[Q, move by=1 8 ﬂQ/\—'R 4,7 3 s Elim
[\1not Q, close={:'u,!'c}] ’
[\lnot R, close={:not conc,!c}, 7®8 4®8
just={$\1if$ Elim:last premise}]] ’ ’
[\1not R, close={:not conc,!c},
move by=1, just={\vee Elim:!u}1]1]11]]
\end{tableau}
— 4 of 46 —

prooftrees: sample output

{PV(QV-R),P—-R,Q——-R}--R

1. PVv(QV-R)V Ass
2. P—-RV Ass
3. Q—-RV Ass
4 -—R Neg conc
5. P QV-Rv 1V Elim
6. P -R 2 — Elim
7.8 0® Q -R 5V Elim
5,6 4,6 ®
/\ 2 |
8. - -R 3 — Elim
® ®
7,8 4,8
v PV (QV-R) Ass
vV P—-R Ass
v Q——-R Ass
-—R Neg conc
P vV QV-R VElim
-P -R — Elim
X x
Q -R V Elim
/\ b 4
-Q R — Elim
b 4 b 4

(3z)(Lx vV Mz) l— (z)Lx v ()M

1. (Fz)(Lx vV Mz) va Ass
2. —=((3z)LzV (3zx)Mz) v Neg Conc
3. LaVv Ma v 13E
4. —(3z)Lx \a 2 -VE
5. —(Fx)Mz \a
6. —La 4 -3E
7. -Ma 5 -3JE
N
8. La Ma 3VE
& (29
68 7,8

1) PVv(QV~R)V
2) P>~RV
3) QDOD~RV
4) ~~R
!—‘—\

5) P Q

V
B
6) ~P ~R

~R Vv
R

R * Q ~

8) ~Q ~R

5,6 4,6 %

4,7

Ass
Ass
Ass
Neg conc

1V Elim

2 D Elim
5V Elim

3 D Elim

{PV(QV-R),P—-R,Q——-R} - —-R

1.

= N

8

Pv(QV-R)V
P—-RV
Q—-RV

||R
. P QV-RV
. Q -R
/\ X
. 0 -R 4,6
. P R x X
% « 67 47
5,8 4,8

Either Alice saw nobody

or she didn’t see nobody.

Alice saw nobody. \Jones
Alice didn’t see Jones.

Alice didn’t see nobody.

Ass
Ass
Ass
Neg conc

1 Vv Elim

5 V Elim

3 — Elim
2 — Elim

VE
vVE
VE

Alice saw somebody. v Jones ——E

Alice saw Jones.

JE

— 5 of 46 —

8 Typesetting a Proof Tree

2 Assumptions & Limitations

prooftrees makes certain assumptions about the nature of the proof system, £, on which proofs are based.

o All derivation rules yield equal numbers of wff's on all branches.

wff wff wff wff
N N /N N
wff wff wff wff wff wff wff wff
v owff wff v wff X wff X

If £ fails to satisfy this condition, prooftrees is likely to violate the requirements of affected derivation
rules by splitting branches ‘mid-inference’.

e No derivation rule yields wff's on more than two branches.

e All derivation rules proceed in a downwards direction at an angle of -90° i.e. from north to south.
o Any justifications are set on the far right of the proof tree.

e Any line numbers are set on the far left of the proof tree.

« Justifications can refer only to earlier lines in the proof. prooftrees can typeset proofs if £ violates
this condition, but the cross-referencing system explained in section 7.2 cannot be used for affected
justifications.

prooftrees does not support the automatic breaking of proof trees across pages. Proof trees can be manually
broken by using line no shift with an appropriate value for parts after the first (section 7.1). However,
horizontal alignment across page breaks will not be consistent in this case.

In addition, prooftrees almost certainly relies on additional assumptions not articulated above and certainly
depends on a feature of forest which its author classifies as experimental (do dynamics).

3 Typesetting a Proof Tree

After loading prooftrees in the document preamble:

% in document's preamble
\usepackage{prooftrees}

the prooftree environment is available for typesetting proof trees. This takes an argument used to specify a
(tree preamble), with the body of the environment consisting of a (tree specification) in forest’s notation. The
(tree preamble) can be as simple as an empty argument — {} — or much more complex.

Customisation options and further details concerning loading and invocation are explained in section 4, section 5,
section 6, section 7 and section 8. In this section, we begin by looking at a simple example using the default
settings.

Suppose that we wish to typeset the proof tree for
(32)((Vy)(Py = & = y) A Px) - Bz)(Vy)(Py & & = y)

and we would like to typeset the entailment established by our proof at the top of the tree. Then we should
begin like this:

\begin{tableau}
{
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}{} (\exists x) (\forall y)(
Py \liff x = y)}
}
\end{tableau}

— 6 of 46 —

3 Typesetting a Proof Tree

E Nested structure of proof tree

—~

Elx)((Vy)(Py—)w:y)/\Px) (Fz)(Vy)(Py > x =y)

1. (3)(Yy)(Py —x =y) A Px) Va Pr.

2. —(Fx)(Vy)(Pyu+ 2z =y) \a Conc. neg.
3. (Vy)(Py—a=y) AN Pa v 13E

4. ‘v’y)(Py—>a— y) \b 3 AE

5. 3ANE

6. —|V1/)(Pu<—>afu) v'b 2 -3E
7. ~(Pbra=b) v 6 VE
8. 7T+ E

9. 8§ < E
10. 59=FE
11. 4VE

12. 11 -E
13. 9,12 =E

That is all the preamble we want, so we move onto consider the (tree specification). forest uses square brackets
to specify trees’ structures. To typeset a proof, think of it as consisting of nested trees, trunks upwards, and
work from the outside in and the trunks down (box 4).

Starting with the outermost tree @ and the topmost trunk, we replace the () with square brackets and
enter the first wff inside, adding just=Pr. for the justification on the right and checked=a so that the line
will be marked as discharged with a substituted for z. We also use forest’s name to label the line for ease of
reference later. (Technically, it is the node rather than the line which is named, but, for our purposes, this
doesn’t matter. forest will create a name if we don’t specify one, but it will not necessarily be one we would
have chosen for ease of use!)

\begin{tableau}

¢ to prove={(\exists x) ((\forall y) (Py \l1if x = y) \land Px) \sststile{}{} (\exists x) (\forall y)(
Py \1liff x = y)}

{{(\exists x) ((\forall y) (Py \1lif x = y) \land Px)}, checked=a, just=Pr., name=pr
\eid{tableau}

We can refer to this line later as pr.

We then consider the next tree @ Its () goes inside that for @, so the square brackets containing the next

wff go inside those we used for @ Again, we add the justification with just, but we use subs=a rather than
checked=a as we want to mark substitution of a for z without discharging the line. Again, we use name so

— 7 of 46 —

8 Typesetting a Proof Tree

that we can refer to the line later as neg conc.

\begin{tableau}
{
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}} (\exists x) (\forall y) (
Py \1liff x = y)}
}
[{(\exists x) ((\forall y)(Py \1if x = y) \land Px)}, checked=a, just=Pr., name=pr
[{\1not (\exists x)(\forall y)(Py \1iff x = y)}, subs=a, just=Conc.~neg., name=neg conc
]
]
\end{tableau}

Turning to tree @, we again note that its () is nested within the previous two, so the square brackets for its
wff need to be nested within those for the previous wffs. This time, we want to mark the line as discharged
without substitution, so we simply use checked without a value. Since the justification for this line includes
mathematics, we need to ensure that the relevant part of the justification is surrounded by $...$ or \(...\).
This justification also refers to an earlier line in the proof. We could write this as just=1 $\exists\elim$,
but instead we use the name we assigned earlier with the referencing feature provided by prooftrees. To
do this, we put the reference, pr after the rest of the justification, separating the two parts by a colon
i.e. $\exists\elim$:pr and allow prooftrees to figure out the correct number.

\begin{tableau}
{
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}{} (\exists x)(\forall y)(
Py \liff x = y)}
}
[{(\exists x) ((\forall y)(Py \1lif x = y) \land Px)}, checked=a, just=Pr., name=pr
[{\lnot (\exists x) (\forall y)(Py \1liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y) (Py \1if a = y) \land Pa}, checked, just=$\exists\elim$:pr
]
]
]
\end{tableau}

Continuing in the same way, we surround each of the wffs for @, @, @ and @ within square brackets nested
within those surrounding the previous wff since each of the trees is nested within the previous one. Where
necessary, we use name to label lines we wish to refer to later, but we also use forest’s relative naming system when
this seems easier. For example, in the next line we add, we specify the justification as just=$\land\elim$: !u.
! tells forest that the reference specifies a relationship between the current line and the referenced one,
rather than referring to the other line by name. !'u refers to the current line’s parent line — in this case,
{(\forall y) (Py \1if a = y) \land Pa}, checked, just=$\exists\elim$:pr. !uu refers to the current
line’s parent line’s parent line and so on.

\begin{tableau}
{
to prove={(\exists x)((\forall y) (Py \1lif x = y) \land Px) \sststile{}{} (\exists x) (\forall y)(
Py \1liff x = y)}
}
[{(\exists x) ((\forall y)(Py \1if x = y) \land Px)}, checked=a, just=Pr., name=pr
[{\1not (\exists x)(\forall y)(Py \1iff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y) (Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr
[{(\forall y)(Py \1lif a = y)}, subs=b, just=$\land\elim$:'u, name=mark
[Pa, just=$\land\elim$:!'uu, name=simple
[{\1not (\forall y) (Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\1not (Pb \1liff a = b)}, checked, just=$\lnot\foralllelim$:!'u
]
]
]
]

— 8 of 46 —

8 Typesetting a Proof Tree

]
]
]
\end{tableau}

Reaching @, things get a little more complex since we now have not one, but two () nested within @ This
means that we need two sets of square brackets for @ — one for each of its two trees. Again, both of these
should be nested within the square brackets for @ but neither should be nested within the other because the
trees for the two branches at @ are distinct.

\begin{tableau}
{
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}{} (\exists x) (\forall y)(
Py \liff x = y)}
}
[{(\exists x) ((\forall y)(Py \1lif x = y) \land Px)}, checked=a, just=Pr., name=pr
[{\lnot (\exists x) (\forall y)(Py \liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y) (Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr
[{(\forall y)(Py \1if a = y)}, subs=b, just=$\land\elim$:'u, name=mark
[Pa, just=$\land\elim$:!uu, name=simple
[{\1not (\forall y)(Py \1iff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\1not (Pb \1liff a = b)}, checked, just=$\lnot\forall\elim$:!u
[Pb, just=$\1liff\elim$:!u, name=to Pb or not to Pb

]
[\lnot Pb
]
]
1
]
]
]
]
]
\end{tableau}

At this point, we need to work separately or in parallel on each of our two branches since each constitutes its
own tree. Turning to trees @, each needs to be nested within the relevant tree @, since each () is nested

within the applicable branch’s tree. Hence, we nest square brackets for each of the wffs at @ within the
previous set.

\begin{tableau}
{
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}{} (\exists x) (\forall y)(
Py \1liff x = y)}
}
[{(\exists x) ((\forall y)(Py \1lif x = y) \land Px)}, checked=a, just=Pr., name=pr
[{\1not (\exists x)(\forall y)(Py \1iff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y) (Py \lif a = y) \land Pal}, checked, just=$\exists\elim$:pr
[{(\forall y)(Py \1lif a = y)}, subs=b, just=$\land\elim$:'!'u, name=mark
[Pa, just=$\land\elim$:'!uu, name=simple
[{\1not (\forall y) (Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\1not (Pb \1liff a = b)}, checked, just=$\lnot\forall\elim$:!u
[Pb, just=$\1liffl\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\liff\elim$:!'!u

]

]

[\1not Pb
[{a = b}
]

— 9 of 46 —

8 Typesetting a Proof Tree

\end{tableau}

We only have one tree @ as there is no corresponding tree in the left-hand branch. This isn’t a problem: we

just need to ensure that we nest it within the appropriate tree @ There are two additional complications
here. The first is that the justification contains a comma, so we need to surround the argument we give just
with curly brackets. That is, we must write just={5,9 $=\elim$} or just={$=\elim$:{simple, !ul}. The
second is that we wish to close this branch with an indication of the line numbers containing inconsistent wffs.
We can use close={8,10} for this or we can use the same referencing system we used to reference lines when
specifying justifications and write close={:to Pb or not to Pb,!c}. In either case, we again surrounding
the argument with curly brackets to protect the comma. !c refers to the current line — something useful in
many close annotations, but not helpful in specifying non-circular justifications.

\begin{tableau}
{
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}} (\exists x) (\forall y) (
Py \liff x = y)}
}
[{(\exists x) ((\forall y)(Py \1if x = y) \land Px)}, checked=a, just=Pr., name=pr
[{\lnot (\exists x) (\forall y)(Py \1liff x = y)}, subs=a, just=Conc.-~neg., name=neg conc
[{(\forall y)(Py \1if a = y) \land Pa}, checked, just=$\exists\elim$:pr
[{(\forall y)(Py \lif a = y)}, subs=b, just=$\land\elim$:!u, name=mark
[Pa, just=$\land\elim$:!uu, name=simple
[{\1not (\forall y)(Py \1iff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\lnot (Pb \liff a = b)}, checked, just=$\lnot\foralllelim$:!u
[Pb, just=$\1liff\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\1lifflelim$:!u

]
]
[\lnot Pb
[{a = b}
[Pb, just={$=\elim$:{simple,'u}t}, close={:to Pb or not to Pb,!c}
1
]
]
]
]
]
]
]
]
1
\end{tableau}

This completes the main right-hand branch of the tree and we can focus solely on the remaining left-hand one.
Tree @ is straightforward — we just need to nest it within the left-hand tree @

i\begin{tableau}
Ao

}

|
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}{} (\exists x) (\forall y) (‘
|
[{(\exists x) ((\forall y)(Py \1lif x = y) \land Px)}, checked=a, just=Pr., name=pr

|
Py \liff x = y)}
|
|

— 10 of 46 —

8 Typesetting a Proof Tree

[{\1not (\exists x) (\forall y)(Py \liff x = y)}, subs=a, just=Conc.-~neg., name=neg conc

[{(\forall y) (Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr

[{(\forall y)(Py \1if a = y)}, subs=b, just=$\land\elim$:'u, name=mark
[Pa, just=$\land\elim$:'uu, name=simple

[{\1not (\forall y) (Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\1not (Pb \1liff a = b)}, checked, just=$\lnot\forall\elim$:!u
[Pb, just=$\liffl\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\liff\elim$:!'!u
[{Pb \1if a = b}, checked, just=\foralllelim:mark’,, move by=1

1
]
]
[\1not Pb
[{a = b}
[Pb, just={$=\elim$:{simple,!u}}, close={:to Pb or not to Pb,!c}
1
]
]
1
1
]
]
]
]
1
\end{tableau}

At this point, the main left-hand branch itself branches, so we have two trees @ Treating this in the same

way as the earlier branch at @, we use two sets of square brackets nested within those for tree @, but
with neither nested within the other. Since we also want to mark the leftmost branch as closed, we add
close={:to Pb or not to Pb,!c} in the same way as before.

\begin{tableau}
{
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}} (\exists x) (\forall y) (
Py \liff x = y)}
}
[{(\exists x) ((\forall y)(Py \1if x = y) \land Px)}, checked=a, just=Pr., name=pr
[{\1not (\exists x)(\forall y)(Py \1iff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y)(Py \1if a = y) \land Pa}, checked, just=$\exists\elim$:pr
[{(\forall y)(Py \lif a = y)}, subs=b, just=$\land\elim$:!u, name=mark
[Pa, just=$\land\elim$:'uu, name=simple
[{\1not (\forall y)(Py \1iff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\1not (Pb \liff a = b)}, checked, just=$\lnot\foralllelim$:!u
[Pb, just=$\liffl\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\1lifflelim$:!u
[{Pb \1if a = b}, checked, just=4 \foralllelim
[\lnot Pb, close={:to Pb or not to Pb,!c}, just=\liflelim:!u

]
[{a = b}
]
1
]
]
[\1not Pb
[{a = b}
[Pb, just={$=\elim$:{simple,!u}}, close={:to Pb or not to Pb,!c}
1
]
]

— 11 of 46 —

8 Typesetting a Proof Tree

\end{tableau}

We complete our initial specification by nesting @ within the appropriate tree @, again marking closure
appropriately.

\begin{tableau}
{
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}{} (\exists x) (\forall y)(
Py \liff x = y)}
}
[{(\exists x) ((\forall y)(Py \1lif x = y) \land Px)}, checked=a, just=Pr., name=pr
[{\lnot (\exists x) (\forall y)(Py \liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y) (Py \lif a = y) \land Pal}, checked, just=$\exists\elim$:pr
[{(\forall y)(Py \1if a = y)}, subs=b, just=$\land\elim$:'u, name=mark
[Pa, just=$\land\elim$:!'uu, name=simple
[{\Inot (\forall y) (Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\1not (Pb \1liff a = b)}, checked, just=$\lnot\forall\elim$:!u
[Pb, just=$\1liff\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\1lifflelim$:!u
[{Pb \1if a = b}, checked, just=4 \foralllelim
[\1not Pb, close={:to Pb or not to Pb,!c}, just=$\lif\elim$:!'u

]
[{a = b}
[a \neq a, close={:!c}, just={$=\elim$:{'uuu, 'u}l}
]
]
1
]
]
[\1not Pb
[{a = b}
[Pb, just={$=\elim$:{simple,!u}t}, close={:to Pb or not to Pb,!c}
1
1
]
]
]
1
]
]
1
1
\end{tableau}

Compiling our code, we find that the line numbering is not quite right:

— 12 of 46 —

8 Typesetting a Proof Tree

(32)((7)(Py = = y) A Pr) |= (30) (W) (Py & 2 = y)
1. (3z)(Yy)(Py —z =y) A Pz) va Pr.
2. =(3z)(Vy)(Py <2 =y) \a Conc. neg.
3. (Vy)(Py —a=y) AN Pa v 13E
4. (Vy)(Py —a=1y) \b 3NE
d. Pa 3ANE
6. -(Vy)(Py<a=y) Vb 2 -3E
7. —(Pb<>a=0b) v 6 -VE
TN
8. Pb -Pb 7+ E
9. a#b a=1b 8 <« E
10. Pb—wa=bv Pb 4VE;5,9=E
N8
1. -Pb a=b 10 5 F
12. ® aa 9,11=E
8,11 ®
12

prooftrees warns us about this:

Package prooftrees Warning: Merging conflicting justifications for line 10! Please examine the output
carefully and use "move by" to move lines later in the proof if required. Details of how to do this
are included in the documentation.

We would like line 10 in the left-hand branch to be moved down by one line, so we add move by=1 to the
relevant line of our proof. That is, we replace the line

[{Pb \1if a = b}, checked, just=4 \foralllelim

[{Pb \1if a = b}, checked, just=$\foralll\elim$:mark, move by=1

giving us the following code:

\begin{tableau}
{
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}} (\exists x) (\forall y) (
Py \1liff x = y)}
}
[{(\exists x) ((\forall y)(Py \1if x = y) \land Px)}, checked=a, just=Pr., name=pr
[{\1not (\exists x)(\forall y)(Py \1iff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y)(Py \1if a = y) \land Pa}, checked, just=$\exists\elim$:pr
[{(\forall y)(Py \lif a = y)}, subs=b, just=$\land\elim$:!u, name=mark
[Pa, just=$\land\elim$:'uu, name=simple
[{\1not (\forall y)(Py \1liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\lnot (Pb \liff a = b)}, checked, just=$\lnot\foralllelim$:!u
[Pb, just=$\liff\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\1lifflelim$:!u
[{Pb \1if a = b}, checked, just=\foralllelim:mark, move by=1
[\lnot Pb, close={:to Pb or not to Pb,!c}, just=$\1lif\elim$:'u

]
[{a = b}
[a \neq a, close={:!c}, just={$=\elim$:{!uuu, 'u}t}
]
]
]
]
]

— 13 of 46 —

8 Typesetting a Proof Tree

[\lnot Pb
[{a = b}
[Pb, just={$=\elim$:{simple,!u}t}, close={:to Pb or not to Pb,!c}

\end{tableau}

which produces our desired result:

(F2)((Vy)(Py — = = y) A Pz) |- (32)(Vy)(Py ¢ z = y)

1 (3z)(Yy)(Py =z =y) APz) va Pr.
2 =(3z)(Vy)(Py <z =vy) \a Conc. neg.
3 (Vy)(Py »a=y) AN Pa v 13E
4. Vy)(Py —a=1y) \b 3NE
5 Pa 3ANE
6 (YY) (Py<a=y) Vb 2 -3E
7 —“(Pb<ra=0b) v 6 VE
TN
8. Pb -Pb 7+ E
9. a#b a=1b 8 < E
10. | Pb 5,9=F
11. Pb—a=bv 4VE
A 8,10
12. -Pb a=b 11 —-E
13. ® a#a 9,12 = E
8,12 ®

13

— 1) of 46 —

6 Proof Tree Anatomy

prooftree
environment

tableau
environment

4 Loading the Package

To load the package simply add the following to your document’s preamble.

[
‘ \usepackage{prooftrees}
L

prooftrees will load forest automatically.

The only option currently supported is tableaux. If this option is specified, the prooftree
environment will be called tableau instead.

Example: \usepackage[tableaux]prooftrees

would cause the tableau environment to be defined rather than prooftree.
Any other options given will be passed to forest.

Example: \usepackage [debug] prooftrees

would enable forest’s debugging.

If one or more of forest’s libraries are to be loaded, it is recommended that these be loaded
separately and their defaults applied, if applicable, within a local TEX group so that they do not
interfere with prooftrees’s environment.

5 Invocation

\begin{prooftree}{(tree preamble)}(tree specification)\end{prooftree}

The (tree preamble) is used to specify any non-default options which should be applied to the
tree. It may contain any code valid in the preamble of a regular forest tree, in addition to
setting prooftree options. The preamble may be empty, but the argument is required*. The (tree
specification) specifies the tree in the bracket notation parsed by forest.

Users of forest should note that the environments prooftree and forest differ in
important ways.

e prooftree’s argument is mandatory.

o The tree’s preamble cannot be given in the body of the environment.

o \end{prooftree} must follow the (tree specification) immediately.
\begin{tableau}{(tree preamble)}(tree specification)\end{tableau}

A substitute for prooftree, defined instead of prooftree if the package option tableaux is
specified or a \prooftree macro is already defined when prooftrees is loaded. See section 4 for
details and section 10 for this option’s raison d’étre.

6 Proof Tree Anatomy

The following diagram provides an overview of the configuration and anatomy of a prooftrees
proof tree. Detailed documentation is provided in section 7 and section 8.

1Failure to specify a required argument does not always yield a compilation error in the case of environments.
However, failure to specify required arguments to environments often fails to achieve the best consequences, even
when it does not result in compilation failures, and will, therefore, be avoided by the prudent.

— 15 of 46 —

7 Options

—e THEOREM /ENTAILMENT

« specified with to prove

o named proof statement

specification)

e check right

proof statement

o format controlled by proof statement format

= DISCHARGE & SUBSTITUTION
o location & annotation content controlled by checked and subs within the (tree

o discharge & substitution symbols controlled by check with & subs with

& subs right control relative location

— JUSTIFICATIONS
o location automatic
o existence controlled implicitly or with

e 0

wff
wif
wff\a.b
/\
wff wff
wff wff

oo_wt—‘]

& =

wff
NN

7. wff wff wﬁ wﬁ
8.
i’p wif

WFFS
o from (tree specification)
o global format controlled by
wff format
o local format controlled by
highlight wff & wff options
e highlight line and line
options control the format of
the current wff’s proof line

—e LINE NUMBERS
content & location automatic
existence controlled by line numbering

named line no n for proof line n

7 Options

- c o justifications
JUStlﬁca’tlon « content specified with just

justiﬁcation o cross-references supported

. . . o global format controlled by just format &
JHStlﬁca’tlon just refs left

e local format controlled by highlight just &
just options

justiﬁcation o named just n for proof line n
justification
ANATOMY & ONTOLOGY

o forest trees consist of (TikZ) nodes
justification o prooftrees places wffs, line numbers, justi-
fications & proof statements into nodes

o the content & location of each node de-
justiﬁcatjon pends on its type: line number, wff, justific-
justiﬁcation ation or proof statement

. . . e the proof’s structure & appearance is
justification determined by the (tree preamble) & (tree

justification | specification)

- « node content, existence & location is con-
trolled by one or both of these, depending
on the node type

MEANING & REFERENCE

¢ nodes for the proof statement, justifications & line num-
bers are given standard names for ease of reference

¢ the proof statement node is the root

¢ wff nodes may be named as required

e a cross-referencing system supports annotations in justific-
ations and closures

CLOSURE
¢ closure symbol & optional annotation
o location & annotation content controlled by close
within the (tree specification)
« annotations support cross-references
e closure symbol controlled by close with and close
with format
o global annotation format controlled by close format
& close sep

global format controlled by line no format & \linenumberstyle
local format controlled by highlight line no & line no options

Most configuration uses the standard key/value interface provided by TikZ and extended by
forest. These are divided into those which determine the overall appearance of the proof as a

whole and those with more local effects.

7.1 Global Options

The following options affect the global style of the tree and should typically be set in the tree’s
preamble if non-default values are desired. The default values for the document can be set outside
the prooftree environment using \forestset{(settings)}. If only proof trees will be typeset, a
default style can be configured using forest’s default preamble.

— 16 of 46 —

7 Options

7.1 Global Options

auto move
not auto move
Forest boolean register

true|false

Default: true

Determines whether prooftrees will move lines automatically, where possible, to avoid combining
different justifications when different branches are treated differently. The default is to avoid
conflicts automatically where possible. Turning this off permits finer-grained control of what gets
moved using move by. The following are equivalent to the default setting:

auto move
auto move=true

Either of the following will turn auto move off:

not auto move
auto move=false

line numbering

not line numbering
Forest boolean register

true|false

Default: true

This determines whether lines should be numbered. The default is to number lines. The following
are equivalent to the default setting:

line numbering
line numbering=true

Either of the following will turn line numbering off:

not line numbering
line numbering=false

justifications
not justifications
Forest boolean register

true|false

This determines whether justifications for lines of the proof should be typeset to the right of
the tree. It is rarely necessary to set this option explicitly as it will be automatically enabled
if required. The only exception concerns a proof for which a line should be moved but no
justifications are specified. In this case either of the following should be used to activate the
option:

justifications
justifications=true

single branches
not single branches
Forest boolean register

This is not necessary if just is used for any line of the proof.

= true|false

Default: false

This determines whether inference steps which do not result in at least two branches should draw
and explicit branch. The default is to not draw single branches explicitly. The following are
equivalent to the default setting:

not single branches
single branches=false

Either of the following will turn line numbering off:

single branches
single branches=true

— 17 of 46 —

7 Options

7.1 Global Options

line no width
Forest dimension register

just sep
Forest dimension register

line no sep
Forest dimension register

close sep
Forest dimension register

proof tree inner proof
width
Forest dimension register

proof tree inner proof
midpoint
Forest dimension register

line no shift
Forest count register

zero start
Forest style

= (dimension)

The maximum width of line numbers. By default, this is set to the width of the formatted line
number 99.

Example: 1ine no width=20pt

= (dimension)

Default: 1.5em

Amount by which to shift justifications away from the tree. A larger value will shift the
justifications further to the right, increasing their distance from the tree, while a smaller one will
decrease this distance. Note that a negative value ought never be given. Although this will not
cause an error, it may result in strange things happening. If you wish to decrease the distance
between the tree and the justifications further, please set just sep to zero and use the options
provided by forest and/or TikZ to make further negative adjustments.

Example: just sep=.5em

= (dimension)

Default: 1.5em

Amount by which to shift line numbers away from the tree. A larger value will shift the line
numbers further to the left, increasing their distance from the tree, while a smaller one will
decrease this distance. Note that a negative value ought never be given. Although this will not
cause an error, it may result in strange things happening. If you wish to decrease the distance
between the tree and the line numbers further, please set 1ine no sep to zero and use the options
provided by forest and/or TikZ to make further negative adjustments.

Example: 1line no sep=5pt

= (dimension)

Default: .75\baselineskip

Distance between the symbol marking branch closure and any following annotation. If the format
of such annotations is changed with close format, this dimension may require adjustment.

Example: close sep=\baselineskip

= (dimension)

Default: Opt

= (dimension)

Default: Opt
= (integer)

Default: 0

This value increments or decrements the number used for the first line of the proof. By default,
line numbering starts at 1.

Example: 1ine no shift=3
would begin numbering the lines at 4.

Start line numbering from 0 rather than 1. The following are equivalent:

zero start
line no shift=-1

— 18 of 46 —

7 Options

7.1 Global Options

to prove
Forest style

check with
Forest toks register

check right

not check right
Forest boolean register

check left
Forest style

close with
Forest toks register

close with format
Forest keylist register

close format
Forest keylist register

= (wif)

Statement of theorem or entailment to be typeset above the proof. In many cases, it will be
necessary to enclose the statement in curly brackets.

Example: to prove={\sststile{}{} P \1lif P}

By default, the content is expected to be suitable for typesetting in maths mode and should not,
therefore, be enclosed by dollar signs or equivalent.

= (symbol)

Default: \ensuremath{\checkmark} (v')

Symbol with which to mark discharged lines.

Example: check with={\text{\ding{52}}}

Within the tree, checked is used to identify discharged lines.

= true|false

Default: true

Determines whether the symbol indicating that a line is discharged should be placed to the right
of the wff. The alternative is, unsurprisingly, to place it to the left of the wff. The following are
equivalent to the default setting:

check right
check right=true

Set check right=false. The following are equivalent ways to place the markers to the left:

check right=false
not check right
check left

= (symbol)

Default: \ensuremath{\otimes} (®)

Symbol with which to close branches.

Example: close with={\ensuremath{\ast}}

Within the tree, close is used to identify closed branches.

= (key-value list)

Additional TikZ keys to apply to the closure symbol. Empty by default.
Example: close with format={red, font=}

To replace a previously set value, rather than adding to it, use close with format' rather than
close with format.

= (key-value list)

Default: font=\scriptsize
Additional TikZ keys to apply to any annotation following closure of a branch.
Example: close format={font=\footnotesize\sffamily, text=gray!75}

To replace the default value of close format, rather than adding to it, use close format'
rather than close format.

— 19 of 46 —

7 Options 7.1 Global Options

Example: close format'={text=red}

will produce red annotations in the default font size, whereas
Example: close format={text=red}

will produce red annotations in \scriptsize.

subs with = (Symb01>
Forest toks register

Default: \ensuremath{\backslash} (\)

Symbol to indicate variable substitution.

Example: \text{:}

Within the tree, subs is used to indicate variable substitution.

subs right = truelfalse
not subs right
Forest boolean register Default: true

Determines whether variable substitution should be indicated to the right of the wff. The
alternative is, again, to place it to the left of the wff. The following are equivalent to the default
setting:

subs right
subs right=true

subs left Set subs right=false. The following are equivalent ways to place the annotations to the left:

Forest style
subs right=false

not subs right
subs left

just refs left = truelfalse
not just refs left
Forest boolean register Default: true

Determines whether line number references should be placed to the left of justifications. The
alternative is to place them to the right of justifications. The following are equivalent to the
default setting:

[

‘ just refs left

‘ just refs left=true
L

just refs right Set just refs left=false. The following are equivalent ways to place the references to the
Forest style right:

just refs left=false
not just refs left
just refs right

Note that this setting only affects the placement of line numbers specified using the cross-referencing
system explained in section 7.2. Hard-coded line numbers in justifications will be typeset as is.

just format = (key-value list)
Forest keylist register
Additional TikZ keys to apply to line justifications. Empty by default.
Example: just format={red, font=}

To replace a previously set value, rather than adding to it, use just format' rather than just
format.

— 20 of J6 —

7 Options

7.2 Local Options

line no format
Forest keylist register

wff format
Forest keylist register

proof statement format
Forest keylist register

highlight format
Forest autowrapped toks register

merge delimiter
Forest toks register

grouped
not grouped
Forest boolean option

checked
Forest style

checked
Forest style

= (key-value list)
Additional TikZ keys to apply to line numbers. Empty by default.
Example: 1line no format={align=right, text=gray}

To replace a previously set value, rather than adding to it, use line no format' rather than
line no format. To change the way the number itself is formatted — to eliminate the dot, for
example, or to put the number in brackets — redefine \linenumberstyle (see section 8).

= (key-value list)
Additional TikZ keys to apply to wffs. Empty by default.
Example: wff format={draw=orange}

To replace a previously set value, rather than adding to it, use wff format' rather than wff
format.

= (key-value list)
Additional TikZ keys to apply to the proof statement. Empty by default.
Example: proof statement format={text=gray, draw=gray}

To replace a previously set value, rather than adding to it, use proof statement format' rather
than proof statement format.

= (key-value list)

Default: draw=gray, rounded corners
Additional TikZ keys to apply to highlighted wffs.
Example: highlight format={text=red}

To apply highlighting, use the highlight wff, highlight just, highlight line no and/or
highlight line keys (see section 7.2).

= (punctuation)

Default: \text{; } ()

Punctuation to separate distinct justifications for a single proof line. Note that prooftrees will
issue a warning if it detects different justifications for a single proof line and will suggest using
move by to avoid the need for merging justifications. In general, justifications ought not be
merged because it is then less clear to which wff(s) each justification applies. Moreover, later
references to the proof line will be similarly ambiguous. That is, merge delimiter ought almost
never be necessary because it is almost always better to restructure the proof to avoid ambiguity.

7.2 Local Options

The following options affect the local structure or appearance of the tree and should typically be
passed as options to the relevant node(s) within the tree.

Indicate that a line is not an inference. When single branches is false, as it is with the default
settings, this key is applied automatically and need not be given in the specification of the tree.
When single branches is true, however, this key must be specified for any line which ought not
be treated as an inference.

Example: grouped
Mark a complex wff as resolved, discharging the line.
Example: checked

= (name)

— 21 of 46 —

7 Options

7.2 Local Options

close
Forest style

close
Forest style

subs
Forest style

just
Forest autowrapped toks option

Existential elimination, discharge by substituting (name).
Example: checked=a
Close branch.

Example: close

(annotation)

(annotation prefix) : (references)

Close branch with annotation. In the simplest case, (annotation) contains no colon and is typeset
simply as it is. Any required references to other lines of the proof are assumed to be given
explicitly.

Example: close={12,14}

If (annotation) includes a colon, prooftrees assumes that it is of the form (annotation
prefix) : (references). In this case, the material prior to the colon should include material to be
typeset before the line numbers and the material following the colon should consist of one or
more references to other lines in the proof. In typical cases, no prefix will be required so that the
colon will be the first character. In case there is a prefix, prooftrees will insert a space prior to the
line numbers. (references) may consist of either forest names (e.g. given by name= (name label)
and then used as (name label)) or forest relative node names (e.g. (nodewalk)) or a mixture.

Example: close={:negated conclusion}

where name=negated conclusion was used to label an earlier proof line negated conclusion.
If multiple references are given, they should be separated by commas and either (references) or
the entire (annotation) must be enclosed in curly brackets, as is usual for TikZ and forest values
containing commas.

Example: close={:!c, 'uuu}
= (name)/(names)
Universal instantiation, instantiate with (name) or (names).

Example: subs={a,b}

(justification)

(justification prefix/suffix) : {references)

Justification for inference. This is typeset in text mode. Hence, mathematical expressions must
be enclosed suitably in dollar signs or equivalent. In the simplest case, (justification) contains
no colon and is typeset simply as it is. Any required references to other lines of the proof are
assumed to be given explicitly.

Example: just=3 \lorD

If (justification) includes a colon, prooftrees assumes that it is of the form (justification
prefix/suffix) : (references). In this case, the material prior to the colon should include ma-
terial to be typeset before or after the line numbers and the material following the colon should
consist of one or more references to other lines in the proof. Whether the material prior to the
colon is interpreted as a (justification prefix) or a (justification suffix) depends on the value of
just refs left. (references) may consist of either forest names (e.g. given by name= (name
label) and then used as (name label)) or forest relative node names (e.g. (nodewalk)) or a mixture.
If multiple references are given, they should be separated by commas and (references) must be
enclosed in curly brackets. If just refs left is true, as it is by default, then the appropriate
line number(s) will be typeset before the (justification suffix).

Example: just=$\lnot\exists$\elim:{!uu, 'u}

If just refs left is false, then the appropriate line number(s) will be typeset after the
(justification prefix).

— 22 of J6 —

7 Options

7.2 Local Options

move by
Forest style

highlight wff
not hightlight wff
Forest boolean option

highlight just

not hightlight just
Forest boolean option

Example: just=From:bertha
= (positive integer)

Move the content of the current line (positive integer) lines later in the proof. If the current line
has a justification and the content is moved, the justification will be moved with the line. Later
lines in the same branch will be moved appropriately, along with their justifications.

Example: move by=3

Note that, in many cases, prooftrees will automatically move lines later in the proof. It does this
when it detects a condition in which it expects conflicting justifications may be required for a
line while initially parsing the tree. Essentially, prooftrees tries to detect cases in which a branch
is followed closely by asymmetry in the structure of the branches. This happens, for example,
when the first branch’s first wff is followed by a single wff, while the second branch’s first wff is
followed by another branch. Diagrammatically:

wif wif wf wif
LN PN
wf w0 wf

In this case, prooftrees tries to adjust the tree by moving lines appropriately if required.

However, this detection is merely structural — prooftrees does not examine the content of
the wffs or justifications for this purpose. Nor does it look for slightly more distant structural
asymmetries, conflicting justifications in the absence of structural asymmetry or potential conflicts
with justifications for lines in other, more distant parallel branches. Although it is not that
difficult to detect the need to move lines in a greater proportion of cases, the problem lies in
providing general rules for deciding how to resolve such conflicts. (Indeed, some such conflicts
might be better left unresolved e.g. to fit a proof on a single Beamer slide.) In these cases, a
human must tell prooftrees if something should be moved, what should be moved and how far it
should be moved.

Because simple cases are automatically detected, it is best to typeset the proof before deciding
whether or where to use this option since prooftrees will assume that this option specifies movements
which are required in addition to those it automatically detects. Attempting to move a line ‘too
far’ is not advisable. prooftrees tries to simply ignore such instructions, but the results are likely
to be unpredictable.

Not moving a line far enough — or failing to move a line at all — may result in the content of
one justification being combined with that of another. This happens if just is specified more
than once for the same proof line with differing content. prooftrees does examine the content of
justifications for this purpose. When conflicting justifications are detected for the same proof line,
the justifications are merged and a warning issued suggesting the use of move by.

Highlight wff.
Example: highlight wff
Highlight justification.

— 23 of 46 —

8 Macros

Example: highlight just

highlight line no Highlight line number.
not highlight line no X . X
Forest boolean option ~LXample: highlight line no
highlight line Highlight proof line.

not highlight line
Forest boolean option

Example: highlight line

line no options = (key-value list)
Forest autowrapped toks option

Additional TikZ keys to apply to the line number for this line.
Example: 1line no options={blue}
just options = (key-value list)
Forest autowrapped toks option
Additional TikZ keys to apply to the justification for this line.
Example: just options={draw, font=\bfseries}
wif options = (key-value list)
Forest autowrapped toks option
Additional TikZ keys to apply to the wff for this line.
Example: wff options={magenta, draw}

Note that this key is provided primarily for symmetry as it is faster to simply give the options
directly to forest to pass on to TikZ. Unless wff format is set to a non-default value, the following
are equivalent:

wff options={magenta, draw}
magenta, draw

line options = (key-value list)
Forest autowrapped toks option

Additional TikZ keys to apply to this proof line.
Example: 1line options={draw, rounded corners}

line no override = (text)
Forest style
Substitute (text) for the programmatically-assigned line number. (text) will be wrapped by

\linenumberstyle, so should not be anything which would not make sense in that context.
Example: 1ine no override={n}

no line no
Forest style . Lo . .
Do not typeset a line number for this line. Intended for use in trees where line numbering is

activated, but some particular line should not have its number typeset. Note that the number for
the line is still assigned and the node which would otherwise contain that number is still typeset.
If the next line is automatically numbered, the line numbering will, therefore, ‘jump’, skipping
the omitted number.

Example: no line no

8 Macros

\linenumberstyle {(number)}
macro
This macro is responsible for formatting the line numbers. The default definition is

‘ \newcommand*\linenumberstyle [1]{#1.}

It may be redefined with \renewcommand* in the usual way. For example, if for some reason you
would like bold line numbers, try

— 2/ of /6 —

9 Memoization

\renewcommand*\linenumberstyle [1]{\textbf{#1.}}

9 Memoization

Tableaux created by prooftrees cannot, in general, be externalised with TikZ’s external library.
Since pgf/TikZ, in general, and prooftrees, in particular, can be rather slow to compile, this is
a serious issue. If you only have a two or three small tableaux, the compilation time will be
negligible. But if you have large, complex proofs or many smaller ones, compilation time will
quickly become excessive.

Version 0.9 does not cure the disease, but it does offer an extremely effective remedy for the
condition. While it does not make prooftrees any faster, it supports the memoize package developed
by forest’s author, Saso Zivanovié (2023). Memoization is faster, more secure, more robust and
easier to use than TikZ’s externalisation.

It is faster. It does not require separate compilations for each memoized object, so it is compar-
atively fast even when memoizing.

It is more secure. It requires only restricted shell-escape, which almost all TEX installations

enable by default, so it is considerably more secure and can be utilised even where shell-escape
is disabled.

It is more robust. It can successfully memoize code which defeats all ordinary mortals’ attempts
to externalize with the older TikZ library.

It is easier to use. It requires less configuration and less intervention. For example, it detects
problematic code and aborts memoization automatically in many cases in which TikZ’s
external would either cause a compilation error or silently produce nonsense output, forcing
the user to manually disable the process for relevant code.

There is always a ‘but’, but this is a pretty small ‘but’ as ‘but’s go.

But installation requires slightly more work. To reap the full benefits, you want to use
either the perl or the python ‘extraction’ method. There is a third method, which does
not require any special installation, but this lacks several of the advantages explained above
and is not recommended.

If you use TEX Live, you have perl already, but you may need to install a couple of libraries.
python is not a prerequisite for TEX Live but, if you happen to have it installed, you will
probably only need an additional library to use this method.

See Memoize (Zivanovié 2023) for further details.

Once you have the prerequisites setup, all you need do is load memoize before prooftrees.

\usepackage [extraction method=perl]{memoize}J, or python
\usepackage{prooftrees}

After a single compilation, your document will have expanded to include extra pages. At this
point, it will look pretty weird. After the next compilation, your document will return to its
normal self, the only difference being the speed with which it does so as all your memoized
tableaux will simply be included, as opposed to recompiled. Only when you alter the code for a
tableau, delete the generated files, disable memoization or explicitly request it will the proof be
recompiled.

Memoization is compatible with both prooftrees’s cross-referencing system and I¥TEX 2¢’°s cross-
references, but the latter require an additional compilation. In general, if a document element
takes n compilations to stabilise, it will take n 4+ 1 compilations to complete the memoization
process. See Memoize (Zivanovié 2023) for details.

— 25 of 46 —

11

Version History

10 Compatibility

Versions of prooftrees prior to 0.5 are incompatible with bussproofs, which also defines a prooftree
environment. Version 0.6 is compatible with bussproofs provided

either bussproofs is loaded before prooftrees

or prooftrees is loaded with option tableaux (see section 4).

In either case, prooftrees will not define a prooftree environment, but will instead define tableau.
This allows you to use tableau for prooftrees trees and prooftree for bussproofs trees.

11 Version History
11.1 0.9

Add support for memoize and utilise for documentation.

Use \NewDocumentEnvironment, removing direct dependency on environ.

11.2 0.8

Add previously unnoticed dependency on amstext. Attempt to fix straying closure symbols evident
in documentation and a TEX SE question?

Documentation now loads enumitem, since it depended on it already anyway and specifies doc2
in options for ltxdoc as the code is incompatible with the current version.

11.3 0.7

Implement auto move. See section 7.1. The main point of this option is to allow automatic
moves to be switched off if one teaches students to first apply all available non-branching rules
for the tableau as a whole, as opposed to all non-branching rules for the sub-tree. The automatic
algorithm is consistent with the latter, but not former, approach. The algorithm favours compact
trees, which are more likely to fit on beamer slides. Switching the algorithm off permits users to
specify exactly how things should or should not be moved. Thanks to Peter Smith for prompting
this.

Fix bug reported at tex.stackexchange.com/q/479263/39222.

11.4 0.6

Add compatibility option for use with bussproofs. See section 4. Thanks to Peter Smith for
suggesting this.

11.5 0.5

Significant re-implementation leveraging the new argument processing facilities in forest 2.1. This
significantly improves performance as the code is executed much faster than the previous pgfmath
implementation.

11.6 0.41
Update for compatibility with forest 2.1.

%https://tex.stackexchange.com/q/619314/.

— 26 of J6 —

https://tex.stackexchange.com/q/479263/39222
https://tex.stackexchange.com/q/619314/

References

1.7 0.4

11.7 0.4
Bug fix release:
e line no shift was broken;

e in some cases, an edge was drawn where no edge belonged.

11.8 0.3
First CTAN release.

References

Hodges, Wilfred (1991). Logic: An Introduction to Elementary Logic. Penguin.

Tantau, Till (2015). The TikZ and PGF Packages. Manual for Version 3.0.1a. 3.0.1a. 29th Aug.
2015. URL: http://sourceforge.net/projects/pgt.

Zivanovi¢, Saso (2016). Forest: A PGF/TikZ-Based Package for Drawing Linguistic Trees. 2.0.2.
4th Mar. 2016. URL: http://spj.ff.uni-1j.si/zivanovic/.

— (2023). Memoize. 1.0.0. 10th Oct. 2023. URL: https://www.ctan.org/pkg/memoize.

— 27 of 46 —

http://sourceforge.net/projects/pgf
http://spj.ff.uni-lj.si/zivanovic/
https://www.ctan.org/pkg/memoize

Index

Features are sorted by kind. Page references are given for both definitions and comments on use.

FOREST AUTOWRAPPED TOKS OPTIONS

just, 7, 10, 17, 22, 23

just options, 16, 24

line no options, 16, 24

line options, 16, 24

wif options, 16, 24
FOREST AUTOWRAPPED TOKS REGISTERS

highlight format, 21
FOREST BOOLEAN OPTIONS

grouped, 21

highlight just, 16, 21, 23

highlight line, 16, 21, 24

highlight line no, 16, 21, 24

highlight wff, 16, 21, 23

line numbering, 24

not grouped, 21

not highlight line, 24

not highlight line no, 24

not hightlight just, 23

not hightlight wff, 23
FOREST BOOLEAN REGISTERS

auto move, 17, 26

check right, 16, 19

just refs left, 16, 20, 22

justifications, 17

line numbering, 17

not auto move, 17

not check right, 19

not just refs left, 20

not justifications, 17

not line numbering, 17

not single branches, 17

not subs right, 20

single branches, 17, 21

subs right, 16, 20
FOREST COUNT REGISTERS

line no shift, 6, 18, 27
FOREST DIMENSION REGISTERS

close sep, 16, 18

just sep, 18

line no sep, 18

line no width, 18

proof tree inner proof midpoint, 18

proof tree inner proof width, 18
FOREST KEYLIST REGISTERS

close format, 16, 18, 19

close format', 19

close with format, 16, 19

close with format', 19

just format, 16, 20

just format', 20

line no format, 16, 21
line no format', 21
proof statement format, 16, 21
proof statement format', 21
wif format, 16, 21, 24
wif format', 21
FOREST STYLES
check left, 19
checked, 8, 16, 19, 21
close, 16, 19, 22
just refs right, 20
line no override, 24
move by, 17, 21, 23
no line no, 24
subs, 16, 20, 22
subs left, 20
to prove, 19
zero start, 18
FOREST TOKS REGISTERS
check with, 16, 19
close with, 16, 19
merge delimiter, 21
subs with, 16, 20
ENVIRONMENTS
prooftree, 15
tableau, 15
MACROS
\linenumberstyle, 24
\linenumberstyle, 24
PACKAGE OPTIONS
tableaux, 15
PACKAGES
external, 25
forest, 1, 15
memoize, 1, 25
pegf, 25
prooftrees, 1, 15

— 28 of J6 —

48

A Implementation

A Implementation

%% Copyright 2016-2024 Clea F. Rees

Do

%% This work may be distributed and/or modified under the

%% conditions of the LaTeX Project Public License, either version 1.3c
%% of this license or (at your option) any later version.

%% The latest version of this license is in

%% https://www.latex-project.org/lppl.txt

%% and version 1.3c or later is part of all distributions of LaTeX

%% version 2008-05-04 or later.

%o

%% This work has the LPPL maintenance status “maintained'.
YA

%% The Current Maintainer of this work is Clea F. Rees.

%oto

%% This file may only be distributed together with a copy of the package
%% prooftrees.
hh
%% This work consists of all files listed in manifest.txt.
hh
Tl loTo 1o 1o To oo o o o o o ToTo o T o o o oo Fo oo T o o o oo oo oo T o o o o oo oo oo
\NeedsTeXFormat{LaTeX2e}
\RequirePackage{svn-prov}
\ProvidesPackageSVN{$Id: prooftrees.sty 10522 2024-10-23 16:31:08Z cfrees $}[v0.9 \revinfo]
% define \prooftrees@enw to hold the name of the environment
% default is to name the environment prooftree, this ensures backwards compatibility
\newcommand*\prooftrees@enw{prooftree}
% allow users to change the name to tableau using tableaux
\DeclareOption{tableaux}{\renewcommand*\prooftrees@enw{tableaul}}
% just in case
\DeclareOption{tableau}{\renewcommand*\prooftrees@enw{tableault}
\DeclareOption*{\PassOptionsToPackage{\CurrentOption}{forestl}}
% if \prooftree is not yet defined, set the name to prooftree; otherwise, use tableau to avoid
conflict with bussproofs (which uses 'prooftree' rather than 'bussproof' as one might expect)
\ifcsname prooftree\endcsname

\renewcommand*\prooftrees@enw{tableau}’
\else

\renewcommand*\prooftrees@enw{prooftreel}y,
\fi
% \ifundef\prooftree{\renewcommand*\prooftrees@enw{prooftree}}{\renewcommand*\prooftrees@enw{tableau
3}
% let users override the default prooftree in case they need to load bussproofs later
\ProcessOptions
\RequirePackage{forest}[2016/12/04]
\RequirePackage{amssymb,amstext}
\newcommand*\linenumberstyle [1]{#1.3}
% currently, keys starting 'proof tree' and macros starting 'prooftree' or 'prooftree@' are intended
for internal use only
% this does not apply to the environment prooftree
% other keys and macros are intended for use in documents
% in particular, the style 'proof tree' is **NOT+** intended to be used directly by the user and its
direct use is **ABSOLUTELY NOT SUPPORTED IN ANY WAY, SHAPE OR FORM**; it is intended only for
implicit use when the prooftree environment calls it
\forestset{), don't use @ in register/option names - the documentation is lying when it says non-
alphanumerics will be converted to underscores when forming pgfmath functions ;)

declare boolean register={line numbering},’, line numbers

line numbering,’% default is for line numbers

declare boolean register={justifications},’ line justifications

not justifications,’ default is for no line justifications (b/c there's no point in enabling this
if the user doesn't specify any content)

— 29 of 46 —

A Implementation

declare boolean register={single branches},’, single branches: explicitly drawn branches and a

normal level distance between lone children and their parents

not single branches,’, default is for lone children to be grouped with their parents

declare boolean register={auto move},, ble mae'n bosibl, symud pethau'n awtomatig

auto move,’ default: symud yn awtomatig

declare dimen register={line no width},’, default will be set to the width of 99 wrapped in the line
numbering style

line no width'=0Opt,’ fallback default is Opt

declare dimen register={just sepl},’ amount by which to shift justifications away from the main tree
just sep'=1.5em,’ default is 1.5em

declare dimen register={just dist},), distance of justifications from centre of inner tree;

overrides just sep

just dist'=0Opt,
declare dimen register={line no sepl},’, amount by which to shift line numbers away from the main

tree

line no sep'=1.5em,
declare dimen register={line no dist},’ distance of line nos. from centre of inner tree; overrides

line no sep

line no dist'=0Opt,

declare dimen register={close sepl},’ distance between closure symbols and any following annotation
close sep'=.75\baselineskip,

declare dimen register={proof tree line no x},

proof tree line no x'=0pt,

declare dimen register={proof tree justification x},

proof tree justification x'=0Opt,

declare dimen register={proof tree inner proof width},

proof tree inner proof width'=0Opt,

declare dimen register={proof tree inner proof midpoint},

proof tree inner proof midpoint'=Opt,

declare count register={proof tree rhif lefelau},’, count the levels in the proof tree
proof tree rhif lefelau'=0,

declare count register={proof tree lcount},’ count the line numbers (on the left)
proof tree lcount'=0,

declare count register={proof tree jcount},), count the justifications (on the right)
proof tree jcount'=0,

declare count register={line no shift},’, adjustment for line numbering
line no shift'=0,

declare count register={proof tree aros},

proof tree aros'=0,

declare toks register={check with},

check with={\ensuremath{\checkmark}},

declare boolean register={check right},

check right,

check left/.style={not check right},

declare toks register={subs with},

subs with={\ensuremath{\backslash}},

declare boolean register={subs right},

subs right,

subs left/.style={not subs right},

declare toks register={close with},

close with={\ensuremath{\otimes}},

declare keylist register={close format},

close format={font=\scriptsize},

declare keylist register={close with format},

close with format={},

declare toks register={merge delimiter},

merge delimiter={\text{; 1}},

declare boolean register={just refs left},

just refs left,

just refs right/.style={not just refs left},

declare keylist register={just format},

— 30 of 46 —

109

110

159

160

161

162

163

164

A Implementation

just format={},
declare keylist register={line no format},
line no format={},
declare autowrapped toks register={highlight format},
highlight format={draw=gray, rounded corners},
declare keylist register={proof statement format},
proof statement format={},
declare keylist register={wff format},
wff format={},
declare boolean={proof tree justification}{0},
declare boolean={proof tree line number}{0},
declare boolean={grouped}{0},
declare boolean={proof tree phantom}{0},
declare boolean={highlight wff}{0},
declare boolean={highlight just}{0},
declare boolean={highlight line no}{0},
declare boolean={highlight 1line}{0},
Autoforward={highlight line}{highlight just, highlight wff, highlight line no},
declare boolean={proof tree toing}{0},
declare boolean={proof tree toing with}{0},
declare boolean={proof tree rhiant cymysg}{0},
declare boolean={proof tree rhifol}{1},
declare boolean={proof tree arweinydd}{0},
declare autowrapped toks={just}{},
declare toks={proof tree rhestr rhifau llinellaul}{},
declare toks={proof tree close}{},
declare toks={proof tree rhestr rhifau llinellau caul}{},
declare autowrapped toks={just options}{},
declare autowrapped toks={line no options}{},
declare autowrapped toks={wff options}{},
declare autowrapped toks={line options}{},
Autoforward={line options}{just options={#1}, line no options={#1}, wff options={#1}},
declare count={proof tree toing by}{0},
declare count={proof tree cadw toing by}{0},
declare count={proof tree toooing}{0},
declare count={proof tree proof line no}{0},
% keylists for internal storage
declare keylist={proof tree jrefsl}{},
declare keylist={proof tree crefs}{},
% keylists for use in stages
declare keylist={proof tree ffurfl}{},
declare keylist={proof tree symud awto}{},
declare keylist={proof tree creu nodiadaul}{},
declare keylist={proof tree nodiadaul}{},
% > not documented yet, I think
% > now indicates use of process when it is the first token, preceding a list of instructions as
opposed to pgfmath stuff
define long step={proof tree symud}{}{%
root,sort by={>{0}{level},>{_0<}{1i}n children}},sort'=descendants
},
define long step={proof tree cywiro symud}{}{/
root,if line numbering={n=2}{n=1},sort by={>{0}{levell},>{_0<}{1}{n children}},sort'=descendants
},
define long step={proof tree camau}{}{/ updated version of defn. from saso's code (forest2-saso-
ptsz.tex) & http://chat.stackexchange.com/transcript/message/28321501#28321501
root,sort by={>{0}{y},>{0wi+d}{x}{-##1}},sort'={filter={descendants}{>{00!&}{proof tree rhifol}{
proof tree phantom}}}), angen +d - gweler http://chat.stackexchange.com/transcript/message
/28607212#28607212
},
define long step={proof tree wffs}{}{), coeden brif yn unig ar 61 i greu nodiadau
fake=root,if line numbering={n=2}{n=1},tree

— 31 of 46 —

166

167

168

169

170

186

187

188

189

190

191

192

193

194

195

196

A Implementation

},
checked/.style={), mark discharge with optional name substituted into existential
delay=1{}
if check right={}
content+'={\ \forestregister{check with}#1},
Hu%
+content '={\forestregister{check with}#1\ 7},
1,
1,
},
subs/.style={), mark substitution of name into universal
delay=1{}
if subs right={J
content+'={\ \forestregister{subs with}#1},
Hu%
+content '={\forestregister{subs with}#1\ },
1,
},
},

close/.style={% this now uses nodes rather than a label to accommodate annotations; closing must be
done before packing the tree to ensure that sufficient space is allowed for the symbol and any
following annotation; the annotations must be processed before anything is moved to ensure that the
correct line numbers are used later, even if the references are given as relative node names
if={%
>{__=H#1}H{1}%
HH%
temptoksb={},
temptoksa={#1},
split register={temptoksal}{:}{proof tree close,temptoksb},
if temptoksb={}{}{%
split register={temptoksb}{,}{proof tree cref},
1,
1,
delay={%
append={/ this node holds the closure symbol
[\forestregister{close with},
not proof tree rhifo,
proof tree phantom,
grouped,
no edge,
process keylist register=close with format,
before computing xy={), adjust the distance between the closure symbol and any annotation
delay={%
1'=\baselineskip,’% cywiro? fel arall, bydda'r peth byth yn cael ei wneud achos proof
tree phantom? dim yn siwr o gwbl
for children={}
1/.register=close sep,
}’
1,
1,
before drawing tree={Y
if={>{RR|}{line numbering}{justifications}}{J
proof tree proof line no/.option=!parent.proof tree proof line no,
Hi,
1,
if={J
>{__=H#1H{Y
H3H{’% don't create a second node if there's no annotation
delay={%
append={J, this node holds the annotation, possibly including cross-references which
will be relative to the node's grandparent

— 32 of 46 —

A Implementation

not proof tree rhifo,
proof tree phantom,
grouped,
no edge,
process keylist register=close format,
if={%
>{0_=}{!parent,parent.proof tree close}{}/
H3}content/.option=!{parent,parent}.proof tree close},
proof tree crefs/.option=!{parent,parent}.proof tree crefs,
delay={’
'{parent,parent}.proof tree crefs'={},
},
before drawing tree={J,
if={>{RR|}{1line numbering}{justifications}}{%
proof tree proof line no/.option=!{parent,parent}.proof tree proof line no,
H3,
1,
1%

1,
proof tree line no/.style={J, creates the line numbers on the left; note that it *does* matter that
these are part of the tree, even though they do not need to be packed or to have xy computed;
moreover, it matters that each is the child of the previous line number... so it won't do for them to
remain siblings, even though that's fine when they are created.
anchor=base west,
no edge,
proof tree line number,
text width/.register=line no width,
x'/.register=proof tree line no x,
process keylist register=line no format,
delay={%
proof tree lcount'+=1,
tempcounta/.process={RRw2+n}{proof tree lcount}{line no shift}{##1+##2},
content/.process={Rwil}{tempcounta}{\linenumberstyle{##1}},7 content i.e. the line number
name/.expanded={line no \foresteregister{tempcountal}},’ name them so they can be moved later
typeset node,
if proof tree lcount>=3{), the initial location of most line numbers is incorrect and they must
be moved
for previous={}% move the line number below the previous line number
append/ .expanded={line no \foresteregister{tempcounta}}
1,
Hi,
3,
1,
proof tree line justification/.style={) creates the justifications on the right but does not yet
specify any content
anchor=base west,
no edge,
proof tree justification,
x'/.register=proof tree justification x,
process keylist register=just format,
delay={%
proof tree jcount'+=1,
tempcounta/.process={RRw2+n}{proof tree jcount}{line no shift}{##1+##2},
name/.expanded={just \foresteregister{tempcountal}},’ name them so they can be moved

— 33 of 46 —

299

300

301

302

303

304

305

306

A Implementation

typeset node,’% angen i osgoi broblemau 'da highlight just/line etc.
if proof tree jcount>=3{), correct the location as for the line numbers (cf. line no style)
for previous={J,
append/ .expanded={just \foresteregister{tempcountal}},
},
Hi,
},
},
zero start/.style={%
line no shift'+=-1,
},
to prove/.style={) sets a proof statement
for root={J
before typesetting nodes={J
content={#1},
phantom=false,
baseline,
if line numbering={anchor=base west}{anchor=base},
process keylist register=proof statement format
1,
before computing xy={%
delay={’
for children={%
1=1.5%\baselineskip,

1,
proof tree/.style={J, this style should **NOT** be used directly in a forest environment - see notes
at top of this file
for tree={J
parent anchor=children,’ manual 64
child anchor=parent, manual 64
math content,
delay=1{}
if just={}}{) if we've got justifications, make sure nodes are created for them later and
split out cross-references so we identify the correct nodes before anything gets moved, allowing the
use of relative node names
justificationms,
temptoksa={},
split option={just}{:}{just,temptoksa},
if temptoksa={}{}{/
split register={temptoksa}{,}{proof tree jref},
1,
1,
if content={}{) if there's no proof statement
if level=0{}{%
shape=coordinate,
1,
Hi,
1,
1,
where level=0{%
for children={/, no edges from phantom root or proof statement to children
before typesetting nodes={J
no edge,
1,
1,
delay={%
if content={}{phantom}{},

— 34 of 46 —

389

A Implementation

if line numbering={J, create the line numbers if appropriate
parent anchor=south west,
if line no width={Opt}{/
line no width/.pgfmath={width("\noexpand\linenumberstyle{99}")},

H?,
Hi,
})

proof tree creu nodiadau={’ this is processed after computing xy
if={>{RR|}{1line numbering}{justifications}}{/, count proof lines if necessary
proof tree rhif lefelau'/.register=line no shift,
for proof tree camau={}
if level>=1{%

if={%

>{00<}{y}{!back.y}%

H%

proof tree
proof tree

Hu%

proof tree

3,
H3,
1,
proof tree
proof tree
proof tree
proof tree

H3,

inner
inner
inner
inner

rhif lefelau'+=1,

proof

proof

proof
proof
proof
proof

if line numbering={J, get
of the proof statement
proof tree line no x/.min={>{00w2+d}{x}{min x}{##1+##2}}{fake=root,descendants},

if={Y%

line no'/.register=proof tree rhif lefelau,

line no'/.register=proof tree rhif lefelau

midpoint/.min={>{00w2+d}{x}{min x}{##1+##2}}{fake=root,descendants},
width/.max={>{00w2+d}{x}{max x}{##1+##2}}{fake=root,descendants},
width-/.register=proof tree inner proof midpoint,
midpoint+/.process={Rw+d{proof tree inner proof width}{##1/2}},

the x position of line numbers and adjust the location and alignment

> Rd= {line no dist}{Opt}’

H

proof tree line no x-/.register=line no sep,

H

tempdima/.register=proof tree inner proof width,

tempdima:=2,

if={%

> RR< {line no dist}{tempdimal}’,

H

proof tree line no x/.register=proof tree inner proof midpoint,
proof tree line no x-/.register=line no dist,

}’
}’

proof tree line no x—/.register=line no width,

for root={Y

tempdimc/.option=x,
x'+/.register=proof tree line no x,
x'-/.option=min x,

}’

prepend={/, create line numbers on left

[’

proof tree line no,

% () to group are required here - otherwise, the -1 (or -2 or whatever) is silently

ignored

repeat={((proof_tree_rhif_lefelau)-1)-(line_no_shift)}{) most are created in the wrong
place but proof tree line no moves them later
delay n={proof_tree_lcount}{
append={[, proof tree line nol},

}3
})

— 35 of 46 —

394

395

397

399

100

401

102

103

404

105

106

108

109

A Implementation

1%
}’
Hi,

if justifications={), get the x position of justifications and create the nodes which will

hold the justification content, if required

proof tree justification x/.max={>{00w2+d}{x}{max x}{##1+##2}}{fake=root,descendants},

if={%

> Rd= {just dist}{Opt}
Hi

proof tree justification x+/.register=just sep,
Hou

tempdima/.register=proof tree inner proof width,
tempdima:=2,
if={%
> RR< {just dist}{tempdimal,
HM%
proof tree justification x/.register=proof tree inner proof midpoint,
proof tree justification x+/.register=just dist,
1,
1,
append={/,
[,
proof tree line justification,
repeat={((proof_tree_rhif_lefelau)-1)-(line_no_shift)}{’% most are created in the wrong

place but proof tree line justification moves them later

delay n={proof_tree_jcount}{/
append={[, proof tree line justification]},

1,
Y
1%
1,
Hb,
IR
Ho
delay={%
if single branches={}{J automatically group lines if not using single branches
if n children=1{%
for children={J
grouped,
1,
H,
}’
1,

before typesetting nodes={) apply wff-specific highlighting and additional TikZ keys
process keylist register=wff format,
if highlight wff={node options/.register=highlight format}{},
node options/.option=wff options,
1},
3,

proof tree ffurf={) processed before proof tree symud auto: adjusts the alignment of lines when

some levels of the tree are grouped together either whenever the number of children is only 1 or by
applying the grouped style to particular nodes when specifying the tree

if auto move={%
if single branches={Y

where={},
>{0! _0< 0 &&}{grouped}{2}{level}{proof tree rhifol}/,
H%
if={J
>{_0= _0< &}{1}{!parent.n children}{1}{!parent,parent.n children}/,
H%

not tempboola,

— 36 of 46 —

461

462

463

464

465

466

467

468

490

491

492

493

494

495

A Implementation

for root/.process={0wi}{levell}{J
for level={##1}{/

if={%
>{_0< _0= &}{1}{!parent.n children}{1}{n}%
H
tempboola,
H?,
1,

+
if tempboola={%
proof tree toing,
H:,
Hi,
Hi,
H3,
where={J,
>{0 _0< 0 &&}{grouped}{1}{level}{proof tree rhifol}/

3’ this searches for certain kinds of structural asymmetry in the tree and attempts to move
lines appropriately in such cases - the algorithm is intended to be relatively conservative (mot in
the sense of 'cautious' or 'safe' but in the sense of 'reflection of the overlapping consensus of
reasonable users' / 'what would be rationally agreed behind the prooftrees veil of ignorance';
however, I should have realised I actually had 'the overlapping concensus of reasonable Beamer users'

in mind rather than 'the overlapping consensus of reasonable users', so there is now an option to
turn it off;apologies if this comment previously misclassified you as 'unreasonable'; apologies for
the inconvenience if you are an unreasonable user)
not tempboola,
for root/.process={0wl}{level}{)
for level={##1}{/,

if={J

>{_0< _0= &}{1}{'parent.n children}{1}{n}}
%

tempboola,
H:,

1,
},% Sao: http://chat.stackexchange.com/transcript/message/27874731#27874731, see also http
://chat.stackexchange.com/transcript/message/27874722#27874722
if tempboola={J,
if n children=0{%
if={>{00|}{!parent.proof tree toing}{!parent.proof tree toing with}}{) we're already
moving the parent and the child will move with the parent, so we can just mark this and do nothing
else
proof tree toing with,
Hou
for root/.process={0wl}{level}{), don't move a terminal node even in case of asymmetry
instead, create a separate proof line for terminal nodes on this level which are only children, by
moving children with siblings on this level down a proof line, without altering their physical
location
% this makes the tree more compact and stops it looking silly
for level={##1}{%
if={%
>{_0< _0= &}{1}{!parent.n children}{1}{n}%

% this just serves to keep the levels nice for the sub-tree and ensure things
align. We need this because we want to skip a level here to allow room for the terminal node in the
other branch

for parent={J,
if proof tree rhiant cymysg={}{), we mark the parent to avoid increasing the
line number of its descendants more than once
proof tree rhiant cymysg,
for descendants={J
proof tree toing by'+=1,
1,

— 37 of 46 —

196

197

498

199

500

501

502

503

504

505

506

A Implementation

1,
1,
H3,
1,
},% Sao: http://chat.stackexchange.com/transcript/message/27874731#27874731, see
also http://chat.stackexchange.com/transcript/message/27874722#27874722
1,
no edge,
H
if={%
>{_0= _0< &}{1}{!parent.n children}{1}{!parent,parent.n children}/,
H’ don't try to move if the node has more than 1 child or the grandparent has no more
than that; otherwise, mark the node as one to move - we figure out where to move it later
proof tree toing,
Hno edgel},
1,
Hno edgel,
H3,
H:,
1,
proof tree symud awto={), processed before typesetting nodes: if _this_ could be done during
packing, that would be very nice, even if the previous stuff can't be
if auto move={Y
proof tree aros'=0,
for proof tree symud={J
if proof tree toing={) this relies on an experimental feature of forest, which is anffodus
for nodewalk={fake=parent,fake=sibling,descendants}{do dynamics},
delay n={\foresteregister{proof tree aros}}{J
tempcounta/.max={>{0000w4+n}{level}{proof tree toing by}{proof tree toooing}{proof tree
rhifo}{ (##1+##2+##3) *##4} }{parent,sibling,descendants},
if tempcounta>=1{},
if={%
>{Rwil+n 00w2+n >}{tempcounta}{##1+1}{level}{proof tree toing by}{##1+##2}/
H
tempcounta-/.option=level,
tempcounta'+=1,
move by/.register=tempcounta,
Hno edgel,
}no edge},

1,
proof tree aros'+=4,
H3,
1,
H:,

},
proof tree nodiadau={), processed after proof tree creu nodiadau and before before drawing tree:
creates annotation content which may include cross-references, applies highlighting and additional
TikZ keys to line numbers, justifications and to wffs where specified for entire proof lines
where proof tree crefs={}{}{/ resolve cross-refs in closures
split option={proof tree crefs}{,}{proof tree rhif 1linell cau},
if content={}{/
content/.option=proof tree rhestr rhifau llinellau cau,
H%
content+/.process={_0}{\ }{proof tree rhestr rhifau llinellau cau},
1,
typeset node,
1,
if line numbering={), apply highlighting and additional TikZ keys to line numbers; initial
alignment of numbers with proof lines
for proof tree wffs={%
if highlight line no={}

— 38 of 46 —

A Implementation

550 for name/.process={0w1000w3}{proof tree proof line no}{line no ##1}{proof tree proof line
no}{line no options}{y}{/ from Sao's anti-pgfmath version - rhaid ddweud proof tree proof line no yn
ddwywaith ?! dim yn bosibl i ailddefnyddio'r gyntaf 7!

551 node options/.register=highlight format,

552 ##2,

553 y'=##3,

554 proof tree proof line no'=##1,

555 typeset node,

556 }%

557 H

558 if line no options={}{%

559 if proof tree phantom={}{%

560 for name/.process={0w100w2}{proof tree proof line no}{line no ##1}{proof tree proof
line noX}{y}{%

561 y'=##2,

562 proof tree proof line no'=##1,

563 }%

564 },

565 H%

566 for name/.process={0w1000w3}{proof tree proof line no}{line no ##1}{proof tree proof
line no}{line no options}{y}{/

567 ##2,

568 y'=##3,

569 proof tree proof line no'=##1,

570 typeset node,

571 }%

572 ¥ N

573 },

574 } N

575 Hi,

576 if justifications={J), initial alignment of justifications with proof lines, addition of content,
resolution of cross-references and application of highlighting and additional TikZ keys

577 for proof tree wffs={J

578 if just={}{%

579 if proof tree phantom={}{’

580 for name/.process={0w100w2}{proof tree proof line no}{just ##1}{proof tree proof line

not{y}{/ from Sao's anti-pgfmath version - rhaid ddweud proof tree proof line no yn ddwywaith ?! dim
yn bosibl i ailddefnyddio'r gyntaf 7!

581 y'=##2,

582 proof tree proof line no'=##1,

583 }%

584 } N

585 % puts the content of the justifications into the empty justification nodes on the right;
because this is done late, the nodes need to be typeset again

586 if proof tree jrefs={}{}{) resolve cross-refs in justifications

587 split option={proof tree jrefs}{,}{proof tree rhif 1linell},

588 if just refs left={%

589 +just/.process={0_}{proof tree rhestr rhifau 1llinellau}{\ 1},

590 Hu

591 just+/.process={_0}{\ }{proof tree rhestr rhifau llinellau},

592 } N

593 } N

594 if highlight just={% apply highlighting and additional TikZ keys to justifications, set

content and merge any conflicting specifications, warning user if appropriate

595 for name/.process={0w10000w4}{proof tree proof line no}{just ##1}{proof tree proof line
not{just}{just options}{y}{) from Sao's anti-pgfmath version - rhaid ddweud proof tree proof line no
yn ddwywaith ?! dim yn bosibl i ailddefnyddio'r gyntaf 7!

596 if={7%
597 >{0_= 0_= |}{content}{}{content}{##2}/,
598 H gweler isod - o géd Sao

599 content={##2},

— 39 of 46 —

600

601

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

648

649

650

A Implementation

i
content+'={\foresteregister{merge delimiter}##2},
TeX={\PackageWarning{prooftrees}{Merging conflicting justifications for line ##1!
Please examine the output carefully and use "move by" to move lines later in the proof if required.
Details of how to do this are included in the documentation.l}},
1},
node options/.register=highlight format,
##3,
y'=##4,
proof tree proof line no'=##1,
typeset node,
}% do NOT put a comma here!
H%
for name/.process={0w10000w4}{proof tree proof line no}{just ##1}{proof tree proof line
nor{just}{just options}{y}{% from Sao's anti-pgfmath version - rhaid ddweud proof tree proof line no
yn ddwywaith ?! dim yn bosibl i ailddefnyddio'r gyntaf 7!
if={) from Sao's anti-pgfmath version - I appreciate this is faster, but why is it *

required*?!
>{0_= 0_= |}{content}{}{content}{##2}%
H
content={##2},
H

content+'={\foresteregister{merge delimiter}##2},

TeX={\PackageWarning{prooftrees}{Merging conflicting justifications for line ##1!
Please examine the output carefully and use "move by" to move lines later in the proof if required.
Details of how to do this are included in the documentation.l}},

+,
##3,
y'=##4,

proof tree proof line no'=##1,
typeset node,
}), do NOT put a comma here!
}
1,
1,
Hi,
for proof tree wffs={), apply highlighting and TikZ keys which are specified for whole proof
lines to all applicable wffs
if proof tree phantom={}{
if highlight line={J
for proof tree wffs/.process={00w2}{proof tree proof line no}{line options}{/
if proof tree proof line no={##1}{/
node options/.register=highlight format,
##2,
H3%
1,
H
for proof tree wffs/.process={00w2}{proof tree proof line no}{line options}{J
if proof tree proof line no={##1}{##2}{},
1,
1,
delay={typeset node},
1,
1,
3,
before packing={) initial alignment so we don't get proof line numbers incrementing due to
varying height/depth of nodes, for example - when single branches is true and few nodes are grouped,
this is also a reasonable first approximation
for tree={J,
tier/.process={00w2+nwi}{level}{proof tree toing by}{##1+##2}{tier ##1},
1,

— 40 of 46 —

658

659

660

661

662

663

664

665

666

667

675

676

677

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

701

A Implementation

for root={), if there's no proof statement, adjust the alignment of the proof relative to the
surrounding text
if content={}{/%
'{n=1} .baseline,
Hi,
+
1},
before computing xy={’% adjust distance between levels for grouped nodes after tree is packed
for tree={J
if={%
>{0 _0< &}{grouped}{1}{levell}’
H% osgoi overlapping nodes, if posibl: cwestiwn https://tex.stackexchange.com/q/456254/
not tempboola,
tempcounta/.option=level,
tempcountb/.option=proof tree toing,
tempcountb+/.option=proof tree toooing,
for nodewalk={fake=root, descendants}{if={> RO= On> 0! 0! 00w2+nR= &&&&
{tempcounta}{level} {!u.n children}{1} {proof tree arweinydd} {proof tree phantom} {
proof tree toing by} {proof tree toooing}{##1+##2} {tempcountb}
Htempboola}{}},
if tempboola={}{1'=\baselineskip},
Hi,
1,
1,
before drawing tree={), set final alignment for proof lines which have been moved by effectively
grouping lead nodes and moving their subtrees accordingly - this requires that each line number and
justification be the child of the previous one and that if justifications are used at all, then
justifications exist for all proof lines, even if empty
if={>{RR|R!&}{1line numbering}{justifications}{single branches}}{), correct the alignment of move
by lines when single branches is false - o fersiwn anti-pgfmath Sao
tempdimc'=0pt,’ track cumulative adjustments to line numbers and justifications
for proof tree cywiro symud={},
if proof tree arweinydd={J, only examine the lead nodes - their descendants need the same (
cumulative) adjustments
tempdima'/.option=y,
if line numbering={), if there are line numbers, we use the previous line number's
vertical position
for name/.process={0wl+nwi}{proof tree proof line no}{##1-1}{line no ##1}{), arafach 7
tempdimb'/.option=y,
Y
3% if not, we use the previous justification's vertical position
for name/.process={0wl+nwl}{proof tree proof line nol}{##1-1}{just ##1}{), arafach 7
tempdimb'/.option=y,
Y
1,
for parent={) the parent (which will be a phantom) gets aligned with the previous line
y'/.register=tempdimb,
1,
if tempdimb<={0pt}{% adjust so we align this line below the previous one (assuming we're
going down)
tempdimb'-=\baselineskip,
H
tempdimb'+=\baselineskip,
1,
tempdimb'-/.register=tempdima,’ how far are we moving?
for tree={) adjust this node and all descendants
y'+/.register=tempdimb,
1,
tempdimb'-/.register=tempdimc,’ deduct any tracked cumulative adjustments to line numbers
and justifications
if line numbering={) adjust the line numbers, if any

— 41 of 46 —

Implementation

for name/.process={0wl}{proof tree proof line no}{line no ##1}{J
for tree={J
y'+/.register=tempdimb,
},
Y
Hi,
if justifications={), adjust the justifications, if any
for name/.process={0wl}{proof tree proof line no}{just ##1}{) t. 60 manual 2.1 rcil
for tree={J
y'+/.register=tempdimb,
1,
Y
H3,
tempdimc'/.register=tempdimb,’ add the adjustment just implemented to the tracked

cumulative adjustments for line numbers and/or justifications

})

H3,
},
Hi,
if={%
> RR| {auto move}{single branches}/
H%
where proof tree arweinydd={J
for nodewalk={
save append={proof tree walk}{J
current,
do until={},
> 0+t_+t=! {content}{}’
Hparent}
Yh
H3,
H3,
where level>=1{J,
if grouped={%
if in saved nodewalk={current}{proof tree walk}{}{%
no edge,
},
H3,
H3,
1},
},

move by/.style={) this implements both the automated moves prooftrees finds necessary and any

additional moves requested by the user - more accurately, it implements
corrected later (e.g. to avoid skipping numbers or creating empty proof

wanted)

if={
>{_n<}O}{#1}/

H% only try to move the node if the target line number exceeds the one i.e. the line number is
to be positively incremented

proof tree cadw toing by/.option=proof tree toing by,
proof tree arweinydd,
for tree={J,
if={
>{_n<H1H{#1}
H% track skipped lines for which we won't be creating phantom nodes
proof tree toing by+=#1-2,
proof tree toooing'+=1,
Hi,
1,
delay={%
replace by={), insert our first phantom

— 42 of 46 —

initial moves, which may get
lines, which we assume aren't

A Implementation

758 [,

759 if={}

760 >{_n<}{1}{#1}%

761 H

762 child anchor=parent,

763 parent anchor=parent,

764 H

765 child anchor=children,

766 parent anchor=children,

767 } N

768 proof tree phantom,

769 edge path/.option=!last dynamic node.edge path,’ Sao ivanovi: http://chat.stackexchange.
com/transcript/message/27990955#27990955

770 edge/.option=!last dynamic node.edge,

771 append,

772 before drawing tree={}

773 if={>{RR|}{1line numbering}{justifications}}{’

774 proof tree proof line no/.process={0wl+n}{!parent.proof tree proof line nolt{##1+1},
775 H>,

776 },

777 if={Y%

78 >{_n<H{1H{#1}%

779 % if we are moving by more than 1, we insert a second phantom so that a node with
siblings which is moved a long way will not get a unidirectional edge but an edge which looks similar
to others in the tree (by default, sloping down a line or so and then plummeting straight down
rather than a sharply-angled steep descent)

780 delay={%

781 append={/,

782 [y

783 child anchor=parent,

784 parent anchor=parent,

785 proof tree toing by=#1-2+proof_tree_cadw_toing_by,

786 proof tree phantom,

787 edge path/.option=!u.edge path,

788 edge/.option=!u.edge,

789 before drawing tree={J

790 if={>{RR|}{line numbering}{justifications}}{J

791 proof tree proof line no/.process={0wl+n}{!n=1.proof tree proof line no
H##1-13,

792 }{} 3

793 })

794 append=!sibling,

795 1%

796 } H

797 } »

798 H

799 if single branches={}{}

800 delay={%

801 for children={),

802 no edge,

803 }’

804 } ’

805 }]

806 } ’

807 1%

808 },

809 },

810 H%

811 TeX/.process={0wl}{name}{\PackageWarning{prooftrees}{Line not moved! I can only move things
later in the proof. Please see the documentation for details. ##1}},

812 },

— 43 0f 46 —

A Implementation

813 },

siu proof tree cref/.style={), get the names of nodes cross-referenced in closure annotations for use
later

815 proof tree crefs+/.option=#1.name,

816 },

si7 proof tree rhif 1llinell cau/.style={J get the proof line numbers of the cross-referenced nodes in
closure annotations, using the list of names created earlier

sis if proof tree rhestr rhifau 1llinellau cau={}{}{%

819 proof tree rhestr rhifau llinellau cau+={,\,},

820 },

821 proof tree rhestr rhifau 1llinellau cau+/.option=#1.proof tree proof line no,

822 },

s23 proof tree jref/.style={) get the names of nodes cross-referenced in justifications for use later

824 proof tree jrefs+/.option=#1.name,

825 },

826 proof tree rhif 1linell/.style={), get the proof line numbers of the cross-referenced nodes in
justifications, using the list of names created earlier

827 if proof tree rhestr rhifau llinellau={}{}{%

828 proof tree rhestr rhifau 1llinellau+={,\,},

829 },

830 proof tree rhestr rhifau llinellau+/.option=#1.proof tree proof line no,’% works according to Sao'
s anti-pgfmath version

831 },

s32 line no override/.style={J), 2018-02-19 ateb https://tex.stackexchange.com/a/416037/

833 before drawing tree={

834 for name/.process={0w}{proof tree proof line no}{line no ##1}{

835 content=\1linenumberstyle{#1},

836 typeset node,

837 },

838 },

839 },

si0 no line no/.style={), 2018-02-19 gweler uchod

841 before drawing tree={

842 for name/.process={0w}{proof tree proof line no}{line no ##1}{

843 content=,

844 typeset node,

845 },

846 },

847 },

848 proof tree dadfygio/.style={), style for use in debugging moves which displays information about
nodes in the tree

849 before packing={J,

850 for tree={J,

851 label/.process={000w3}{level}{proof tree toing by}{id}{[red,font=\tiny,inner sep=0Opt,outer
sep=Opt, anchor=southlbelow:##1/##2/##3},

852 1,

853 },

854 before drawing tree={)

855 for tree={)

856 delay={’

857 tikz+/.process={0wl}{proof tree proof line no}{\node [anchor=west, font=\tiny, text=blue,
inner sep=Opt] at (.east) {##1}; },

858 },

859 },

860 1,

861 },

s62 proof tree alino/.style={J, debugging / dangos dimension stuff

863 before drawing tree={J,

864 tikz+/.process={J,

865 RRRRw4{proof tree inner proof midpoint}{line no width}{line no dist}{just dist}

866 {

— 44 of 46 —

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

A Implementation

\begin{scope} [densely dashed]
\draw [darkgray] (##1,0) coordinate (a) -- (a |- current bounding box.south);
\draw [green] (current bounding box.west) -- ++(##2,0) coordinate (b);
\draw [blue] (b) -- ++(##3,0) coordinate (c);
\draw [magenta] (c) -- ++(##4,0);

\end{scope}

Y
1,
},
},
}

s % \environbodyname\prooftreebody

\bracketset{action character=@}
\NewDocumentEnvironment{\prooftrees@enw}{ m +b }{), \forest/\endforest from egreg's answer at http://
tex.stackexchange.com/a/229608/
\forest
¢
stages={/, customised definition of stages - we don't use any custom stages, but we do use
several custom keylists, where the processing order of these is critical
for root'={) nothing is removed from the standard forest definition - we only change it by
adding to it
process keylist register=default preamble,
process keylist register=preamble,
3,
process keylist=given options,
process keylist=before typesetting nodes,
% first two additions: process two custom keylists after before typesetting nodes and before
typesetting nodes
process keylist=proof tree ffurf,
process keylist=proof tree symud awto,
typeset nodes stage,
process keylist=before packing,
pack stage,
process keylist=before computing xy,
compute xy stage,
% second two additions: process two custom keylists after computing xy and before before
drawing tree
process keylist=proof tree creu nodiadau,
process keylist=proof tree nodiadau,
process keylist=before drawing tree,
draw tree stage,
} 3
Y
proof tree,’ apply the proof tree style, which sets keylists from both forest's defaults and our
custom additions
#1,7 insert user's preamble, empty or otherwise - this allows the user both to override our
defaults (e.g. by setting a non-empty proof statement or a custom format for line numbers) and to
customise the tree using forest's facilities in the usual way - BUT customisations of the latter kind
may or may not be effective, may or may not have undesirable - not to say chaotic - consequences,
and may or may not cause compilation failures (structural changes, in particular, should be avoided
completely)
[, name=proof statement @#2]7
\endforest

H3

\ExplSyntaxOn
\cs_new_protected_nopar:Npn __prooftrees_memoize:n #1
{
\mmzset{
auto = { #1 } { memoize 1},

}

— 49 of 46 —

A Implementation

017 }

o1z \cs_generate_variant:Nn __prooftrees_memoize:n { V }
919 \hook_gput_code:nnn { begindocument / before } { . }
920 {/% paid & memoize bussproofs prooftree

921 \@ifpackageloaded{memoize}{

922 __prooftrees_memoize:V \prooftrees@enw

923 3

004 }

025 \ExplSyntaxOff

927 \endinput
s %% end prooftrees.sty

N}
s

— 46 of 46 —

	1 Raison d'être
	2 Assumptions & Limitations
	3 Typesetting a Proof Tree
	4 Loading the Package
	5 Invocation
	6 Proof Tree Anatomy
	7 Options
	7.1 Global Options
	7.2 Local Options

	8 Macros
	9 Memoization
	10 Compatibility
	11 Version History
	11.1 0.9
	11.2 0.8
	11.3 0.7
	11.4 0.6
	11.5 0.5
	11.6 0.41
	11.7 0.4
	11.8 0.3

	A Implementation

