Package ‘shinychat’

December 18, 2024
Title Chat UI Component for 'shiny’
Version 0.1.1

Description Provides a scrolling chat interface with multiline input, suitable
for creating chatbot apps based on Large Language Models (LLMs). Designed to
work particularly well with the 'elmer’ R package for calling LLMs.

License MIT + file LICENSE

URL https://github.com/jcheng5/shinychat,
https://jcheng5.github.io/shinychat/

BugReports https://github.com/jcheng5/shinychat/issues

Imports bslib, coro, htmltools, promises (>= 1.3.2), rlang, shiny (>=
1.10.0)

Suggests testthat (>= 3.0.0)

Encoding UTF-8

RoxygenNote 7.3.2

Config/testthat/edition 3
Config/Needs/website tidyverse/tidytemplate
NeedsCompilation no

Author Joe Cheng [aut, cre],
Carson Sievert [aut],
Posit Software, PBC [cph, fnd]

Maintainer Joe Cheng <joe@posit.co>
Repository CRAN
Date/Publication 2024-12-18 15:50:10 UTC

Contents

chat_append
chat_append_message e
chat_ui. e

Index

https://github.com/jcheng5/shinychat
https://jcheng5.github.io/shinychat/
https://github.com/jcheng5/shinychat/issues

2 chat_append

chat_append Append an assistant response (or user message) to a chat control

Description

The chat_append function appends a message to an existing chat control. The response can be
a string, string generator, string promise, or string promise generator (as returned by the ’elmer’
package’s chat, stream, chat_async, and stream_async methods, respectively).

This function should be called from a Shiny app’s server. It is generally used to append the model’s
response to the chat, while user messages are added to the chat Ul automatically by the front-
end. You’d only need to use chat_append(role="user") if you are programmatically generating
queries from the server and sending them on behalf of the user, and want them to be reflected in the
UL

Usage
chat_append(
id,
response,
role = c("assistant”, "user"),
session = getDefaultReactiveDomain()
)
Arguments
id The ID of the chat element
response The message or message stream to append to the chat element
role The role of the message (either "assistant" or "user"). Defaults to "assistant".
session The Shiny session object
Value

Returns a promise. This promise resolves when the message has been successfully sent to the client;
note that it does not guarantee that the message was actually received or rendered by the client. The
promise rejects if an error occurs while processing the response (see the "Error handling" section).

Error handling

If the response argument is a generator, promise, or promise generator, and an error occurs while
producing the message (e.g., an iteration in stream_async fails), the promise returned by chat_append
will reject with the error. If the chat_append call is the last expression in a Shiny observer, Shiny
will see that the observer failed, and end the user session. If you prefer to handle the error gracefully,
use promises: :catch() on the promise returned by chat_append.

chat_append_message 3

Examples

library(shiny)
library(coro)
library(bslib)
library(shinychat)

Dumbest chatbot in the world: ignores user input and chooses
a random, vague response.
fake_chatbot <- async_generator(function(input) {
responses <- c(

"What does that suggest to you?",

"I see.”,

"I'm not sure I understand you fully.”,

"What do you think?",

"Can you elaborate on that?”,

"Interesting question! Let's examine thi... **See morexx"

)

await(async_sleep(1))
for (chunk in strsplit(sample(responses, 1), "")[[11]1) {
yield(chunk)
await(async_sleep(0.02))
}
»

ui <- page_fillable(
chat_ui("chat”, fill = TRUE)
)

server <- function(input, output, session) {
observeEvent (input$chat_user_input, {
response <- fake_chatbot(input$chat_user_input)
chat_append(“chat”, response)
b))
3

shinyApp(ui, server)

chat_append_message Low-level function to append a message to a chat control

Description

For advanced users who want to control the message chunking behavior. Most users should use
chat_append() instead.

4 chat_append_message

Usage
chat_append_message(
id,
msg,
chunk = TRUE,
operation = c("append”, "replace”),
session = getDefaultReactiveDomain()
)
Arguments
id The ID of the chat element
msg The message to append. Should be a named list with role and content fields.
The role field should be either "user" or "assistant". The content field should
be a string containing the message content, in Markdown format.
chunk Whether msg is just a chunk of a message, and if so, what type. If FALSE, then
msg is a complete message. If "start”, then msg is the first chunk of a multi-
chunk message. If "end", then msg is the last chunk of a multi-chunk message.
If TRUE, then msg is an intermediate chunk of a multi-chunk message. Default is
FALSE.
operation The operation to perform on the message. If "append”, then the new content
is appended to the existing message content. If "replace”, then the existing
message content is replaced by the new content. Ignored if chunk is FALSE.
session The Shiny session object
Value

Returns nothing (invisible (NULL)).

Examples

library(shiny)
library(coro)
library(bslib)
library(shinychat)

Dumbest chatbot in the world: ignores user input and chooses
a random, vague response.
fake_chatbot <- async_generator(function(id, input) {
responses <- c(

"What does that suggest to you?",

"I see.”,

"I'm not sure I understand you fully."”,

"What do you think?",

"Can you elaborate on that?”,

"Interesting question! Let's examine thi... **See morexx"

)

Use low-level chat_append_message() to temporarily set a progress message

chat_ui 5

chat_append_message(id, list(role = "assistant”, content = "_Thinking..._ "))
await(async_sleep(1))

Clear the progress message

chat_append_message(id, list(role = "assistant”, content = ""), operation = "replace")

for (chunk in strsplit(sample(responses, 1), "")[[11]1) {
yield(chunk)
await(async_sleep(0.02))
}
»

ui <- page_fillable(
chat_ui("chat”, fill = TRUE)
)

server <- function(input, output, session) {
observeEvent (input$chat_user_input, {
response <- fake_chatbot("chat”, input$chat_user_input)
chat_append(”chat”, response)
1))
3

shinyApp(ui, server)

chat_ui Create a chat Ul element

Description

Inserts a chat UI element into a Shiny UI, which includes a scrollable section for displaying chat
messages, and an input field for the user to enter new messages.

To respond to user input, listen for input$ID_user_input (for example, if id="my_chat”, user
input will be at input$my_chat_user_input), and use chat_append() to append messages to the
chat.

Usage

chat_ui(
id,
messages = NULL,
placeholder = "Enter a message...",
width = "min(680px, 100%)",
height = "auto”,
fill = TRUE

6 chat_ui
Arguments
id The ID of the chat element
Extra HTML attributes to include on the chat element
messages A list of messages to prepopulate the chat with. Each message can be a string or
a named list with content and role fields.
placeholder The placeholder text for the chat’s user input field
width The CSS width of the chat element
height The CSS height of the chat element
fill Whether the chat element should try to vertically fill its container, if the con-
tainer is fillable
Value
A Shiny tag object, suitable for inclusion in a Shiny UI
Examples
library(shiny)
library(bslib)
library(shinychat)

ui <- page_fillable(
chat_ui("chat”, fill = TRUE)

)

server <- function(input, output, session) {
observeEvent (input$chat_user_input, {

In a real app, this would call out to a chat model or API,

perhaps using the 'elmer' package.

response <- paste@(
"You said:\n\n",
"<blockquote>",
htmltools: :htmlEscape(input$chat_user_input),
"</blockquote>"

)

chat_append(”chat”, response)

D
3

shinyApp(ui, server)

https://rstudio.github.io/bslib/articles/filling/index.html

Index

chat_append, 2
chat_append(), 3, 5
chat_append_message, 3
chat_ui, 5

promises::catch(), 2

	chat_append
	chat_append_message
	chat_ui
	Index

