
Package ‘pnd’
April 2, 2025

Type Package

Title Parallel Numerical Derivatives, Gradients, Jacobians, and
Hessians of Arbitrary Accuracy Order

Version 0.0.10

Maintainer Andreï Victorovitch Kostyrka <andrei.kostyrka@gmail.com>

Description Numerical derivatives through finite-difference approximations
can be calculated using the 'pnd' package with parallel capabilities and
optimal step-size selection to improve accuracy. These functions facilitate
efficient computation of derivatives, gradients, Jacobians, and Hessians,
allowing for more evaluations to reduce the mathematical and machine errors.
Designed for compatibility with the 'numDeriv' package,
which has not received updates in several years, it introduces advanced features
such as computing derivatives of arbitrary order, improving
the accuracy of Hessian approximations by avoiding repeated differencing,
and parallelising slow functions on Windows, Mac, and Linux.

License EUPL

Encoding UTF-8

URL https://github.com/Fifis/pnd

BugReports https://github.com/Fifis/pnd/issues

Depends R (>= 3.4.0)

Imports parallel, Rdpack

Suggests numDeriv, knitr, rmarkdown, testthat (>= 3.0.0)

RdMacros Rdpack

RoxygenNote 7.3.2

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Andreï Victorovitch Kostyrka [aut, cre]

Repository CRAN

Date/Publication 2025-04-02 19:40:02 UTC

1

https://github.com/Fifis/pnd
https://github.com/Fifis/pnd/issues

2 checkCores

Contents

checkCores . 2
checkDimensions . 3
dupRowInds . 5
fdCoef . 6
GenD . 8
generateGrid . 12
generateGrid2 . 13
Grad . 14
gradstep . 17
Hessian . 19
Jacobian . 22
plotTE . 25
runParallel . 26
solveVandermonde . 27
step.CR . 28
step.DV . 31
step.M . 33
step.plugin . 35
step.SW . 36
stepx . 39

Index 40

checkCores Number of core checks and changes

Description

Number of core checks and changes

Usage

checkCores(cores = NULL)

Arguments

cores Integer specifying the number of CPU cores used for parallel computation. Rec-
ommended to be set to the number of physical cores on the machine minus one.

Value

An integer with the number of cores.

checkDimensions 3

Examples

checkCores()
checkCores(2)
suppressWarnings(checkCores(1000))

checkDimensions Determine function dimensionality and vectorisation

Description

Determine function dimensionality and vectorisation

Usage

checkDimensions(
FUN,
x,
f0 = NULL,
func = NULL,
elementwise = NA,
vectorised = NA,
multivalued = NA,
deriv.order = 1,
acc.order = 2,
side = 0,
h = NULL,
report = 1L,
zero.tol = sqrt(.Machine$double.eps),
cores = 1,
preschedule = TRUE,
cl = NULL,
...

)

Arguments

FUN A function returning a numeric scalar or a vector whose derivatives are to be
computed. If the function returns a vector, the output will be a Jacobian.

x Numeric vector or scalar: the point(s) at which the derivative is estimated.
FUN(x) must be finite.

f0 Optional numeric: if provided, used to determine the vectorisation type to save
time. If FUN(x) must be evaluated (e.g. second derivatives), saves one evalua-
tion.

func For compatibility with numDeriv::grad() only. If instead of FUN, func is used,
it will be reassigned to FUN with a warning.

4 checkDimensions

elementwise Logical: is the domain effectively 1D, i.e. is this a mapping R 7→ R or Rn 7→
Rn. If NA, compares the output length ot the input length.

vectorised Logical: if TRUE, the function is assumed to be vectorised: it will accept a vec-
tor of parameters and return a vector of values of the same length. Use FALSE
or "no" for functions that take vector arguments and return outputs of arbitrary
length (for Rn 7→ Rk functions). If NA, checks the output length and assumes
vectorisation if it matches the input length; this check is necessary and poten-
tially slow.

multivalued Logical: if TRUE, the function is assumed to return vectors longer than 1. Use
FALSE for element-wise functions. If NA, attempts inferring it from the function
output.

deriv.order Integer or vector of integers indicating the desired derivative order, dm/dxm,
for each element of x.

acc.order Integer or vector of integers specifying the desired accuracy order for each ele-
ment of x. The final error will be of the order O(hacc.order).

side Integer scalar or vector indicating the type of finite difference: 0 for central, 1 for
forward, and -1 for backward differences. Central differences are recommended
unless computational cost is prohibitive.

h Numeric or character specifying the step size(s) for the numerical difference or
a method of automatic step determination ("CR", "CRm", "DV", or "SW" to be
used in gradstep()). The default value is described in ?GenD.

report Integer for the level of detail in the output. If 0, returns a gradient without
any attributes; if 1, attaches the step size and its selection method: 2 or higher
attaches the full diagnostic output as an attribute.

zero.tol Small positive integer: if abs(x) >= zero.tol, then, the automatically guessed
step size is relative (x multiplied by the step), unless an auto-selection procedure
is requested; otherwise, it is absolute.

cores Integer specifying the number of CPU cores used for parallel computation. Rec-
ommended to be set to the number of physical cores on the machine minus one.

preschedule Logical: if TRUE, disables pre-scheduling for mclapply() or enables load bal-
ancing with parLapplyLB(). Recommended for functions that take less than
0.1 s per evaluation.

cl An optional user-supplied cluster object (created by makeCluster or similar
functions). If not NULL, the code uses parLapply() (if preschedule is TRUE)
or parLapplyLB() on that cluster on Windows, and mclapply (fork cluster) on
everything else.

... Additional arguments passed to FUN. Important! Since R does partial matching
for argument names, using arguments like f(x, a) and passing a = 1 to GenD(),
Grad(), or Jacobian() will result in the interpretation acc.order = 1 because
the latter is a named argument of these functions. Either supply the full names
of all similar-looking arguments or name arguments differently (e.g. a0 instead
of a).

dupRowInds 5

Details

The following combinations of parameters are allowed, suggesting specific input and output han-
dling by other functions:

elementwise !elementwise
!multivalued, vectorised FUN(xgrid) (undefined)
!multivalued, !vectorised [mc]lapply(xgrid, FUN) [mc]lapply gradient
multivalued, vectorised (undefined) FUN(xgrid) Jacobian
multivalued, !vectorised (undefined) [mc]lapply Jacobian

Some combinations are impossible: multi-valued functions cannot be element-wise, and single-
valued vectorised functions must element-wise.

In brief, testing the input and output length and vectorisation capabilities may result in five cases,
unlike 3 in numDeriv::grad() that does not provide checks for Jacobians.

Value

A named logical vector indicating if a function is element-wise or not, vectorised or not, and mul-
tivalued or not.

Examples

checkDimensions(sin, x = 1:4, h = 1e-5, report = 2) # Rn -> Rn vectorised
checkDimensions(function(x) integrate(sin, 0, x)$value, x = 1:4, h = 1e-5, report = 2) # non vec
checkDimensions(function(x) sum(sin(x)), x = 1:4, h = 1e-5, report = 2) # Rn -> R, gradient
checkDimensions(function(x) c(sin(x), cos(x)), x = 1, h = 1e-5, report = 2) # R -> Rn, Jacobian
checkDimensions(function(x) c(sin(x), cos(x)), x = 1:4, h = 1e-5, report = 2) # vec Jac
checkDimensions(function(x) c(integrate(sin, 0, x)$value, integrate(sin, -x, 0)$value),

x = 1:4, h = 1e-5, report = 2) # non-vectorised Jacobian

dupRowInds Repeated indices of the first unique value

Description

Repeated indices of the first unique value

Usage

dupRowInds(m)

Arguments

m A matrix or a data frame.
This function is an inverse function to such operations as m[c(1:3, 1, 1, 2),
]: the matrix with potentially duplicated rows is taken as input, and repeated
indices of the first occurrence of each row are returned.

6 fdCoef

Value

A vector of row indices corresponding to the first ocurrence of a given row.

Examples

dupRowInds(mtcars[rep(1:10, 10), rep(1:10, 10)])
dupRowInds(matrix(rnorm(1000), ncol = 10))

fdCoef Finite-difference coefficients for arbitrary grids

Description

This function computes the coefficients for a numerical approximation to derivatives of any spec-
ified order. It provides the minimally sufficient stencil for the chosen derivative order and desired
accuracy order. It can also use any user-supplied stencil (uniform or non-uniform). For that sten-
cil {bi}ni=1, it computes the optimal weights {wi} that yield the numerical approximation of the
derivative:

dmf

dxm
≈ h−m

n∑
i=1

wif(x+ bi · h)

Usage

fdCoef(
deriv.order = 1L,
side = c(0L, 1L, -1L),
acc.order = 2L,
stencil = NULL,
zero.action = c("drop", "round", "none"),
zero.tol = NULL

)

Arguments

deriv.order Order of the derivative (m in dmf
dxm) for which a numerical approximation is

needed.

side Integer that determines the type of finite-difference scheme: 0 for central (AKA
symmetrical or two-sided; the default), 1 for forward, and -1 for backward.
Using 2 (for ’two-sided’) triggers a warning and is treated as 0. with a warn-
ing. Unless the function is computationally prohibitively, central differences are
strongly recommended for their accuracy.

acc.order Order of accuracy: defines how the approximation error scales with the step
size h, specifically O(ha+1), where a is the accuracy order and depends on the
higher-order derivatives of the function.

stencil Optional custom vector of points for function evaluation. Must include at least
m+1 points for the m-th order derivative.

fdCoef 7

zero.action Character string specifying how to handle near-zero weights: "drop" to omit
small (less in absolute value than zero.tol times the median weight) weights
and corresponding stencil points, "round" to round small weights to zero, and
"none" to leave all weights as calculated. E.g. the stencil for f ′(x) is (-1, 0,
1) with weights (-0.5, 0, 0.5); using "drop" eliminates the zero weight, and
the redundant f(x) is not computed.

zero.tol Non-negative scalar defining the threshold: weights below zero.tol times the
median weight are considered near-zero.

Details

This function relies on the approach of approximating numerical derivarives by weghted sums of
function values described in (Fornberg 1988). It reproduces all tables from this paper exactly; see
the example below to create Table 1.

The finite-difference coefficients for any given stencil are given as a solution of a linear system. The
capabilities of this function are similar to those of (Taylor 2016), but instead of matrix inversion, the
(Björck and Pereyra 1970) algorithm is used because the left-hand-side matrix is a Vandermonde
matrix, and its inverse may be very inaccurate, especially for long one-sided stencils.

The weights computed for the stencil via this algorithm are very reliable; numerical simulations in
(Higham 1987) show that the relative error is low even for ill-conditioned systems. (Kostyrka 2025)
computes the exact relative error of the weights on the stencils returned by this function; the zero
tolerance is based on these calculations.

Value

A list containing the stencil used and the corresponding weights for each point.

References

Björck Å, Pereyra V (1970). “Solution of Vandermonde systems of equations.” Mathematics of
computation, 24(112), 893–903.

Fornberg B (1988). “Generation of Finite Difference Formulas on Arbitrarily Spaced Grids.” Math-
ematics of Computation, 51(184), 699–706. doi:10.1090/S00255718198809350770.

Higham NJ (1987). “Error analysis of the Björck-Pereyra algorithms for solving Vandermonde
systems.” Numerische Mathematik, 50(5), 613–632.

Kostyrka AV (2025). “What are you doing, step size: fast computation of accurate numerical
derivatives with finite precision.” Working paper.

Taylor CR (2016). “Finite Difference Coefficients Calculator.” https://web.media.mit.edu/
~crtaylor/calculator.html.

Examples

fdCoef() # Simple two-sided derivative
fdCoef(2) # Simple two-sided second derivative
fdCoef(acc.order = 4)$weights * 12 # Should be (1, -8, 8, -1)

https://doi.org/10.1090/S0025-5718-1988-0935077-0
https://web.media.mit.edu/~crtaylor/calculator.html
https://web.media.mit.edu/~crtaylor/calculator.html

8 GenD

Using an custom stencil for the first derivative: x-2h and x+h
fdCoef(stencil = c(-2, 1), acc.order = 1)

Reproducing Table 1 from Fornberg (1988) (cited above)
pad9 <- function(x) {l <- length(x); c(a <- rep(0, (9-l)/2), x, a)}
f <- function(d, a) pad9(fdCoef(deriv.order = d, acc.order = a,

zero.action = "round")$weights)
t11 <- t(sapply((1:4)*2, function(a) f(d = 1, a)))
t12 <- t(sapply((1:4)*2, function(a) f(d = 2, a)))
t13 <- t(sapply((1:3)*2, function(a) f(d = 3, a)))
t14 <- t(sapply((1:3)*2, function(a) f(d = 4, a)))
t11 <- cbind(t11[, 1:4], 0, t11[, 5:8])
t13 <- cbind(t13[, 1:4], 0, t13[, 5:8])
t1 <- data.frame(OrdDer = rep(1:4, times = c(4, 4, 3, 3)),

OrdAcc = c((1:4)*2, (1:4)*2, (1:3)*2, (1:3)*2),
rbind(t11, t12, t13, t14))

colnames(t1)[3:11] <- as.character(-4:4)
print(t1, digits = 4)

GenD Numerical derivative matrices with parallel capabilities

Description

Computes numerical derivatives of a scalar or vector function using finite-difference methods. This
function serves as a backbone for Grad() and Jacobian(), allowing for detailed control over the
derivative computation process, including order of derivatives, accuracy, and step size. GenD is fully
vectorised over different coordinates of the function argument, allowing arbitrary accuracies, sides,
and derivative orders for different coordinates.

Usage

GenD(
FUN,
x,
elementwise = NA,
vectorised = NA,
multivalued = NA,
deriv.order = 1L,
side = 0,
acc.order = 2L,
h = NULL,
zero.tol = sqrt(.Machine$double.eps),
h0 = NULL,
control = list(),
f0 = NULL,
cores = 1,

GenD 9

preschedule = TRUE,
cl = NULL,
func = NULL,
method = NULL,
method.args = list(),
report = 1L,
...

)

Arguments

FUN A function returning a numeric scalar or a vector whose derivatives are to be
computed. If the function returns a vector, the output will be a Jacobian.

x Numeric vector or scalar: the point(s) at which the derivative is estimated.
FUN(x) must be finite.

elementwise Logical: is the domain effectively 1D, i.e. is this a mapping R 7→ R or Rn 7→
Rn. If NA, compares the output length ot the input length.

vectorised Logical: if TRUE, the function is assumed to be vectorised: it will accept a vec-
tor of parameters and return a vector of values of the same length. Use FALSE
or "no" for functions that take vector arguments and return outputs of arbitrary
length (for Rn 7→ Rk functions). If NA, checks the output length and assumes
vectorisation if it matches the input length; this check is necessary and poten-
tially slow.

multivalued Logical: if TRUE, the function is assumed to return vectors longer than 1. Use
FALSE for element-wise functions. If NA, attempts inferring it from the function
output.

deriv.order Integer or vector of integers indicating the desired derivative order, dm/dxm,
for each element of x.

side Integer scalar or vector indicating the type of finite difference: 0 for central, 1 for
forward, and -1 for backward differences. Central differences are recommended
unless computational cost is prohibitive.

acc.order Integer or vector of integers specifying the desired accuracy order for each ele-
ment of x. The final error will be of the order O(hacc.order).

h Numeric or character specifying the step size(s) for the numerical difference or
a method of automatic step determination ("CR", "CRm", "DV", or "SW" to be
used in gradstep()). The default value is described in ?GenD.

zero.tol Small positive integer: if abs(x) >= zero.tol, then, the automatically guessed
step size is relative (x multiplied by the step), unless an auto-selection procedure
is requested; otherwise, it is absolute.

h0 Numeric scalar of vector: initial step size for automatic search with gradstep().

control A named list of tuning parameters passed to gradstep().

f0 Optional numeric: if provided, used to determine the vectorisation type to save
time. If FUN(x) must be evaluated (e.g. second derivatives), saves one evalua-
tion.

10 GenD

cores Integer specifying the number of CPU cores used for parallel computation. Rec-
ommended to be set to the number of physical cores on the machine minus one.

preschedule Logical: if TRUE, disables pre-scheduling for mclapply() or enables load bal-
ancing with parLapplyLB(). Recommended for functions that take less than
0.1 s per evaluation.

cl An optional user-supplied cluster object (created by makeCluster or similar
functions). If not NULL, the code uses parLapply() (if preschedule is TRUE)
or parLapplyLB() on that cluster on Windows, and mclapply (fork cluster) on
everything else.

func For compatibility with numDeriv::grad() only. If instead of FUN, func is used,
it will be reassigned to FUN with a warning.

method For compatibility with numDeriv::grad() only. Supported values: "simple"
and "Richardson". Non-null values result in a warning.

method.args For compatibility with numDeriv::grad() only. Check ?numDeriv::grad for
a list of values. Non-empty lists result in a warning.

report Integer for the level of detail in the output. If 0, returns a gradient without
any attributes; if 1, attaches the step size and its selection method: 2 or higher
attaches the full diagnostic output as an attribute.

... Additional arguments passed to FUN. Important! Since R does partial matching
for argument names, using arguments like f(x, a) and passing a = 1 to GenD(),
Grad(), or Jacobian() will result in the interpretation acc.order = 1 because
the latter is a named argument of these functions. Either supply the full names
of all similar-looking arguments or name arguments differently (e.g. a0 instead
of a).

Details

For computing gradients and Jacobians, use convenience wrappers Jacobian and Grad.

If the step size is too large, the slope of the secant poorly estimates the derivative; if it is too small,
it leads to numerical instability due to the function value rounding.

The optimal step size for one-sided differences typically approaches Mach.eps^(1/2) to balance the
Taylor series truncation error with the rounding error due to storing function values with limited
precision. For two-sided differences, it is proportional to Mach.eps^(1/3). However, selecting the
best step size typically requires knowledge of higher-order derivatives, which may not be readily
available. Luckily, using step = "SW" invokes a reliable automatic data-driven step-size selection.
Other options include "DV", "CR", and "CRm". The step size defaults to 1.5e-8 (the square root of
machine epsilon) for x less than 1.5e-8, (2.2e-16)^(1/(deriv.order + acc.order)) * x for x
> 1, and interpolates exponentially between these values for 1.5e-8 < x < 1.

The use of f0 can reduce computation time similar to the use of f.lower and f.upper in uniroot().

For convenience, report = 2 overrides diagnostics = FALSE in the control) list.

Unlike numDeriv::grad() and numDeriv::jacobian(), this function fully preserves the names
of x and FUN(x).

GenD 11

Value

A vector or matrix containing the computed derivatives, structured according to the dimensionality
of x and FUN. If FUN is scalar-valued, returns a gradient vector. If FUN is vector-valued, returns a
Jacobian matrix.

See Also

gradstep() for automatic step-size selection.

Examples

Case 1: Vector argument, vector output
f1 <- sin
g1 <- GenD(FUN = f1, x = 1:100)
g1.true <- cos(1:100)
plot(1:100, g1 - g1.true, main = "Approximation error of d/dx sin(x)")

Case 2: Vector argument, scalar result
f2 <- function(x) sum(sin(x))
g2 <- GenD(FUN = f2, x = 1:4)
g2.h2 <- Grad(FUN = f2, x = 1:4, h = 7e-6)
g2 - g2.h2 # Tiny differences due to different step sizes
g2.auto <- Grad(FUN = f2, x = 1:4, h = "SW")
g2.full <- Grad(FUN = f2, x = 1:4, h = "SW", report = 2)
print(attr(g2.full, "step.search")$exitcode) # Success

Case 3: vector input, vector argument of different length
f3 <- function(x) c(sum(sin(x)), prod(cos(x)))
x3 <- 1:3
j3 <- GenD(f3, x3, multivalued = TRUE)
print(j3)

Gradients for vectorised functions -- e.g. leaky ReLU
LReLU <- function(x) ifelse(x > 0, x, 0.01*x)
system.time(replicate(10, suppressMessages(GenD(LReLU, runif(30, -1, 1)))))
system.time(replicate(10, suppressMessages(GenD(LReLU, runif(30, -1, 1)))))

Saving time for slow functions by using pre-computed values
x <- 1:4
finner <- function(x) sin(x*log(abs(x)+1))
fouter <- function(x) integrate(finner, 0, x, rel.tol = 1e-12, abs.tol = 0)$value
The outer function is non-vectorised
fslow <- function(x) {Sys.sleep(0.01); fouter(x)}
f0 <- sapply(x, fouter)
system.time(GenD(fslow, x, side = 1, acc.order = 2, f0 = f0))
Now, with extra checks, it will be slower
system.time(GenD(fslow, x, side = 1, acc.order = 2))

12 generateGrid

generateGrid Create a grid of points for a gradient / Jacobian

Description

Create a grid of points for a gradient / Jacobian

Usage

generateGrid(x, h, stencils, elementwise, vectorised)

Arguments

x Numeric vector or scalar: the point(s) at which the derivative is estimated.
FUN(x) must be finite.

h Numeric or character specifying the step size(s) for the numerical difference or
a method of automatic step determination ("CR", "CRm", "DV", or "SW" to be
used in gradstep()). The default value is described in ?GenD.

stencils A list of outputs from fdCoef() for each coordinate of x.

elementwise Logical: is the domain effectively 1D, i.e. is this a mapping R 7→ R or Rn 7→
Rn. If NA, compares the output length ot the input length.

vectorised Logical: if TRUE, the function is assumed to be vectorised: it will accept a vec-
tor of parameters and return a vector of values of the same length. Use FALSE
or "no" for functions that take vector arguments and return outputs of arbitrary
length (for Rn 7→ Rk functions). If NA, checks the output length and assumes
vectorisation if it matches the input length; this check is necessary and poten-
tially slow.

Value

A list with points for evaluation, summation weights for derivative computation, and indices for
combining values.

Examples

generateGrid(1:4, h = 1e-5, elementwise = TRUE, vectorised = TRUE,
stencils = lapply(1:4, function(a) fdCoef(acc.order = a)))

generateGrid2 13

generateGrid2 Generate grid points for Hessians

Description

Creates a list of unique evaluation points for second derivatives: both diagonal (∂2/∂x2
i) and cross

(∂2/∂xi∂xj).

Usage

generateGrid2(x, side, acc.order, h)

Arguments

x Numeric vector or scalar: the point(s) at which the derivative is estimated.
FUN(x) must be finite.

side Integer scalar or vector indicating the type of finite difference: 0 for central, 1 for
forward, and -1 for backward differences. Central differences are recommended
unless computational cost is prohibitive.

acc.order Integer or vector of integers specifying the desired accuracy order for each ele-
ment of x. The final error will be of the order O(hacc.order).

h Numeric or character specifying the step size(s) for the numerical difference or
a method of automatic step determination ("CR", "CRm", "DV", or "SW" to be
used in gradstep()). The default value is described in ?GenD.

Value

A list with elements:

• xlist: a list of unique coordinate shifts,

• w: the finite-difference weights (one per point),

• i1, i2: integer vectors giving partial-derivative indices.

The length of each vector matches xlist.

See Also

GenD(), Hessian().

Examples

generateGrid2(1:4, side = rep(0, 4), acc.order = c(2, 6, 4, 2),
h = c(1e-5, 1e-4, 2e-5, 1e-6))

14 Grad

Grad Gradient computation with parallel capabilities

Description

Computes numerical derivatives and gradients of scalar-valued functions using finite differences.
This function supports both two-sided (central, symmetric) and one-sided (forward or backward)
derivatives. It can utilise parallel processing to accelerate computation of gradients for slow func-
tions or to attain higher accuracy faster.

Usage

Grad(
FUN,
x,
elementwise = NA,
vectorised = NA,
multivalued = NA,
deriv.order = 1L,
side = 0,
acc.order = 2,
h = NULL,
zero.tol = sqrt(.Machine$double.eps),
h0 = NULL,
control = list(),
f0 = NULL,
cores = 1,
preschedule = TRUE,
cl = NULL,
func = NULL,
method = NULL,
method.args = list(),
report = 1L,
...

)

Arguments

FUN A function returning a numeric scalar or a vector whose derivatives are to be
computed. If the function returns a vector, the output will be a Jacobian.

x Numeric vector or scalar: the point(s) at which the derivative is estimated.
FUN(x) must be finite.

elementwise Logical: is the domain effectively 1D, i.e. is this a mapping R 7→ R or Rn 7→
Rn. If NA, compares the output length ot the input length.

vectorised Logical: if TRUE, the function is assumed to be vectorised: it will accept a vec-
tor of parameters and return a vector of values of the same length. Use FALSE

Grad 15

or "no" for functions that take vector arguments and return outputs of arbitrary
length (for Rn 7→ Rk functions). If NA, checks the output length and assumes
vectorisation if it matches the input length; this check is necessary and poten-
tially slow.

multivalued Logical: if TRUE, the function is assumed to return vectors longer than 1. Use
FALSE for element-wise functions. If NA, attempts inferring it from the function
output.

deriv.order Integer or vector of integers indicating the desired derivative order, dm/dxm,
for each element of x.

side Integer scalar or vector indicating the type of finite difference: 0 for central, 1 for
forward, and -1 for backward differences. Central differences are recommended
unless computational cost is prohibitive.

acc.order Integer or vector of integers specifying the desired accuracy order for each ele-
ment of x. The final error will be of the order O(hacc.order).

h Numeric or character specifying the step size(s) for the numerical difference or
a method of automatic step determination ("CR", "CRm", "DV", or "SW" to be
used in gradstep()). The default value is described in ?GenD.

zero.tol Small positive integer: if abs(x) >= zero.tol, then, the automatically guessed
step size is relative (x multiplied by the step), unless an auto-selection procedure
is requested; otherwise, it is absolute.

h0 Numeric scalar of vector: initial step size for automatic search with gradstep().

control A named list of tuning parameters passed to gradstep().

f0 Optional numeric: if provided, used to determine the vectorisation type to save
time. If FUN(x) must be evaluated (e.g. second derivatives), saves one evalua-
tion.

cores Integer specifying the number of CPU cores used for parallel computation. Rec-
ommended to be set to the number of physical cores on the machine minus one.

preschedule Logical: if TRUE, disables pre-scheduling for mclapply() or enables load bal-
ancing with parLapplyLB(). Recommended for functions that take less than
0.1 s per evaluation.

cl An optional user-supplied cluster object (created by makeCluster or similar
functions). If not NULL, the code uses parLapply() (if preschedule is TRUE)
or parLapplyLB() on that cluster on Windows, and mclapply (fork cluster) on
everything else.

func For compatibility with numDeriv::grad() only. If instead of FUN, func is used,
it will be reassigned to FUN with a warning.

method For compatibility with numDeriv::grad() only. Supported values: "simple"
and "Richardson". Non-null values result in a warning.

method.args For compatibility with numDeriv::grad() only. Check ?numDeriv::grad for
a list of values. Non-empty lists result in a warning.

report Integer for the level of detail in the output. If 0, returns a gradient without
any attributes; if 1, attaches the step size and its selection method: 2 or higher
attaches the full diagnostic output as an attribute.

16 Grad

... Additional arguments passed to FUN. Important! Since R does partial matching
for argument names, using arguments like f(x, a) and passing a = 1 to GenD(),
Grad(), or Jacobian() will result in the interpretation acc.order = 1 because
the latter is a named argument of these functions. Either supply the full names
of all similar-looking arguments or name arguments differently (e.g. a0 instead
of a).

Details

This function aims to be 100% compatible with the syntax of numDeriv::Grad(), but there might
be differences in the step size because some choices made in numDeriv are not consistent with
theory.
There is one feature of the default step size in numDeriv that deserves an explanation. In that
package (but not in pnd),

• If method = "simple", then, simple forward differences are used with a fixed step size eps,
which we denote by ε.

• If method = "Richardson", then, central differences are used with a fixed step h := |d · x|+
ε(|x| < zero.tol), where d = 1e-4 is the relative step size and eps becomes an extra addition
to the step size for the argument that are closer to zero than zero.tol.

We believe that the latter may lead to mistakes when the user believes that they can set the step size
for near-zero arguments, whereas in reality, a combination of d and eps is used.
Here is the synopsis of the old arguments:

side numDeriv uses NA for handling two-sided differences. The pnd equivalent is 0, and NA is
replaced with 0.

eps If numDeriv method = "simple", then, eps = 1e-4 is the absolute step size and forward differ-
ences are used. If method = "Richardson", then, eps = 1e-4 is the absolute increment of the
step size for small arguments below the zero tolerance.

d If numDeriv method = "Richardson", then, d*abs(x) is the step size for arguments above the
zero tolerance and the baseline step size for small arguments that gets incremented by eps.

r The number of Richardson extrapolations that successively reduce the initial step size. For two-
sided differences, each extrapolation increases the accuracy order by 2.

v The reduction factor in Richardson extrapolations.

Here are the differences in the new compatible implementation.

eps If numDeriv method = "simple", then, ifelse(x!=0, abs(x), 1) * sqrt(.Machine$double.eps)
* 2 is used because one-sided differences require a smaller step size to reduce the truncation
error. If method = "Richardson", then, eps = 1e-5.

d If numDeriv method = "Richardson", then, d*abs(x) is the step size for arguments above the
zero tolerance and the baseline step size for small arguments that gets incremented by eps.

r The number of Richardson extrapolations that successively reduce the initial step size. For two-
sided differences, each extrapolation increases the accuracy order by 2.

v The reduction factor in Richardson extrapolations.

Grad does an initial check (if f0 = FUN(x) is not provided) and calls GenD() with a set of appropriate
parameters (multivalued = FALSE if the check succeds). In case of parameter mismatch, throws
and error.

gradstep 17

Value

Numeric vector of the gradient. If FUN returns a vector, a warning is issued suggesting the use of
Jacobian().

See Also

GenD(), Jacobian()

Examples

f <- function(x) sum(sin(x))
g1 <- Grad(FUN = f, x = 1:4)
g2 <- Grad(FUN = f, x = 1:4, h = 7e-6)
g2 - g1 # Tiny differences due to different step sizes
g.auto <- Grad(FUN = f, x = 1:4, h = "SW")
g3.full <- Grad(FUN = f, x = 1:4, h = "SW", report = 2)
print(g3.full)
attr(g3.full, "step.search")$exitcode # Success

Gradients for vectorised functions -- e.g. leaky ReLU
LReLU <- function(x) ifelse(x > 0, x, 0.01*x)
Grad(LReLU, seq(-1, 1, 0.1))

gradstep Automatic step selection for numerical derivatives

Description

Automatic step selection for numerical derivatives

Usage

gradstep(
FUN,
x,
h0 = NULL,
zero.tol = sqrt(.Machine$double.eps),
method = c("plugin", "SW", "CR", "CRm", "DV", "M"),
diagnostics = FALSE,
control = NULL,
cores = 1,
preschedule = getOption("pnd.preschedule", TRUE),
cl = NULL,
...

)

18 gradstep

Arguments

FUN Function for which the optimal numerical derivative step size is needed.

x Numeric vector or scalar: the point at which the derivative is computed and the
optimal step size is estimated.

h0 Numeric vector or scalar: initial step size, defaulting to a relative step of slightly
greater than .Machine$double.eps^(1/3) (or absolute step if x == 0).

zero.tol Small positive integer: if abs(x) >= zero.tol, then, the automatically guessed
step size is relative (x multiplied by the step), unless an auto-selection procedure
is requested; otherwise, it is absolute.

method Character indicating the method: "CR" for (Curtis and Reid 1974), "CR" for
modified Curtis–Reid, "DV" for (Dumontet and Vignes 1977), "SW" (Stepleman
and Winarsky 1979), and "M" for (Mathur 2012).

diagnostics Logical: if TRUE, returns the full iteration history including all function evalua-
tions. Passed to the appropriate step.XX function.

control A named list of tuning parameters for the method. If NULL, default values are
used. See the documentation for the respective methods. Note that if control$diagnostics
is TRUE, full iteration history including all function evaluations is returned; dif-
ferent methods have slightly different diagnostic outputs.

cores Integer specifying the number of CPU cores used for parallel computation. Rec-
ommended to be set to the number of physical cores on the machine minus one.

preschedule Logical: if TRUE, disables pre-scheduling for mclapply() or enables load bal-
ancing with parLapplyLB(). Recommended for functions that take less than
0.1 s per evaluation.

cl An optional user-supplied cluster object (created by makeCluster or similar
functions). If not NULL, the code uses parLapply() (if preschedule is TRUE)
or parLapplyLB() on that cluster on Windows, and mclapply (fork cluster) on
everything else.

... Passed to FUN.

Details

We recommend using the Mathur algorithm because it does not suffer from over-estimation of the
truncation error in the Curtis–Reid approach and from sensitivity to near-zero third derivatives in the
Dumontet–Vignes approach. It really tries muliple step sizes simultaneously and handles missing
values due to bad evaluations for inadequate step sizes really in a robust manner.

Value

A list similar to the one returned by optim() and made of concatenated individual elements coordinate-
wise lists: par – the optimal step sizes found, value – the estimated numerical gradient, counts –
the number of iterations for each coordinate, abs.error – an estimate of the total approximation
error (sum of truncation and rounding errors), exitcode – an integer code indicating the termina-
tion status: 0 indicates optimal termination within tolerance, 1 means that the truncation error (CR
method) or the third derivative (DV method) is zero and large step size is preferred, 2 is returned if
there is no change in step size within tolerance, 3 indicates a solution at the boundary of the allowed

Hessian 19

value range, 4 signals that the maximum number of iterations was reached. message – summary
messages of the exit status. If method.ards$diagnostics is TRUE, iterations is a list of lists
including the full step size search path, argument grids, function values on those grids, estimated
error ratios, and estimated derivative values for each coordinate.

References

Curtis AR, Reid JK (1974). “The Choice of Step Lengths When Using Differences to Approximate
Jacobian Matrices.” IMA Journal of Applied Mathematics, 13(1), 121–126. doi:10.1093/imamat/
13.1.121.

Dumontet J, Vignes J (1977). “Détermination du pas optimal dans le calcul des dérivées sur or-
dinateur.” RAIRO. Analyse numérique, 11(1), 13–25. doi:10.1051/m2an/1977110100131.

Mathur R (2012). An Analytical Approach to Computing Step Sizes for Finite-Difference Deriva-
tives. Ph.D. thesis, University of Texas at Austin. http://hdl.handle.net/2152/ETD-UT-2012-05-5275.

Stepleman RS, Winarsky ND (1979). “Adaptive numerical differentiation.” Mathematics of Com-
putation, 33(148), 1257–1264. doi:10.1090/s00255718197905379698.

See Also

step.CR() for Curtis–Reid (1974) and its modification, step.DV() for Dumontet–Vignes (1977),
step.SW() for Stepleman–Winarsky (1979), and step.M() for Mathur (2012).

Examples

gradstep(x = 1, FUN = sin, method = "CR")
gradstep(x = 1, FUN = sin, method = "CRm")
gradstep(x = 1, FUN = sin, method = "DV")
gradstep(x = 1, FUN = sin, method = "SW")
gradstep(x = 1, FUN = sin, method = "M")
Works for gradients
gradstep(x = 1:4, FUN = function(x) sum(sin(x)))

Hessian Numerical Hessians

Description

Computes the second derivatives of a function with respect to all combinations of its input coordi-
nates. Arbitrary accuracies and sides for different coordinates of the argument vector are supported.

Usage

Hessian(
FUN,
x,

https://doi.org/10.1093/imamat/13.1.121
https://doi.org/10.1093/imamat/13.1.121
https://doi.org/10.1051/m2an/1977110100131
http://hdl.handle.net/2152/ETD-UT-2012-05-5275
https://doi.org/10.1090/s0025-5718-1979-0537969-8

20 Hessian

side = 0,
acc.order = 2,
h = NULL,
h0 = NULL,
control = list(),
f0 = NULL,
cores = 1,
preschedule = TRUE,
cl = NULL,
func = NULL,
report = 1L,
...

)

Arguments

FUN A function returning a numeric scalar. If the function returns a vector, the output
will be is a Jacobian. If instead of FUN, func is passed, as in numDeriv::grad,
it will be reassigned to FUN with a warning.

x Numeric vector or scalar: point at which the derivative is estimated. FUN(x)
must return a finite value.

side Integer scalar or vector indicating difference type: 0 for central, 1 for forward,
and -1 for backward differences. Central differences are recommended unless
computational cost is prohibitive.

acc.order Integer specifying the desired accuracy order. The error typically scales as
O(hacc.order).

h Numeric scalar, vector, or character specifying the step size for the numerical
difference. If character ("CR", "CRm", "DV", or "SW"), calls gradstep() with
the appropriate step-selection method. Must be length 1 or match length(x).
Matrices of step sizes are not supported. Suggestions how to handle all pairs of
coordinates are welcome.

h0 Numeric scalar of vector: initial step size for automatic search with gradstep().Hessian(f,
1:100)

control A named list of tuning parameters passed to gradstep().

f0 Optional numeric scalar or vector: if provided and applicable, used where the
stencil contains zero (i.e. FUN(x) is part of the sum) to save time. TODO:
Currently ignored.

cores Integer specifying the number of CPU cores used for parallel computation. Rec-
ommended to be set to the number of physical cores on the machine minus one.

preschedule Logical: if TRUE, disables pre-scheduling for mclapply() or enables load bal-
ancing with parLapplyLB(). Recommended for functions that take less than
0.1 s per evaluation.

cl An optional user-supplied cluster object (created by makeCluster or similar
functions). If not NULL, the code uses parLapply() (if preschedule is TRUE)
or parLapplyLB() on that cluster on Windows, and mclapply (fork cluster) on
everything else.

Hessian 21

func Deprecated; for numDeriv::grad() compatibility only.

report Integer: if 0, returns a gradient without any attributes; if 1, attaches the step
size and its selection method: 2 or higher, attaches the full diagnostic output
(overrides diagnostics = FALSE in control).

... Additional arguments passed to FUN.

Details

The optimal step size for 2nd-order-accurate central-differences-based Hessians is of the order
Mach.eps^(1/4) to balance the Taylor series truncation error with the rounding error. However,
selecting the best step size typically requires knowledge of higher-order cross derivatives and is
highly technically involved. Future releases will allow character arguments to invoke automatic
data-driven step-size selection.

The use of f0 can reduce computation time similar to the use of f.lower and f.upper in uniroot().

Some numerical packages use the option (or even the default behaviour) of computing not only the
i < j cross-partials for the Hessian, but all pairs of i and j. The upper and lower triangular matrices
are filled, and the matrix is averaged with its transpose to obtain a Hessian – this is the behaviour of
optimHess(). However, it can be shown that H[i, j] and H[j, i] use the same evaluation grid, and
with a single parallelisable evaluation of the function on that grid, no symmetrisation is necessary
because the result is mathematically and computationally identical. In pnd, only the upper triangular
matrix is computed, saving time and ensuring unambiguous results owing to the interchangeability
of summation terms (ignoring the numerical error in summation as there is nothing that can be done
apart from compensation summation, e.g. via Kahan’s algorithm).

Value

A matrix with as many rows and columns as length(x). Unlike the output of numDeriv::hessian(),
this output preserves the names of x.

See Also

Grad() for gradients, GenD() for generalised numerical differences.

Examples

f <- function(x) prod(sin(x))
Hessian(f, 1:4)
Large matrices

system.time(Hessian(f, 1:100))

22 Jacobian

Jacobian Jacobian matrix computation with parallel capabilities s Computes
the numerical Jacobian for vector-valued functions. Its columns
are partial derivatives of the function with respect to the input el-
ements. This function supports both two-sided (central, symmetric)
and one-sided (forward or backward) derivatives. It can utilise par-
allel processing to accelerate computation of gradients for slow func-
tions or to attain higher accuracy faster. Currently, only Mac and
Linux are supported parallel::mclapply(). Windows support with
parallel::parLapply() is under development.

Description

Jacobian matrix computation with parallel capabilities s Computes the numerical Jacobian for
vector-valued functions. Its columns are partial derivatives of the function with respect to the input
elements. This function supports both two-sided (central, symmetric) and one-sided (forward or
backward) derivatives. It can utilise parallel processing to accelerate computation of gradients for
slow functions or to attain higher accuracy faster. Currently, only Mac and Linux are supported
parallel::mclapply(). Windows support with parallel::parLapply() is under development.

Usage

Jacobian(
FUN,
x,
elementwise = NA,
vectorised = NA,
multivalued = NA,
deriv.order = 1L,
side = 0,
acc.order = 2,
h = NULL,
zero.tol = sqrt(.Machine$double.eps),
h0 = NULL,
control = list(),
f0 = NULL,
cores = 1,
preschedule = TRUE,
cl = NULL,
func = NULL,
method = NULL,
method.args = list(),
report = 1L,
...

)

Jacobian 23

Arguments

FUN A function returning a numeric scalar or a vector whose derivatives are to be
computed. If the function returns a vector, the output will be a Jacobian.

x Numeric vector or scalar: the point(s) at which the derivative is estimated.
FUN(x) must be finite.

elementwise Logical: is the domain effectively 1D, i.e. is this a mapping R 7→ R or Rn 7→
Rn. If NA, compares the output length ot the input length.

vectorised Logical: if TRUE, the function is assumed to be vectorised: it will accept a vec-
tor of parameters and return a vector of values of the same length. Use FALSE
or "no" for functions that take vector arguments and return outputs of arbitrary
length (for Rn 7→ Rk functions). If NA, checks the output length and assumes
vectorisation if it matches the input length; this check is necessary and poten-
tially slow.

multivalued Logical: if TRUE, the function is assumed to return vectors longer than 1. Use
FALSE for element-wise functions. If NA, attempts inferring it from the function
output.

deriv.order Integer or vector of integers indicating the desired derivative order, dm/dxm,
for each element of x.

side Integer scalar or vector indicating the type of finite difference: 0 for central, 1 for
forward, and -1 for backward differences. Central differences are recommended
unless computational cost is prohibitive.

acc.order Integer or vector of integers specifying the desired accuracy order for each ele-
ment of x. The final error will be of the order O(hacc.order).

h Numeric or character specifying the step size(s) for the numerical difference or
a method of automatic step determination ("CR", "CRm", "DV", or "SW" to be
used in gradstep()). The default value is described in ?GenD.

zero.tol Small positive integer: if abs(x) >= zero.tol, then, the automatically guessed
step size is relative (x multiplied by the step), unless an auto-selection procedure
is requested; otherwise, it is absolute.

h0 Numeric scalar of vector: initial step size for automatic search with gradstep().

control A named list of tuning parameters passed to gradstep().

f0 Optional numeric: if provided, used to determine the vectorisation type to save
time. If FUN(x) must be evaluated (e.g. second derivatives), saves one evalua-
tion.

cores Integer specifying the number of CPU cores used for parallel computation. Rec-
ommended to be set to the number of physical cores on the machine minus one.

preschedule Logical: if TRUE, disables pre-scheduling for mclapply() or enables load bal-
ancing with parLapplyLB(). Recommended for functions that take less than
0.1 s per evaluation.

cl An optional user-supplied cluster object (created by makeCluster or similar
functions). If not NULL, the code uses parLapply() (if preschedule is TRUE)
or parLapplyLB() on that cluster on Windows, and mclapply (fork cluster) on
everything else.

24 Jacobian

func For compatibility with numDeriv::grad() only. If instead of FUN, func is used,
it will be reassigned to FUN with a warning.

method For compatibility with numDeriv::grad() only. Supported values: "simple"
and "Richardson". Non-null values result in a warning.

method.args For compatibility with numDeriv::grad() only. Check ?numDeriv::grad for
a list of values. Non-empty lists result in a warning.

report Integer for the level of detail in the output. If 0, returns a gradient without
any attributes; if 1, attaches the step size and its selection method: 2 or higher
attaches the full diagnostic output as an attribute.

... Additional arguments passed to FUN. Important! Since R does partial matching
for argument names, using arguments like f(x, a) and passing a = 1 to GenD(),
Grad(), or Jacobian() will result in the interpretation acc.order = 1 because
the latter is a named argument of these functions. Either supply the full names
of all similar-looking arguments or name arguments differently (e.g. a0 instead
of a).

Value

Matrix where each row corresponds to a function output and each column to an input coordinate.
For scalar-valued functions, a warning is issued and the output is returned as a row matrix.

See Also

GenD(), Grad()

Examples

slowFun <- function(x) {Sys.sleep(0.01); sum(sin(x))}
slowFunVec <- function(x) {Sys.sleep(0.01);

c(sin = sum(sin(x)), exp = sum(exp(x)))}
true.g <- cos(1:4) # Analytical gradient
true.j <- rbind(cos(1:4), exp(1:4)) # Analytical Jacobian
x0 <- c(each = 1, par = 2, is = 3, named = 4)

Compare computation times
system.time(g.slow <- numDeriv::grad(slowFun, x = x0) - true.g)
system.time(j.slow <- numDeriv::jacobian(slowFunVec, x = x0) - true.j)
system.time(g.fast <- Grad(slowFun, x = x0, cores = 2) - true.g)
system.time(j.fast <- Jacobian(slowFunVec, x = x0, cores = 2) - true.j)
system.time(j.fast4 <- Jacobian(slowFunVec, x = x0, acc.order = 4, cores = 2) - true.j)

Compare accuracy
rownames(j.slow) <- paste0("numDeriv.jac.", c("sin", "exp"))
rownames(j.fast) <- paste0("pnd.jac.order2.", rownames(j.fast))
rownames(j.fast4) <- paste0("pnd.jac.order4.", rownames(j.fast4))
Discrepancy
print(rbind(numDeriv.grad = g.slow, pnd.Grad = g.fast, j.slow, j.fast, j.fast4), 2)
The order-4 derivative is more accurate for functions
with non-zero third and higher derivatives -- look at pnd.jac.order.4

plotTE 25

plotTE Estimated total error plot as in Mathur (2012)

Description

Visualises the estimated truncation error, rounding error, and total error used in automatic step-size
selection for numerical differentiation. The plot follows the approach used in Mathur (2012) and
other step-selection methods.

Usage

plotTE(
hgrid,
etrunc,
eround,
hopt = NULL,
i.increasing = NULL,
i.good = NULL,
i.okay = NULL,
eps = .Machine$double.eps/2,
delta = .Machine$double.eps/2,
...

)

Arguments

hgrid Numeric vector: a sequence of step sizes used as the horizontal positions (usu-
ally exponentially spaced).

etrunc Numeric vector: estimated truncation error at each step size. This is typically
computed by subtracting a more accurate finite-difference approximation from
a less accurate one.

eround Numeric vector: estimated rounding error at each step size; usually the best
guess or the upper bound is used.

hopt Numeric scalar (optional): selected optimal step size. If provided, a vertical line
is drawn at this value.

i.increasing Integer vector (optional): indices of step sizes where the truncation error is in-
creasing, which indicates the search range.

i.good Integer vector (optional): indices of step sizes where the truncation error follows
the expected reduction (slope ~ accuracy order; 2 for central differences).

i.okay Integer vector (optional): indices where the truncation error is acceptable but
slightly deviates from the expected behaviour.

eps Numeric scalar: condition error, i.e. the error bound for the accuracy of the
evaluated function; used for labelling rounding error assumptions.

26 runParallel

delta Numeric scalar: subtraction cancellation error, used for labelling rounding error
assumptions.

... Additional graphical parameters passed to plot().

Value

Nothing (invisible null).

Examples

hgrid <- 10^seq(-8, 3, 0.25)
plotTE(hgrid, etrunc = 2e-12 * hgrid^2 + 1e-14 / hgrid,

eround = 1e-14 / hgrid, hopt = 0.4, i.increasing = 30:45, i.good = 32:45)

runParallel Run a function in parallel over a list (internal use only)

Description

Run a function in parallel over a list (internal use only)

Usage

runParallel(FUN, x, cores = 1L, cl = NULL, preschedule = FALSE)

Arguments

FUN A function of only one argument. If there are more arguments, use the FUN2 <-
do.call(FUN, c(list(x), ...)) annd call it.

x A list to parallelise the evaluation of FUN over: either numbers or expressions.

cores Integer specifying the number of CPU cores used for parallel computation. Rec-
ommended to be set to the number of physical cores on the machine minus one.

cl An optional user-supplied cluster object (created by makeCluster or similar
functions). If not NULL, the code uses parLapply() (if preschedule is TRUE)
or parLapplyLB() on that cluster on Windows, and mclapply (fork cluster) on
everything else.

preschedule Logical: if TRUE, disables pre-scheduling for mclapply() or enables load bal-
ancing with parLapplyLB(). Recommended for functions that take less than
0.1 s per evaluation.

Value

The value that lapply(x, FUN) would have returned.

solveVandermonde 27

Examples

fslow <- function(x) Sys.sleep(x)
x <- rep(0.05, 6)
cl <- parallel::makeCluster(2)
print(t1 <- system.time(runParallel(fslow, x)))
print(t2 <- system.time(runParallel(fslow, x, cl = cl)))
print(t3 <- system.time(runParallel(fslow, x, cores = 2)))
parallel::stopCluster(cl)
cat("Parallel overhead at 2 cores: ", round(t2[3]*200/t1[3]-100), "%\n", sep = "")
Ignore on Windows
cat("makeCluster() overhead at 2 cores: ", round(100*t2[3]/t3[3]-100), "%\n", sep = "")

solveVandermonde Numerically stable non-confluent Vandermonde system solver

Description

Numerically stable non-confluent Vandermonde system solver

Usage

solveVandermonde(s, b)

Arguments

s Numeric vector of stencil points defining the Vandermonde matrix on the left-
hand side, where each element Si,j is calculated as s[j]^(i-1).

b Numeric vector of the right-hand side of the equation. This vector must be the
same length as s.

Details

This function utilises the (Björck and Pereyra 1970) algorithm for an accurate solution to non-
confluent Vandermonde systems, which are known for their numerical instability. Unlike Gaussian
elimination, which suffers from ill conditioning, this algorithm achieves numerical stability through
exploiting the ordering of the stencil. An unsorted stencils will trigger a warning. Additionally, the
stencil must contain unique points, as repeated values make the Vandermonde matrix confluent and
therefore non-invertible.

This implementation is a verbatim translation of Algorithm 4.6.2 from (Golub and Van Loan 2013),
which is robust against the issues typically associated with Vandermonde systems.

See (Higham 1987) for an in-depth error analysis of this algorithm.

Value

A numeric vector of coefficients solving the Vandermonde system, matching the length of s.

28 step.CR

References

Björck Å, Pereyra V (1970). “Solution of Vandermonde systems of equations.” Mathematics of
computation, 24(112), 893–903.

Golub GH, Van Loan CF (2013). Matrix computations, 4 edition. Johns Hopkins University Press.

Higham NJ (1987). “Error analysis of the Björck-Pereyra algorithms for solving Vandermonde
systems.” Numerische Mathematik, 50(5), 613–632.

Examples

Approximate the 4th derivatives on a non-negative stencil
solveVandermonde(s = 0:5, b = c(0, 0, 0, 0, 24, 0))

Small numerical inaccuracies: note the 6.66e-15 in the 4th position --
it should be rounded towards zero:
solveVandermonde(s = -3:3, b = c(0, 1, rep(0, 5))) * 60

step.CR Curtis–Reid automatic step selection

Description

Curtis–Reid automatic step selection

Usage

step.CR(
FUN,
x,
h0 = 1e-05 * max(abs(x), sqrt(.Machine$double.eps)),
version = c("original", "modified"),
aim = if (version[1] == "original") 100 else 1,
acc.order = c(2L, 4L),
tol = if (version[1] == "original") 10 else 4,
range = h0/c(1e+05, 1e-05),
maxit = 20L,
seq.tol = 1e-04,
cores = 1,
preschedule = getOption("pnd.preschedule", TRUE),
cl = NULL,
diagnostics = FALSE,
...

)

step.CR 29

Arguments

FUN Function for which the optimal numerical derivative step size is needed.

x Numeric scalar: the point at which the derivative is computed and the optimal
step size is estimated.

h0 Numeric scalar: initial step size, defaulting to a relative step of slightly greater
than .Machine$double.eps^(1/3) (or absolute step if x == 0).

version Character scalar: "original" for the original 1974 version by Curtis and Reid;
"modified" for Kostyrka’s 2025 modification, which adds an extra evaluation
for a more accurate estimate of the truncation error.

aim Positive real scalar: desired ratio of truncation-to-rounding error. The "original"
version over-estimates the truncation error, hence a higher aim is recommended.
For the "modified" version, aim should be close to 1.

acc.order Numeric scalar: in the modified version, allows searching for a step size that
would be optimal for a 4th-order-accurate central difference See the Details sec-
tion below.

tol Numeric scalar greater than 1: tolerance multiplier for determining when to
stop the algorithm based on the current estimate being between aim/tol and
aim*tol.

range Numeric vector of length 2 defining the valid search range for the step size.

maxit Integer: maximum number of algorithm iterations to prevent infinite loops in
degenerate cases.

seq.tol Numeric scalar: maximum relative difference between old and new step sizes
for declaring convergence.

cores Integer specifying the number of CPU cores used for parallel computation. Rec-
ommended to be set to the number of physical cores on the machine minus one.

preschedule Logical: if TRUE, disables pre-scheduling for mclapply() or enables load bal-
ancing with parLapplyLB(). Recommended for functions that take less than
0.1 s per evaluation.

cl An optional user-supplied cluster object (created by makeCluster or similar
functions). If not NULL, the code uses parLapply() (if preschedule is TRUE)
or parLapplyLB() on that cluster on Windows, and mclapply (fork cluster) on
everything else.

diagnostics Logical: if TRUE, returns the full iteration history including all function evalua-
tions.

... Passed to FUN.

Details

This function computes the optimal step size for central differences using the (Curtis and Reid 1974)
algorithm. If the estimated third derivative is exactly zero, then, the initial step size is multiplied by
4 and returned.

If 4th-order accuracy (4OA) is requested, then, two things happen. Firstly, since 4OA differences
requires a larger step size and the truncation error for the 2OA differences grows if the step size

30 step.CR

is larger than the optimal one, a higher ratio of truncation-to-rounding errors should be targeted.
Secondly, a 4OA numerical derivative is returned, but the truncation and rounding errors are still
estimated for the 2OA differences. Therefore, the estimating truncation error is higher and the real
truncation error of 4OA differences is lower.

TODO: mention that f must be one-dimensional

The arguments passed to ... must not partially match those of step.CR(). For example, if cl
exists, then, attempting to avoid cluster export by using step.CR(f, x, h = 1e-4, cl = cl, a = a)
will result in an error: a matches aim and acc.order. Redefine the function for this argument to
have a name that is not equal to the beginning of one of the arguments of step.CR().

Value

A list similar to the one returned by optim(): par – the optimal step size found, value – the
estimated numerical first derivative (central differences; very useful for computationally expensive
functions), counts – the number of iterations (each iteration includes three function evaluations),
abs.error – an estimate of the total approximation error (sum of truncation and rounding errors),
exitcode – an integer code indicating the termination status: 0 indicates optimal termination within
tolerance, 1 means that the third derivative is zero (large step size preferred), 2 is returned if there
is no change in step size within tolerance, 3 indicates a solution at the boundary of the allowed
value range, 4 signals that the maximum number of iterations was reached. message – a summary
message of the exit status. If diagnostics is TRUE, iterations is a list including the full step size
search path, argument grids, function values on those grids, estimated error ratios, and estimated
derivative values.

References

Curtis AR, Reid JK (1974). “The Choice of Step Lengths When Using Differences to Approximate
Jacobian Matrices.” IMA Journal of Applied Mathematics, 13(1), 121–126. doi:10.1093/imamat/
13.1.121.

Examples

f <- function(x) x^4
step.CR(x = 2, f)
step.CR(x = 2, f, h0 = 1e-3, diagnostics = TRUE)
step.CR(x = 2, f, version = "modified")
step.CR(x = 2, f, version = "modified", acc.order = 4)

A bad start: too far away
step.CR(x = 2, f, h0 = 1000) # Bad exit code + a suggestion to extend the range
step.CR(x = 2, f, h0 = 1000, range = c(1e-10, 1e5)) # Problem solved

library(parallel)
cl <- makePSOCKcluster(names = 2, outfile = "")
abc <- 2
f <- function(x, abc) {Sys.sleep(0.02); abc*sin(x)}
x <- pi/4
system.time(step.CR(f, x, h = 1e-4, cores = 1, abc = abc)) # To remove speed-ups
system.time(step.CR(f, x, h = 1e-4, cores = 2, abc = abc)) # Faster
f2 <- function(x) f(x, abc)

https://doi.org/10.1093/imamat/13.1.121
https://doi.org/10.1093/imamat/13.1.121

step.DV 31

clusterExport(cl, c("f2", "f", "abc"))
system.time(step.CR(f2, x, h = 1e-4, cl = cl)) # Also fast
stopCluster(cl)

step.DV Dumontet–Vignes automatic step selection

Description

Dumontet–Vignes automatic step selection

Usage

step.DV(
FUN,
x,
h0 = 1e-05 * max(abs(x), sqrt(.Machine$double.eps)),
range = h0/c(1e+06, 1e-06),
max.rel.error = .Machine$double.eps^(3/4),
ratio.limits = c(2, 15),
maxit = 40L,
cores = 1,
preschedule = getOption("pnd.preschedule", TRUE),
cl = NULL,
diagnostics = FALSE,
...

)

Arguments

FUN Function for which the optimal numerical derivative step size is needed.
x Numeric scalar: the point at which the derivative is computed and the optimal

step size is estimated.
h0 Numeric scalar: initial step size, defaulting to a relative step of slightly greater

than .Machine$double.eps^(1/3) (or absolute step if x == 0). This step size for
first derivarives is internallt translated into the initial step size for third deriva-
tives by multiplying it by the machine epsilon raised to the power -2/15.

range Numeric vector of length 2 defining the valid search range for the step size.
max.rel.error Positive numeric scalar > 0 indicating the maximum relative error of func-

tion evaluation. For highly accurate functions with all accurate bits is equal to
.Machine$double.eps/2. For noisy functions (derivatives, integrals, output of
optimisation routines etc.), it is higher, typically sqrt(.Machine$double.eps).
Dumontet and Vignes recommend .Machine$double.eps^(3/4) = 2e-12 for
common functions.

ratio.limits Numeric vector of length 2 defining the acceptable ranges for step size: the
algorithm stops if the relative perturbation of the third derivative by amplified
rounding errors falls within this range.

32 step.DV

maxit Maximum number of algorithm iterations to avoid infinite loops in cases the
desired relative perturbation factor cannot be achieved within the given range.
Consider extending the range if this limit is reached.

cores Integer specifying the number of CPU cores used for parallel computation. Rec-
ommended to be set to the number of physical cores on the machine minus one.

preschedule Logical: if TRUE, disables pre-scheduling for mclapply() or enables load bal-
ancing with parLapplyLB(). Recommended for functions that take less than
0.1 s per evaluation.

cl An optional user-supplied cluster object (created by makeCluster or similar
functions). If not NULL, the code uses parLapply() (if preschedule is TRUE)
or parLapplyLB() on that cluster on Windows, and mclapply (fork cluster) on
everything else.

diagnostics Logical: if TRUE, returns the full iteration history including all function evalua-
tions. Note: the history tracks the third derivative, not the first.

... Passed to FUN.

Details

This function computes the optimal step size for central differences using the (Dumontet and Vignes
1977) algorithm. If the estimated third derivative is exactly zero, the function assumes a third
derivative of 1 to prevent division-by-zero errors.

Value

A list similar to the one returned by optim(): par – the optimal step size found, value – the
estimated numerical first derivative (central differences), counts – the number of iterations (each
iteration includes four function evaluations), abs.error – an estimate of the total approximation
error (sum of truncation and rounding errors), exitcode – an integer code indicating the termination
status: 0 indicates optimal termination within tolerance, 1 means that the third derivative is zero
(large step size preferred), 3 indicates a solution at the boundary of the allowed value range, 4
signals that the maximum number of iterations was reached and the found optimal step size belongs
to the allowed range, 5 occurs when the maximum number of iterations was reached and the found
optimal step size did belong to the allowed range and had to be snapped to one end. 6 is used
when maxit = 1 and no search was performed. message is a summary message of the exit status. If
diagnostics is TRUE, iterations is a list including the full step size search path (NB: for the 3rd
derivative), argument grids, function values on those grids, and estimated 3rd derivative values.

References

Dumontet J, Vignes J (1977). “Détermination du pas optimal dans le calcul des dérivées sur ordi-
nateur.” RAIRO. Analyse numérique, 11(1), 13–25. doi:10.1051/m2an/1977110100131.

Examples

f <- function(x) x^4
step.DV(x = 2, f)
step.DV(x = 2, f, h0 = 1e-3, diagnostics = TRUE)

https://doi.org/10.1051/m2an/1977110100131

step.M 33

Plug-in estimator with only one evaluation of f'''
step.DV(x = 2, f, maxit = 1)

step.M Mathur’s AutoDX-like automatic step selection

Description

Mathur’s AutoDX-like automatic step selection

Usage

step.M(
FUN,
x,
h0 = NULL,
range = NULL,
shrink.factor = 0.5,
min.valid.slopes = 5L,
seq.tol = 0.01,
correction = TRUE,
diagnostics = FALSE,
plot = FALSE,
cores = 1,
preschedule = getOption("pnd.preschedule", TRUE),
cl = NULL,
...

)

Arguments

FUN Function for which the optimal numerical derivative step size is needed.

x Numeric scalar: the point at which the derivative is computed and the optimal
step size is estimated.

h0 Numeric scalar: initial step size, defaulting to a relative step of slightly greater
than .Machine$double.eps^(1/3) (or absolute step if x == 0).

range Numeric vector of length 2 defining the valid search range for the step size.

shrink.factor A scalar less than 1 that is used to create a sequence of step sizes. The recom-
mended value is 0.5. Change to 0.25 for a faster search. This number should be
a negative power of 2 for the most accurate representation.

min.valid.slopes

Positive integer: how many points must form a sequence with the correct slope
with relative difference from 2 less than seq.tol. If shrink.factor is small
(< 0.33), consider reducing this to 4.

seq.tol Numeric scalar: maximum relative difference between old and new step sizes
for declaring convergence.

34 step.M

correction Logical: if TRUE, returns the corrected step size (last point in the sequence times
a less-than-1 number to account for the possible continuation of the downwards
slope of the total error); otherwise, returns the grid point that is is lowest in the
increasing sequence of valid error estimates.

diagnostics Logical: if TRUE, returns the full iteration history including all function evalua-
tions.

plot Logical: if TRUE, plots the estimated truncation and round-off errors.

cores Integer specifying the number of CPU cores used for parallel computation. Rec-
ommended to be set to the number of physical cores on the machine minus one.

preschedule Logical: if TRUE, disables pre-scheduling for mclapply() or enables load bal-
ancing with parLapplyLB(). Recommended for functions that take less than
0.1 s per evaluation.

cl An optional user-supplied cluster object (created by makeCluster or similar
functions). If not NULL, the code uses parLapply() (if preschedule is TRUE)
or parLapplyLB() on that cluster on Windows, and mclapply (fork cluster) on
everything else.

... Passed to FUN.

Details

This function computes the optimal step size for central differences using the (Mathur 2012) algo-
rithm.

Value

A list similar to the one returned by optim(): par – the optimal step size found, value – the
estimated numerical first derivative (central differences), counts – the number of iterations (each
iteration includes two function evaluations), abs.error – an estimate of the total approximation
error (sum of truncation and rounding errors), exitcode – an integer code indicating the termination
status: 0 indicates optimal termination due to a sequence of correct reductions, 1 indicates that
the reductions are slightly not within tolerance, 2 indicates that the tolerances are so wrong, an
approximate minimum is returned, 3 signals that there are not enough finite function values and the
rule of thumb is returned. message is a summary message of the exit status. If diagnostics is
TRUE, iterations is a list including the full step size search path, argument grids, function values
on those grids, estimated derivative values, estimated error values, and monotonicity check results.

References

Mathur R (2012). An Analytical Approach to Computing Step Sizes for Finite-Difference Deriva-
tives. Ph.D. thesis, University of Texas at Austin. http://hdl.handle.net/2152/ETD-UT-2012-05-5275.

Examples

f <- function(x) x^4 # The derivative at 1 is 4
step.M(x = 1, f, plot = TRUE)
step.M(x = 1, f, h0 = 1e-9) # Starting low
step.M(x = 1, f, h0 = 1000) # Starting high

http://hdl.handle.net/2152/ETD-UT-2012-05-5275

step.plugin 35

f <- sin # The derivative at pi/4 is sqrt(2)/2
step.M(x = pi/2, f, plot = TRUE) # Bad case -- TODO a fix
step.M(x = pi/4, f, plot = TRUE)
step.M(x = pi/4, f, h0 = 1e-9) # Starting low
step.M(x = pi/4, f, h0 = 1000) # Starting high
where the truncation error estimate is invalid

step.plugin Plug-in step selection

Description

Plug-in step selection

Usage

step.plugin(
FUN,
x,
h0 = 1e-05 * max(abs(x), sqrt(.Machine$double.eps)),
range = h0/c(10000, 1e-04),
cores = 1,
preschedule = getOption("pnd.preschedule", TRUE),
cl = NULL,
diagnostics = FALSE,
...

)

Arguments

FUN Function for which the optimal numerical derivative step size is needed.
x Numeric scalar: the point at which the derivative is computed and the optimal

step size is estimated.
h0 Numeric scalar: initial step size, defaulting to a relative step of slightly greater

than .Machine$double.eps^(1/3) (or absolute step if x == 0). This step size for
first derivarives is internallt translated into the initial step size for third deriva-
tives by multiplying it by the machine epsilon raised to the power -2/15.

range Numeric vector of length 2 defining the valid search range for the step size.
cores Integer specifying the number of CPU cores used for parallel computation. Rec-

ommended to be set to the number of physical cores on the machine minus one.
preschedule Logical: if TRUE, disables pre-scheduling for mclapply() or enables load bal-

ancing with parLapplyLB(). Recommended for functions that take less than
0.1 s per evaluation.

cl An optional user-supplied cluster object (created by makeCluster or similar
functions). If not NULL, the code uses parLapply() (if preschedule is TRUE)
or parLapplyLB() on that cluster on Windows, and mclapply (fork cluster) on
everything else.

36 step.SW

diagnostics Logical: if TRUE, returns the full iteration history including all function evalua-
tions. Note: the history tracks the third derivative, not the first.

... Passed to FUN.

Details

This function computes the optimal step size for central differences using the plug-in approach. The
optimal step size is determined as the minimiser of the total error, which for central finite differences
is (assuming minimal bounds for relative rounding errors)

3

√
1.5

f ′(x)

f ′′′(x)ϵmach

If the estimated third derivative is too small, the function assumes a third derivative of 1 to prevent
division-by-zero errors.

Value

A list similar to the one returned by optim(): par – the optimal step size found, value – the
estimated numerical first derivative (central differences), counts – the number of iterations (here,
it is 2), abs.error – an estimate of the total approximation error (sum of truncation and rounding
errors), exitcode – an integer code indicating the termination status: 0 indicates termination with
checks passed tolerance, 1 means that the third derivative is exactly zero (large step size preferred),
2 signals that the third derivative is too close to zero (large step size preferred), 3 indicates a solution
at the boundary of the allowed value range. message is a summary message of the exit status. If
diagnostics is TRUE, iterations is a list including the two-step size search path, argument grids,
function values on those grids, and estimated 3rd derivative values.

References

There are no references for Rd macro \insertAllCites on this help page.

Examples

f <- function(x) x^4
step.plugin(x = 2, f)
step.plugin(x = 0, f, diagnostics = TRUE) # f''' = 0, setting a large one

step.SW Stepleman–Winarsky automatic step selection

Description

Stepleman–Winarsky automatic step selection

step.SW 37

Usage

step.SW(
FUN,
x,
h0 = 1e-05 * (abs(x) + (x == 0)),
shrink.factor = 0.5,
range = h0/c(1e+12, 1e-08),
seq.tol = 1e-04,
max.rel.error = .Machine$double.eps/2,
maxit = 40L,
cores = 1,
preschedule = getOption("pnd.preschedule", TRUE),
cl = NULL,
diagnostics = FALSE,
...

)

Arguments

FUN Function for which the optimal numerical derivative step size is needed.

x Numeric scalar: the point at which the derivative is computed and the optimal
step size is estimated.

h0 Numeric scalar: initial step size, defaulting to a relative step of slightly greater
than .Machine$double.eps^(1/3) (or absolute step if x == 0).

shrink.factor A scalar less than 1 that is used to multiply the step size during the search. The
authors recommend 0.25, but this may be result in earlier termination at slightly
sub-optimal steps. Change to 0.5 for a more thorough search.

range Numeric vector of length 2 defining the valid search range for the step size.

seq.tol Numeric scalar: maximum relative difference between old and new step sizes
for declaring convergence.

max.rel.error Positive numeric scalar > 0 indicating the maximum relative error of function
evaluation. For highly accurate functions with all accurate bits is equal to half
of machine epsilon. For noisy functions (derivatives, integrals, output of opti-
misation routines etc.), it is higher.

maxit Maximum number of algorithm iterations to avoid infinite loops. Consider try-
ing some smaller or larger initial step size h0 if this limit is reached.

cores Integer specifying the number of CPU cores used for parallel computation. Rec-
ommended to be set to the number of physical cores on the machine minus one.

preschedule Logical: if TRUE, disables pre-scheduling for mclapply() or enables load bal-
ancing with parLapplyLB(). Recommended for functions that take less than
0.1 s per evaluation.

cl An optional user-supplied cluster object (created by makeCluster or similar
functions). If not NULL, the code uses parLapply() (if preschedule is TRUE)
or parLapplyLB() on that cluster on Windows, and mclapply (fork cluster) on
everything else.

38 step.SW

diagnostics Logical: if TRUE, returns the full iteration history including all function evalua-
tions.

... Passed to FUN.

Details

This function computes the optimal step size for central differences using the (Stepleman and
Winarsky 1979) algorithm.

Value

A list similar to the one returned by optim(): par – the optimal step size found, value – the
estimated numerical first derivative (central differences), counts – the number of iterations (each
iteration includes four function evaluations), abs.error – an estimate of the total approximation
error (sum of truncation and rounding errors), exitcode – an integer code indicating the termination
status: 0 indicates optimal termination within tolerance, 2 is returned if there is no change in step
size within tolerance, 3 indicates a solution at the boundary of the allowed value range, 4 signals that
the maximum number of iterations was reached. message is a summary message of the exit status. If
diagnostics is TRUE, iterations is a list including the full step size search path, argument grids,
function values on those grids, estimated derivative values, estimated error values, and monotonicity
check results.

References

Stepleman RS, Winarsky ND (1979). “Adaptive numerical differentiation.” Mathematics of Com-
putation, 33(148), 1257–1264. doi:10.1090/s00255718197905379698.

Examples

f <- function(x) x^4 # The derivative at 1 is 4
step.SW(x = 1, f)
step.SW(x = 1, f, h0 = 1e-9, diagnostics = TRUE) # Starting too low
Starting somewhat high leads to too many preliminary iterations
step.SW(x = 1, f, h0 = 10, diagnostics = TRUE)
step.SW(x = 1, f, h0 = 1000, diagnostics = TRUE) # Starting absurdly high

f <- sin # The derivative at pi/4 is sqrt(2)/2
step.SW(x = pi/4, f)
step.SW(x = pi/4, f, h0 = 1e-9, diagnostics = TRUE) # Starting too low
step.SW(x = pi/4, f, h0 = 0.1, diagnostics = TRUE) # Starting slightly high
The following two example fail because the truncation error estimate is invalid
step.SW(x = pi/4, f, h0 = 10, diagnostics = TRUE) # Warning
step.SW(x = pi/4, f, h0 = 1000, diagnostics = TRUE) # Warning

https://doi.org/10.1090/s0025-5718-1979-0537969-8

stepx 39

stepx Default step size at given points

Description

Default step size at given points

Usage

stepx(x, deriv.order = 1, acc.order = 2, zero.tol = sqrt(.Machine$double.eps))

Arguments

x Numeric vector or scalar: the point(s) at which the derivative is estimated.
FUN(x) must be finite.

deriv.order Integer or vector of integers indicating the desired derivative order, dm/dxm,
for each element of x.

acc.order Integer or vector of integers specifying the desired accuracy order for each ele-
ment of x. The final error will be of the order O(hacc.order).

zero.tol Small positive integer: if abs(x) >= zero.tol, then, the automatically guessed
step size is relative (x multiplied by the step), unless an auto-selection procedure
is requested; otherwise, it is absolute.

Value

A numeric vector of the same length as x with positve step sizes.

Examples

stepx(10^(-10:2))
stepx(10^(-10:2), deriv.order = 2, acc.order = 4)

Index

checkCores, 2
checkDimensions, 3

dupRowInds, 5

fdCoef, 6
fdCoef(), 12

GenD, 8
GenD(), 4, 10, 13, 16, 17, 21, 24
generateGrid, 12
generateGrid2, 13
Grad, 14
Grad(), 4, 8, 10, 16, 21, 24
gradstep, 17
gradstep(), 4, 9, 11–13, 15, 23

Hessian, 19
Hessian(), 13

Jacobian, 22
Jacobian(), 4, 8, 10, 16, 17, 24

plotTE, 25

runParallel, 26

solveVandermonde, 27
step.CR, 28
step.CR(), 19, 30
step.DV, 31
step.DV(), 19
step.M, 33
step.M(), 19
step.plugin, 35
step.SW, 36
step.SW(), 19
stepx, 39

40

	checkCores
	checkDimensions
	dupRowInds
	fdCoef
	GenD
	generateGrid
	generateGrid2
	Grad
	gradstep
	Hessian
	Jacobian
	plotTE
	runParallel
	solveVandermonde
	step.CR
	step.DV
	step.M
	step.plugin
	step.SW
	stepx
	Index

