Provides elastic net penalized maximum likelihood estimator for structural equation models (SEM). The package implements 'lasso' and 'elastic net' (l1/l2) penalized SEM and estimates the model parameters with an efficient block coordinate ascent algorithm that maximizes the penalized likelihood of the SEM. Hyperparameters are inferred from cross-validation (CV). A Stability Selection (STS) function is also available to provide accurate causal effect selection. The software achieves high accuracy performance through a 'Network Generative Pre-trained Transformer' (Network GPT) Framework with two steps: 1) pre-trains the model to generate a complete (fully connected) graph; and 2) uses the complete graph as the initial state to fit the 'elastic net' penalized SEM.
| Version: | 4.1 | 
| Depends: | R (≥ 3.5.0) | 
| Imports: | parallel | 
| Suggests: | knitr, plot.matrix | 
| Published: | 2024-10-27 | 
| DOI: | 10.32614/CRAN.package.sparseSEM | 
| Author: | Anhui Huang [aut, ctb, cre] | 
| Maintainer: | Anhui Huang <anhuihuang at gmail.com> | 
| License: | GPL-2 | GPL-3 [expanded from: GPL] | 
| NeedsCompilation: | yes | 
| Materials: | README | 
| CRAN checks: | sparseSEM results | 
| Package source: | sparseSEM_4.1.tar.gz | 
| Windows binaries: | r-devel: sparseSEM_4.1.zip, r-release: sparseSEM_4.1.zip, r-oldrel: sparseSEM_4.1.zip | 
| macOS binaries: | r-release (arm64): sparseSEM_4.1.tgz, r-oldrel (arm64): sparseSEM_4.1.tgz, r-release (x86_64): sparseSEM_4.1.tgz, r-oldrel (x86_64): sparseSEM_4.1.tgz | 
| Old sources: | sparseSEM archive | 
Please use the canonical form https://CRAN.R-project.org/package=sparseSEM to link to this page.