ingredients 2.3.0
- breaking change: calculate_variable_splits()now treatsintegervariables ascategorical. This change
is propagated toceteris_paribus(),partial_dependence(),accumulated_dependence(),conditional_dependence(),aggregate_profiles(),DALEX::predict_profile(),DALEX::model_profile()
- fix an error in ceteris_paribus/calculate_variable_splitswhentidymodelsusesintegervariables #145
- fix an error in show_observations#148.
This change is propagated toDALEX::plot.predict_profile()#540.
- fix #149
by replacing all class(x) = "y"withis(x, "y")
ingredients 2.2.1
- added facet_scalesparameter toplot.aggregated_profiles_explainer('free_x'by default) #138
andplot.ceteris_paribus_explainer('free_x'or'free_y'by default, depending on plot type) #136
ingredients 2.2.0
- fixes explanations when data has one column #137
ingredients 2.0.1
- code and documentation maintenance #130
- fixed an error when N = NULLinpartial_dependence()etc. #134
ingredients 2.0
- plot.ceteris_paribus_explainernow by default for
categorical variables plots profiles (not lines -prev default- nor
bars)
- ALE plots are now centered around average y_hat #126
- colors from DrWhy color palette is used for CP #125
ingredients 1.3.1
- default subtitlevalue inplot.fichanged
toNULLfromNA(unification)
- now in the ceteris_paribusfunction one can specify how
grid points shall be calculated, seevariable_splits_type
- ceteris_paribusand aggregates are now working with
missing data, this solves #120
- plot(ceteris_paribus)change default- colorto label or ids if more than one profile is detected,
this solves #123
- ceteris_paribushas now argument- variable_splits_with_obswhich included values from- new_observationsin the- variable_splits, this
solves #124
ingredients 1.3.0
- deprecate n_sampleargument infeature_importance(now it’sN) #113
- plot_profilenow handles multilabel models
ingredients 1.2.0
- DALEXis moved to Suggests as in #112
- plot_categorical_ceteris_paribuscan plot bars
(again)
- add bind_plotsfunction
ingredients 1.1.0
- support R v4.0and depend onR v3.5to
comply withDALEX
- new arguments titleandsubtitlein
several plots
ingredients 1.0.0
- change dependencytodependence#103
ingredients 0.5.2
- ceteris_paribusprofiles are now working for
categorical variables
- show_profiles,- show_observations,- show_residualsare now working for categorical
variables
ingredients 0.5.1
- synchronisation with changes in DALEX 0.5
- new argument desc_sortinginplot.variable_importance_explainer#94
ingredients 0.5.0
- feature_importancenow does- 15permutations on each variable by default. Use the- Bargument to change this number
- added boxplots to plot.feature_importanceandplotD3.feature_importancethat showcase the permutation
data
- in aggregate_profiles: preserve_x_column
factor order and sort its values #82
ingredients 0.4.2
- aggregate_profilesuse now gaussian kernel smoothing.
Use the- spanargument for fine control over this parameter
(#79)
- change variable_typeandvariablesarguments usage in theaggregate_profiles,plot.ceteris_paribusandplotD3.ceteris_paribus
- remove variable_typeargument fromplotD3.aggregated_profiles(now the same as inplot.aggregated_profiles)
- Kasia Pekala is moved as contributor to the DALEXtraasaspect_importanceis moved toDALEXtraas well
(See
v0.3.12 changelog)
- added Travis-CI for OSX
ingredients 0.4.1
- fixed rounding problem in the describe function (#76)
ingredients 0.4
ingredients 0.3.12
- aspect_importanceis moved to- DALEXtra(#66)
- examples are updated in order to reflect changes in
titanic_imputedfromDALEX(#65)
ingredients 0.3.11
- modified plot.aspect_importance- it can plot more than
single figure
 
- modified triplot,plot.aspect_importanceandplot_group_variablesto add more clarity in plots and
allow some parameterization
ingredients 0.3.10
- added triplotfunction that illustrates hierarchicalaspect_importance()groupings
- changes in aspect_importance()functions
- added back the vigniette for aspect_importance()
ingredients 0.3.9
- change only_numericalparameter tovariable_typein functions aggregated_profiles(),
cluster_profiles(), plot() and others, as requested in #15
ingredients 0.3.8
- Natural language description generated with describe()function forceteris_paribus(),feature_importance()andaggregate_profiles()explanations.
ingredients 0.3.7
- aggregated_profiles_conditionaland- aggregated_profiles_accumulatedare rewritten with some
code fixes
ingredients 0.3.6
- a new version of limeis implemented in thelime()/aspect_importance()function.
- Kasia Pekala and Huber Baniecki are added as contributors.
ingredients 0.3.5
- new feature #29.
Feature importance now takes an argument Bthat replicates
permutationsBtimes and calculates average from drop
loss.
ingredients 0.3.4
- plotD3now supports Ceteris Paribus Profiles.
- feature_importancenow can take- variable_groupingargument that assess importance of group
of features
- fix in ceteris_paribus, now it handles models with just one
variable
- fix #27
for multiple rows
ingredients 0.3.3
- show_profilesand- show_residualsfunctions
extend Ceteris Paribus Plots.
- show_aggreagated_profilesis renamed to- show_aggregated_profiles
- centering of ggplot2 title
ingredients 0.3.2
- added new functions describe()andprint.ceteris_paribus_descriptions()for text based
descriptions of Ceteris Paribus explainers
- plot.ceteris_paribus_explainerworks now also for
categorical variables. Use the- only_numerical = FALSEto
force bars
ingredients 0.3.1
- added references to PM VEE
- partial_profiles(),- accumulated_profiles()and- conditional_profilesfor variable effects
- major changes in function names and file names
ingredients 0.3
- ceteris_paribus_2dextends classical ceteris paribus
profiles
- ceteris_paribus_oscillationscalculates oscilations for
ceteris paribus profiles
- fixed examples and file names
ingredients 0.2
- cluster_profileshelps to identify interactions
- partial_dependencycalculates partial dependency
plots
- aggregate_profilescalculates partial dependency plots
and much more
ingredients 0.1
- port of model_feature_importanceandmodel_feature_responsefromDALEXtoingredients
- added tests