
Package ‘kernelshap’
August 17, 2024

Title Kernel SHAP

Version 0.7.0

Description Efficient implementation of Kernel SHAP, see Lundberg and Lee
(2017), and Covert and Lee (2021)
<http://proceedings.mlr.press/v130/covert21a>. Furthermore, for up to
14 features, exact permutation SHAP values can be calculated. The
package plays well together with meta-learning packages like
'tidymodels', 'caret' or 'mlr3'. Visualizations can be done using the
R package 'shapviz'.

License GPL (>= 2)

Depends R (>= 3.2.0)

Encoding UTF-8

RoxygenNote 7.3.2

Imports foreach, MASS, stats, utils

Suggests doFuture, testthat (>= 3.0.0)

Config/testthat/edition 3

URL https://github.com/ModelOriented/kernelshap

BugReports https://github.com/ModelOriented/kernelshap/issues

NeedsCompilation no

Author Michael Mayer [aut, cre] (<https://orcid.org/0009-0007-2540-9629>),
David Watson [aut] (<https://orcid.org/0000-0001-9632-2159>),
Przemyslaw Biecek [ctb] (<https://orcid.org/0000-0001-8423-1823>)

Maintainer Michael Mayer <mayermichael79@gmail.com>

Repository CRAN

Date/Publication 2024-08-17 16:00:02 UTC

Contents
additive_shap . 2
is.kernelshap . 3

1

http://proceedings.mlr.press/v130/covert21a
https://github.com/ModelOriented/kernelshap
https://github.com/ModelOriented/kernelshap/issues
https://orcid.org/0009-0007-2540-9629
https://orcid.org/0000-0001-9632-2159
https://orcid.org/0000-0001-8423-1823

2 additive_shap

kernelshap . 4
permshap . 9
print.kernelshap . 12
summary.kernelshap . 12

Index 14

additive_shap Additive SHAP

Description

Exact additive SHAP assuming feature independence. The implementation works for models fitted
via

• lm(),

• glm(),

• mgcv::gam(),

• mgcv::bam(),

• gam::gam(),

• survival::coxph(), and

• survival::survreg().

Usage

additive_shap(object, X, verbose = TRUE, ...)

Arguments

object Fitted model object.

X Dataframe with rows to be explained. Will be used like predict(object,
newdata = X, type = "terms").

verbose Set to FALSE to suppress messages and the progress bar.

... Currently unused.

Details

The SHAP values are extracted via predict(object, newdata = X, type = "terms"), a logic heav-
ily inspired by fastshap:::explain.lm(..., exact = TRUE). Models with interactions (specified
via : or *), or with terms of multiple features like log(x1/x2) are not supported.

Note that the SHAP values obtained by additive_shap() are expected to match those of permshap()
and kernelshap() as long as their background data equals the full training data (which is typically
not feasible).

is.kernelshap 3

Value

An object of class "kernelshap" with the following components:

• S: (n× p) matrix with SHAP values.

• X: Same as input argument X.

• baseline: The baseline.

• exact: TRUE.

• txt: Summary text.

• predictions: Vector with predictions of X on the scale of "terms".

• algorithm: "additive_shap".

Examples

MODEL ONE: Linear regression
fit <- lm(Sepal.Length ~ ., data = iris)
s <- additive_shap(fit, head(iris))
s

MODEL TWO: More complicated (but not very clever) formula
fit <- lm(

Sepal.Length ~ poly(Sepal.Width, 2) + log(Petal.Length) + log(Sepal.Width),
data = iris

)
s_add <- additive_shap(fit, head(iris))
s_add

Equals kernelshap()/permshap() when background data is full training data
s_kernel <- kernelshap(
fit, head(iris[c("Sepal.Width", "Petal.Length")]), bg_X = iris

)
all.equal(s_addS, s_kernelS)

is.kernelshap Check for kernelshap

Description

Is object of class "kernelshap"?

Usage

is.kernelshap(object)

Arguments

object An R object.

4 kernelshap

Value

TRUE if object is of class "kernelshap", and FALSE otherwise.

See Also

kernelshap()

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
s <- kernelshap(fit, iris[1:2, -1], bg_X = iris[, -1])
is.kernelshap(s)
is.kernelshap("a")

kernelshap Kernel SHAP

Description

Efficient implementation of Kernel SHAP, see Lundberg and Lee (2017), and Covert and Lee
(2021), abbreviated by CL21. For up to p = 8 features, the resulting Kernel SHAP values are
exact regarding the selected background data. For larger p, an almost exact hybrid algorithm in-
volving iterative sampling is used, see Details. For up to eight features, however, we recomment to
use permshap().

Usage

kernelshap(object, ...)

Default S3 method:
kernelshap(
object,
X,
bg_X = NULL,
pred_fun = stats::predict,
feature_names = colnames(X),
bg_w = NULL,
bg_n = 200L,
exact = length(feature_names) <= 8L,
hybrid_degree = 1L + length(feature_names) %in% 4:16,
paired_sampling = TRUE,
m = 2L * length(feature_names) * (1L + 3L * (hybrid_degree == 0L)),
tol = 0.005,
max_iter = 100L,
parallel = FALSE,
parallel_args = NULL,
verbose = TRUE,

kernelshap 5

...
)

S3 method for class 'ranger'
kernelshap(
object,
X,
bg_X = NULL,
pred_fun = NULL,
feature_names = colnames(X),
bg_w = NULL,
bg_n = 200L,
exact = length(feature_names) <= 8L,
hybrid_degree = 1L + length(feature_names) %in% 4:16,
paired_sampling = TRUE,
m = 2L * length(feature_names) * (1L + 3L * (hybrid_degree == 0L)),
tol = 0.005,
max_iter = 100L,
parallel = FALSE,
parallel_args = NULL,
verbose = TRUE,
survival = c("chf", "prob"),
...

)

Arguments

object Fitted model object.

... Additional arguments passed to pred_fun(object, X, ...).

X (n × p) matrix or data.frame with rows to be explained. The columns should
only represent model features, not the response (but see feature_names on how
to overrule this).

bg_X Background data used to integrate out "switched off" features, often a subset of
the training data (typically 50 to 500 rows). In cases with a natural "off" value
(like MNIST digits), this can also be a single row with all values set to the off
value. If no bg_X is passed (the default) and if X is sufficiently large, a random
sample of bg_n rows from X serves as background data.

pred_fun Prediction function of the form function(object, X, ...), providing K ≥ 1
predictions per row. Its first argument represents the model object, its second
argument a data structure like X. Additional (named) arguments are passed via
.... The default, stats::predict(), will work in most cases.

feature_names Optional vector of column names in X used to calculate SHAP values. By de-
fault, this equals colnames(X). Not supported if X is a matrix.

bg_w Optional vector of case weights for each row of bg_X. If bg_X = NULL, must be
of same length as X. Set to NULL for no weights.

bg_n If bg_X = NULL: Size of background data to be sampled from X.

6 kernelshap

exact If TRUE, the algorithm will produce exact Kernel SHAP values with respect to the
background data. In this case, the arguments hybrid_degree, m, paired_sampling,
tol, and max_iter are ignored. The default is TRUE up to eight features, and
FALSE otherwise.

hybrid_degree Integer controlling the exactness of the hybrid strategy. For 4 ≤ p ≤ 16, the
default is 2, otherwise it is 1. Ignored if exact = TRUE.

• 0: Pure sampling strategy not involving any exact part. It is strictly worse
than the hybrid strategy and should therefore only be used for studying
properties of the Kernel SHAP algorithm.

• 1: Uses all 2p on-off vectors z with
∑

z ∈ {1, p − 1} for the exact part,
which covers at least 75% of the mass of the Kernel weight distribution.
The remaining mass is covered by random sampling.

• 2: Uses all p(p + 1) on-off vectors z with
∑

z ∈ {1, 2, p − 2, p − 1}.
This covers at least 92% of the mass of the Kernel weight distribution. The
remaining mass is covered by sampling. Convergence usually happens in
the minimal possible number of iterations of two.

• k>2: Uses all on-off vectors with
∑

z ∈ {1, . . . , k, p− k, . . . , p− 1}.

paired_sampling

Logical flag indicating whether to do the sampling in a paired manner. This
means that with every on-off vector z, also 1− z is considered. CL21 shows its
superiority compared to standard sampling, therefore the default (TRUE) should
usually not be changed except for studying properties of Kernel SHAP algo-
rithms. Ignored if exact = TRUE.

m Even number of on-off vectors sampled during one iteration. The default is 2p,
except when hybrid_degree == 0. Then it is set to 8p. Ignored if exact = TRUE.

tol Tolerance determining when to stop. Following CL21, the algorithm keeps iter-
ating until max(σn)/(max(βn) − min(βn)) < tol, where the βn are the SHAP
values of a given observation, and σn their standard errors. For multidimen-
sional predictions, the criterion must be satisfied for each dimension separately.
The stopping criterion uses the fact that standard errors and SHAP values are all
on the same scale. Ignored if exact = TRUE.

max_iter If the stopping criterion (see tol) is not reached after max_iter iterations, the
algorithm stops. Ignored if exact = TRUE.

parallel If TRUE, use parallel foreach::foreach() to loop over rows to be explained.
Must register backend beforehand, e.g., via ’doFuture’ package, see README
for an example. Parallelization automatically disables the progress bar.

parallel_args Named list of arguments passed to foreach::foreach(). Ideally, this is NULL
(default). Only relevant if parallel = TRUE. Example on Windows: if object is
a GAM fitted with package ’mgcv’, then one might need to set parallel_args
= list(.packages = "mgcv").

verbose Set to FALSE to suppress messages and the progress bar.

survival Should cumulative hazards ("chf", default) or survival probabilities ("prob") per
time be predicted? Only in ranger() survival models.

kernelshap 7

Details

Pure iterative Kernel SHAP sampling as in Covert and Lee (2021) works like this:

1. A binary "on-off" vector z is drawn from {0, 1}p such that its sum follows the SHAP Kernel
weight distribution (normalized to the range {1, . . . , p− 1}).

2. For each j with zj = 1, the j-th column of the original background data is replaced by the
corresponding feature value xj of the observation to be explained.

3. The average prediction vz on the data of Step 2 is calculated, and the average prediction v0 on
the background data is subtracted.

4. Steps 1 to 3 are repeated m times. This produces a binary m × p matrix Z (each row equals
one of the z) and a vector v of shifted predictions.

5. v is regressed onto Z under the constraint that the sum of the coefficients equals v1 − v0,
where v1 is the prediction of the observation to be explained. The resulting coefficients are
the Kernel SHAP values.

This is repeated multiple times until convergence, see CL21 for details.

A drawback of this strategy is that many (at least 75%) of the z vectors will have
∑

z ∈ {1, p− 1},
producing many duplicates. Similarly, at least 92% of the mass will be used for the p(p + 1)
possible vectors with

∑
z ∈ {1, 2, p−2, p−1}. This inefficiency can be fixed by a hybrid strategy,

combining exact calculations with sampling.

The hybrid algorithm has two steps:

1. Step 1 (exact part): There are 2p different on-off vectors z with
∑

z ∈ {1, p− 1}, covering a
large proportion of the Kernel SHAP distribution. The degree 1 hybrid will list those vectors
and use them according to their weights in the upcoming calculations. Depending on p, we can
also go a step further to a degree 2 hybrid by adding all p(p−1) vectors with

∑
z ∈ {2, p−2}

to the process etc. The necessary predictions are obtained along with other calculations similar
to those described in CL21.

2. Step 2 (sampling part): The remaining weight is filled by sampling vectors z according to
Kernel SHAP weights renormalized to the values not yet covered by Step 1. Together with
the results from Step 1 - correctly weighted - this now forms a complete iteration as in CL21.
The difference is that most mass is covered by exact calculations. Afterwards, the algorithm
iterates until convergence. The output of Step 1 is reused in every iteration, leading to an
extremely efficient strategy.

If p is sufficiently small, all possible 2p − 2 on-off vectors z can be evaluated. In this case, no
sampling is required and the algorithm returns exact Kernel SHAP values with respect to the given
background data. Since kernelshap() calculates predictions on data with MN rows (N is the
background data size and M the number of z vectors), p should not be much higher than 10 for
exact calculations. For similar reasons, degree 2 hybrids should not use p much larger than 40.

Value

An object of class "kernelshap" with the following components:

• S: (n× p) matrix with SHAP values or, if the model output has dimension K > 1, a list of K
such matrices.

• X: Same as input argument X.

8 kernelshap

• baseline: Vector of length K representing the average prediction on the background data.

• bg_X: The background data.

• bg_w: The background case weights.

• SE: Standard errors corresponding to S (and organized like S).

• n_iter: Integer vector of length n providing the number of iterations per row of X.

• converged: Logical vector of length n indicating convergence per row of X.

• m: Integer providing the effective number of sampled on-off vectors used per iteration.

• m_exact: Integer providing the effective number of exact on-off vectors used per iteration.

• prop_exact: Proportion of the Kernel SHAP weight distribution covered by exact calcula-
tions.

• exact: Logical flag indicating whether calculations are exact or not.

• txt: Summary text.

• predictions: (n×K) matrix with predictions of X.

• algorithm: "kernelshap".

Methods (by class)

• kernelshap(default): Default Kernel SHAP method.

• kernelshap(ranger): Kernel SHAP method for "ranger" models, see Readme for an exam-
ple.

References

1. Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions.
Proceedings of the 31st International Conference on Neural Information Processing Systems,
2017.

2. Ian Covert and Su-In Lee. Improving KernelSHAP: Practical Shapley Value Estimation Us-
ing Linear Regression. Proceedings of The 24th International Conference on Artificial Intel-
ligence and Statistics, PMLR 130:3457-3465, 2021.

Examples

MODEL ONE: Linear regression
fit <- lm(Sepal.Length ~ ., data = iris)

Select rows to explain (only feature columns)
X_explain <- iris[-1]

Calculate SHAP values
s <- kernelshap(fit, X_explain)
s

MODEL TWO: Multi-response linear regression
fit <- lm(as.matrix(iris[, 1:2]) ~ Petal.Length + Petal.Width + Species, data = iris)
s <- kernelshap(fit, iris[3:5])
s

permshap 9

Note 1: Feature columns can also be selected 'feature_names'
Note 2: Especially when X is small, pass a sufficiently large background data bg_X
s <- kernelshap(

fit,
iris[1:4,],
bg_X = iris,
feature_names = c("Petal.Length", "Petal.Width", "Species")

)
s

permshap Permutation SHAP

Description

Exact permutation SHAP algorithm with respect to a background dataset, see Strumbelj and Kononenko.
The function works for up to 14 features. For eight or more features, we recomment to switch to
kernelshap().

Usage

permshap(object, ...)

Default S3 method:
permshap(
object,
X,
bg_X = NULL,
pred_fun = stats::predict,
feature_names = colnames(X),
bg_w = NULL,
bg_n = 200L,
parallel = FALSE,
parallel_args = NULL,
verbose = TRUE,
...

)

S3 method for class 'ranger'
permshap(
object,
X,
bg_X = NULL,
pred_fun = NULL,
feature_names = colnames(X),
bg_w = NULL,
bg_n = 200L,

10 permshap

parallel = FALSE,
parallel_args = NULL,
verbose = TRUE,
survival = c("chf", "prob"),
...

)

Arguments

object Fitted model object.

... Additional arguments passed to pred_fun(object, X, ...).

X (n × p) matrix or data.frame with rows to be explained. The columns should
only represent model features, not the response (but see feature_names on how
to overrule this).

bg_X Background data used to integrate out "switched off" features, often a subset of
the training data (typically 50 to 500 rows). In cases with a natural "off" value
(like MNIST digits), this can also be a single row with all values set to the off
value. If no bg_X is passed (the default) and if X is sufficiently large, a random
sample of bg_n rows from X serves as background data.

pred_fun Prediction function of the form function(object, X, ...), providing K ≥ 1
predictions per row. Its first argument represents the model object, its second
argument a data structure like X. Additional (named) arguments are passed via
.... The default, stats::predict(), will work in most cases.

feature_names Optional vector of column names in X used to calculate SHAP values. By de-
fault, this equals colnames(X). Not supported if X is a matrix.

bg_w Optional vector of case weights for each row of bg_X. If bg_X = NULL, must be
of same length as X. Set to NULL for no weights.

bg_n If bg_X = NULL: Size of background data to be sampled from X.

parallel If TRUE, use parallel foreach::foreach() to loop over rows to be explained.
Must register backend beforehand, e.g., via ’doFuture’ package, see README
for an example. Parallelization automatically disables the progress bar.

parallel_args Named list of arguments passed to foreach::foreach(). Ideally, this is NULL
(default). Only relevant if parallel = TRUE. Example on Windows: if object is
a GAM fitted with package ’mgcv’, then one might need to set parallel_args
= list(.packages = "mgcv").

verbose Set to FALSE to suppress messages and the progress bar.

survival Should cumulative hazards ("chf", default) or survival probabilities ("prob") per
time be predicted? Only in ranger() survival models.

Value

An object of class "kernelshap" with the following components:

• S: (n× p) matrix with SHAP values or, if the model output has dimension K > 1, a list of K
such matrices.

• X: Same as input argument X.

permshap 11

• baseline: Vector of length K representing the average prediction on the background data.

• bg_X: The background data.

• bg_w: The background case weights.

• m_exact: Integer providing the effective number of exact on-off vectors used.

• exact: Logical flag indicating whether calculations are exact or not (currently TRUE).

• txt: Summary text.

• predictions: (n×K) matrix with predictions of X.

• algorithm: "permshap".

Methods (by class)

• permshap(default): Default permutation SHAP method.

• permshap(ranger): Permutation SHAP method for "ranger" models, see Readme for an ex-
ample.

References

1. Erik Strumbelj and Igor Kononenko. Explaining prediction models and individual predictions
with feature contributions. Knowledge and Information Systems 41, 2014.

Examples

MODEL ONE: Linear regression
fit <- lm(Sepal.Length ~ ., data = iris)

Select rows to explain (only feature columns)
X_explain <- iris[-1]

Calculate SHAP values
s <- permshap(fit, X_explain)
s

MODEL TWO: Multi-response linear regression
fit <- lm(as.matrix(iris[, 1:2]) ~ Petal.Length + Petal.Width + Species, data = iris)
s <- permshap(fit, iris[3:5])
s

Note 1: Feature columns can also be selected 'feature_names'
Note 2: Especially when X is small, pass a sufficiently large background data bg_X
s <- permshap(

fit,
iris[1:4,],
bg_X = iris,
feature_names = c("Petal.Length", "Petal.Width", "Species")

)
s

12 summary.kernelshap

print.kernelshap Prints "kernelshap" Object

Description

Prints "kernelshap" Object

Usage

S3 method for class 'kernelshap'
print(x, n = 2L, ...)

Arguments

x An object of class "kernelshap".

n Maximum number of rows of SHAP values to print.

... Further arguments passed from other methods.

Value

Invisibly, the input is returned.

See Also

kernelshap()

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
s <- kernelshap(fit, iris[1:3, -1], bg_X = iris[, -1])
s

summary.kernelshap Summarizes "kernelshap" Object

Description

Summarizes "kernelshap" Object

Usage

S3 method for class 'kernelshap'
summary(object, compact = FALSE, n = 2L, ...)

summary.kernelshap 13

Arguments

object An object of class "kernelshap".

compact Set to TRUE for a more compact summary.

n Maximum number of rows of SHAP values etc. to print.

... Further arguments passed from other methods.

Value

Invisibly, the input is returned.

See Also

kernelshap()

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
s <- kernelshap(fit, iris[1:3, -1], bg_X = iris[, -1])
summary(s)

Index

additive_shap, 2
additive_shap(), 2

foreach::foreach(), 6, 10

glm(), 2

is.kernelshap, 3

kernelshap, 4
kernelshap(), 2, 4, 7, 9, 12, 13

lm(), 2

mgcv::bam(), 2
mgcv::gam(), 2

permshap, 9
permshap(), 2, 4
print.kernelshap, 12

stats::predict(), 5, 10
summary.kernelshap, 12
survival::coxph(), 2
survival::survreg(), 2

14

	additive_shap
	is.kernelshap
	kernelshap
	permshap
	print.kernelshap
	summary.kernelshap
	Index

