The GeoSpatialSuite package provides comprehensive workflow functions that integrate multiple analysis types into complete, automated pipelines. This vignette demonstrates how to build and execute advanced workflows for real-world geospatial analysis scenarios.
By the end of this vignette, you will be able to:
The package includes pre-built workflows for common analysis scenarios:
# Create sample multi-temporal data
red_raster <- rast(nrows = 80, ncols = 80, 
                  xmin = -83.5, xmax = -83.0, 
                  ymin = 40.2, ymax = 40.7)
values(red_raster) <- runif(6400, 0.1, 0.3)
nir_raster <- rast(nrows = 80, ncols = 80, 
                  xmin = -83.5, xmax = -83.0, 
                  ymin = 40.2, ymax = 40.7)
values(nir_raster) <- runif(6400, 0.4, 0.8)
# Configure comprehensive NDVI analysis
ndvi_config <- list(
  analysis_type = "ndvi_crop_analysis",
  input_data = list(red = red_raster, nir = nir_raster),
  region_boundary = c(-83.5, 40.2, -83.0, 40.7),  # Bounding box
  indices = c("NDVI", "EVI2", "SAVI"),
  quality_filter = TRUE,
  temporal_smoothing = FALSE,
  visualization_config = list(
    create_maps = TRUE,
    ndvi_classes = "none",
    interactive = FALSE
  )
)
# Execute comprehensive workflow
ndvi_workflow_results <- run_comprehensive_geospatial_workflow(ndvi_config)
# Access results
ndvi_data <- ndvi_workflow_results$results$vegetation_data
ndvi_stats <- ndvi_workflow_results$results$statistics
ndvi_maps <- ndvi_workflow_results$results$visualizations# Simulate CDL crop data
cdl_raster <- rast(nrows = 80, ncols = 80, 
                  xmin = -83.5, xmax = -83.0, 
                  ymin = 40.2, ymax = 40.7)
values(cdl_raster) <- sample(c(1, 5, 24, 36, 61), 6400, replace = TRUE)  # Corn, soybeans, wheat, alfalfa, fallow
# Enhanced configuration with crop masking
enhanced_ndvi_config <- list(
  analysis_type = "ndvi_crop_analysis",
  input_data = list(red = red_raster, nir = nir_raster),
  region_boundary = "custom",
  cdl_data = cdl_raster,
  crop_codes = c(1, 5),  # Corn and soybeans only
  indices = c("NDVI", "SAVI", "DVI"),
  quality_filter = TRUE,
  visualization_config = list(
    create_maps = TRUE,
    interactive = FALSE
  )
)
# Run enhanced workflow
enhanced_results <- run_comprehensive_geospatial_workflow(enhanced_ndvi_config)
# Compare masked vs unmasked results
print("Original NDVI stats:")
print(global(ndvi_data, "mean", na.rm = TRUE))
print("Crop-masked NDVI stats:")
print(global(enhanced_results$results$vegetation_data, "mean", na.rm = TRUE))# Create multi-band spectral data
spectral_stack <- c(
  red_raster,                    # Band 1: Red
  red_raster * 1.2,             # Band 2: Green (simulated)
  red_raster * 0.8,             # Band 3: Blue (simulated)
  nir_raster                     # Band 4: NIR
)
names(spectral_stack) <- c("red", "green", "blue", "nir")
# Configure comprehensive vegetation analysis
vegetation_config <- list(
  analysis_type = "vegetation_comprehensive",
  input_data = spectral_stack,
  indices = c("NDVI", "EVI2", "SAVI", "GNDVI", "DVI", "RVI"),
  crop_type = "general",
  analysis_type_detail = "comprehensive",
  region_boundary = c(-83.5, 40.2, -83.0, 40.7),
  visualization_config = list(
    create_maps = TRUE,
    comparison_plots = TRUE
  )
)
# Execute comprehensive vegetation workflow
vegetation_results <- run_comprehensive_geospatial_workflow(vegetation_config)
# Access detailed results
vegetation_indices <- vegetation_results$results$vegetation_analysis$vegetation_indices
analysis_details <- vegetation_results$results$vegetation_analysis$analysis_results
metadata <- vegetation_results$results$vegetation_analysis$metadata
print("Vegetation indices calculated:")
print(names(vegetation_indices))
print("Analysis metadata:")
print(metadata$indices_used)# Corn-specific analysis workflow
corn_config <- list(
  analysis_type = "vegetation_comprehensive",
  input_data = spectral_stack,
  crop_type = "corn",
  analysis_type_detail = "comprehensive",
  cdl_mask = cdl_raster == 1,  # Corn mask
  indices = c("NDVI", "EVI2", "GNDVI"),  # Corn-appropriate indices
  visualization_config = list(create_maps = TRUE)
)
corn_results <- run_comprehensive_geospatial_workflow(corn_config)
# Extract corn-specific insights
if ("stress_analysis" %in% names(corn_results$results$vegetation_analysis$analysis_results)) {
  stress_results <- corn_results$results$vegetation_analysis$analysis_results$stress_analysis
  print("Corn stress analysis:")
  print(stress_results)
}Objective: Monitor environmental conditions around water bodies, assess agricultural impacts on water quality, and identify priority areas for conservation.
# Create environmental monitoring scenario
monitoring_extent <- c(-82.8, 39.5, -81.8, 40.5)
# Water quality monitoring stations
water_stations <- data.frame(
  station_id = paste0("WQ_", sprintf("%03d", 1:18)),
  lon = runif(18, monitoring_extent[1] + 0.1, monitoring_extent[3] - 0.1),
  lat = runif(18, monitoring_extent[2] + 0.1, monitoring_extent[4] - 0.1),
  nitrate_mg_l = runif(18, 0.5, 15.0),
  phosphorus_mg_l = runif(18, 0.02, 2.5),
  turbidity_ntu = runif(18, 1, 45),
  dissolved_oxygen_mg_l = runif(18, 4, 12),
  ph = runif(18, 6.8, 8.4),
  sampling_date = sample(seq(as.Date("2024-05-01"), as.Date("2024-09-30"), by = "day"), 18),
  watershed = sample(c("Upper_Creek", "Lower_Creek", "Tributary_A"), 18, replace = TRUE)
)
# Land use/land cover data
lulc_raster <- terra::rast(nrows = 150, ncols = 150,
                          xmin = monitoring_extent[1], xmax = monitoring_extent[3],
                          ymin = monitoring_extent[2], ymax = monitoring_extent[4])
# Simulate realistic LULC pattern
lulc_codes <- c(1, 5, 41, 42, 81, 82, 11, 21)  # Developed, Forest, Wetland, Agriculture
lulc_probs <- c(0.15, 0.25, 0.05, 0.40, 0.08, 0.05, 0.01, 0.01)
terra::values(lulc_raster) <- sample(lulc_codes, 22500, replace = TRUE, prob = lulc_probs)
names(lulc_raster) <- "LULC"
print("Environmental monitoring setup completed")# Comprehensive water quality assessment
water_quality_results <- list()
# Analyze each water quality parameter
parameters <- c("nitrate_mg_l", "phosphorus_mg_l", "turbidity_ntu", "dissolved_oxygen_mg_l")
for (param in parameters) {
  
  # Define parameter-specific thresholds
  thresholds <- switch(param,
    "nitrate_mg_l" = list("Low" = c(0, 3), "Moderate" = c(3, 6), 
                         "High" = c(6, 10), "Excessive" = c(10, Inf)),
    "phosphorus_mg_l" = list("Low" = c(0, 0.1), "Moderate" = c(0.1, 0.3), 
                            "High" = c(0.3, 0.8), "Excessive" = c(0.8, Inf)),
    "turbidity_ntu" = list("Clear" = c(0, 5), "Moderate" = c(5, 15), 
                          "Turbid" = c(15, 30), "Very_Turbid" = c(30, Inf)),
    "dissolved_oxygen_mg_l" = list("Critical" = c(0, 4), "Stressed" = c(4, 6), 
                                  "Good" = c(6, 8), "Excellent" = c(8, Inf))
  )
  
  # Comprehensive analysis
  water_quality_results[[param]] <- analyze_water_quality_comprehensive(
    water_data = water_stations,
    variable = param,
    region_boundary = monitoring_extent,
    thresholds = thresholds,
    output_folder = paste0("water_quality_", param)
  )
}
print("Water quality analysis completed for all parameters")# Assess land use impacts on water quality
land_use_impact_analysis <- function(water_stations, lulc_raster, buffer_sizes = c(500, 1000, 2000)) {
  
  results <- list()
  
  for (buffer_size in buffer_sizes) {
    
    # Extract land use composition around each station
    buffered_lulc <- spatial_join_universal(
      vector_data = water_stations,
      raster_data = lulc_raster,
      method = "buffer",
      buffer_size = buffer_size,
      summary_function = "mode",  # Most common land use
      variable_names = paste0("dominant_lulc_", buffer_size, "m")
    )
    
    # Calculate land use percentages
    for (i in 1:nrow(water_stations)) {
      station_point <- water_stations[i, ]
      station_buffer <- sf::st_buffer(sf::st_as_sf(station_point, 
                                                  coords = c("lon", "lat"), 
                                                  crs = 4326), 
                                     dist = buffer_size)
      
      # Extract all LULC values within buffer
      lulc_values <- terra::extract(lulc_raster, terra::vect(station_buffer))
      lulc_table <- table(lulc_values)
      
      # Calculate percentages
      total_pixels <- sum(lulc_table)
      agriculture_pct <- sum(lulc_table[names(lulc_table) %in% c("1", "5")]) / total_pixels * 100
      developed_pct <- sum(lulc_table[names(lulc_table) %in% c("21", "22", "23", "24")]) / total_pixels * 100
      
      water_stations[i, paste0("agriculture_pct_", buffer_size, "m")] <- agriculture_pct
      water_stations[i, paste0("developed_pct_", buffer_size, "m")] <- developed_pct
    }
    
    results[[paste0("buffer_", buffer_size, "m")]] <- water_stations
  }
  
  return(results)
}
# Perform land use impact analysis
land_use_impacts <- land_use_impact_analysis(water_stations, lulc_raster)
# Analyze correlations between land use and water quality
correlation_analysis <- function(data) {
  
  # Select relevant columns
  water_quality_vars <- c("nitrate_mg_l", "phosphorus_mg_l", "turbidity_ntu")
  land_use_vars <- grep("agriculture_pct|developed_pct", names(data), value = TRUE)
  
  correlation_matrix <- cor(data[, c(water_quality_vars, land_use_vars)], 
                           use = "complete.obs")
  
  return(correlation_matrix)
}
# Analyze correlations for different buffer sizes
correlations_500m <- correlation_analysis(land_use_impacts$buffer_500m)
correlations_1000m <- correlation_analysis(land_use_impacts$buffer_1000m)
correlations_2000m <- correlation_analysis(land_use_impacts$buffer_2000m)
print("Land use impact analysis completed")
print("Correlations at 1000m buffer:")
print(round(correlations_1000m[1:3, 4:7], 3))# Watershed-scale environmental assessment
watershed_assessment <- function(water_stations, environmental_layers) {
  
  # Group stations by watershed
  watershed_summary <- list()
  
  for (watershed in unique(water_stations$watershed)) {
    
    watershed_stations <- water_stations[water_stations$watershed == watershed, ]
    
    # Calculate watershed-level statistics
    watershed_summary[[watershed]] <- list(
      n_stations = nrow(watershed_stations),
      mean_nitrate = mean(watershed_stations$nitrate_mg_l, na.rm = TRUE),
      mean_phosphorus = mean(watershed_stations$phosphorus_mg_l, na.rm = TRUE),
      mean_turbidity = mean(watershed_stations$turbidity_ntu, na.rm = TRUE),
      stations_exceeding_nitrate_threshold = sum(watershed_stations$nitrate_mg_l > 6, na.rm = TRUE),
      stations_exceeding_phosphorus_threshold = sum(watershed_stations$phosphorus_mg_l > 0.3, na.rm = TRUE)
    )
  }
  
  return(watershed_summary)
}
# Environmental layers for watershed analysis
environmental_layers <- list(
  vegetation = enhanced_ndvi,  # From previous case study
  elevation = elevation,
  lulc = lulc_raster
)
watershed_results <- watershed_assessment(water_stations, environmental_layers)
print("Watershed Assessment Results:")
for (watershed in names(watershed_results)) {
  cat("\n", watershed, ":\n")
  result <- watershed_results[[watershed]]
  cat("  Stations:", result$n_stations, "\n")
  cat("  Mean Nitrate:", round(result$mean_nitrate, 2), "mg/L\n")
  cat("  Mean Phosphorus:", round(result$mean_phosphorus, 3), "mg/L\n")
  cat("  Stations exceeding nitrate threshold:", result$stations_exceeding_nitrate_threshold, "\n")
}# Identify priority areas for conservation based on water quality risk
conservation_priority_analysis <- function(lulc_raster, water_quality_data, slope_data = NULL) {
  
  # Create risk factors
  risk_factors <- list()
  
  # Agricultural intensity risk
  ag_risk <- lulc_raster
  ag_risk[lulc_raster != 1 & lulc_raster != 5] <- 0  # Non-ag areas = 0 risk
  ag_risk[lulc_raster == 1 | lulc_raster == 5] <- 1  # Ag areas = 1 risk
  names(ag_risk) <- "agricultural_risk"
  
  # Water quality risk based on monitoring data
  # Create risk surface using interpolation of water quality data
  high_risk_stations <- water_quality_data[water_quality_data$nitrate_mg_l > 6 | 
                                          water_quality_data$phosphorus_mg_l > 0.3, ]
  
  if (nrow(high_risk_stations) > 0) {
    # Simple distance-based risk (closer to high-risk stations = higher risk)
    risk_raster <- terra::rast(lulc_raster)
    terra::values(risk_raster) <- 0
    
    for (i in 1:nrow(high_risk_stations)) {
      station_point <- c(high_risk_stations$lon[i], high_risk_stations$lat[i])
      # Create simple distance decay function (this is simplified)
      distances <- terra::distance(risk_raster, station_point)
      station_risk <- 1 / (1 + distances / 5000)  # 5km decay distance
      risk_raster <- risk_raster + station_risk
    }
    
    names(risk_raster) <- "water_quality_risk"
  } else {
    risk_raster <- ag_risk * 0  # No high-risk stations
  }
  
  # Combined priority score
  combined_priority <- (ag_risk * 0.6) + (risk_raster * 0.4)
  names(combined_priority) <- "conservation_priority"
  
  # Classify priority levels
  priority_values <- terra::values(combined_priority, mat = FALSE)
  priority_breaks <- quantile(priority_values[priority_values > 0], 
                             c(0, 0.25, 0.5, 0.75, 1.0), na.rm = TRUE)
  
  priority_classified <- terra::classify(combined_priority,
                                        cbind(priority_breaks[-length(priority_breaks)],
                                              priority_breaks[-1],
                                              1:4))
  names(priority_classified) <- "priority_class"
  
  return(list(
    priority_surface = combined_priority,
    priority_classified = priority_classified,
    high_risk_stations = high_risk_stations
  ))
}
# Generate conservation priorities
conservation_priorities <- conservation_priority_analysis(lulc_raster, water_stations)
print("Conservation priority analysis completed")
print(paste("High-risk stations identified:", nrow(conservation_priorities$high_risk_stations)))Objective: Analyze landscape changes over time, detect deforestation/land use conversion, and monitor ecosystem health trends.
# Simulate multi-temporal satellite data (5-year time series)
years <- 2020:2024
temporal_extent <- c(-83.0, 40.2, -82.0, 41.2)
# Create temporal NDVI series with realistic trends
temporal_ndvi_series <- list()
base_ndvi <- terra::rast(nrows = 120, ncols = 120,
                        xmin = temporal_extent[1], xmax = temporal_extent[3],
                        ymin = temporal_extent[2], ymax = temporal_extent[4])
# Create base NDVI pattern
x_coords <- terra::xFromCell(base_ndvi, 1:terra::ncell(base_ndvi))
y_coords <- terra::yFromCell(base_ndvi, 1:terra::ncell(base_ndvi))
base_pattern <- 0.6 + 0.2 * sin((x_coords - min(x_coords)) * 6) + 
                0.1 * cos((y_coords - min(y_coords)) * 4) +
                rnorm(terra::ncell(base_ndvi), 0, 0.1)
terra::values(base_ndvi) <- pmax(0.1, pmin(0.9, base_pattern))
# Simulate temporal changes
for (i in 1:length(years)) {
  year <- years[i]
  
  # Add temporal trends
  # 1. General vegetation improvement (climate change effect)
  climate_trend <- (i - 1) * 0.02
  
  # 2. Localized disturbances (development, deforestation)
  disturbance_effect <- 0
  if (i >= 3) {  # Disturbance starts in year 3
    # Simulate development in lower-left quadrant
    disturbance_mask <- (x_coords < (min(x_coords) + (max(x_coords) - min(x_coords)) * 0.4)) &
                       (y_coords < (min(y_coords) + (max(y_coords) - min(y_coords)) * 0.4))
    disturbance_effect <- ifelse(disturbance_mask, -0.3, 0)
  }
  
  # 3. Inter-annual variability
  annual_variation <- rnorm(terra::ncell(base_ndvi), 0, 0.05)
  
  # Combine effects
  year_ndvi <- base_ndvi + climate_trend + disturbance_effect + annual_variation
  year_ndvi <- pmax(0.05, pmin(0.95, year_ndvi))
  names(year_ndvi) <- paste0("NDVI_", year)
  
  temporal_ndvi_series[[as.character(year)]] <- year_ndvi
}
print("Multi-temporal data series created for years:", paste(years, collapse = ", "))# Comprehensive temporal change analysis
temporal_analysis_results <- analyze_temporal_changes(
  data_list = temporal_ndvi_series,
  dates = as.character(years),
  region_boundary = temporal_extent,
  analysis_type = "trend",
  output_folder = "temporal_analysis_results"
)
# Additional change detection analysis
change_detection_results <- analyze_temporal_changes(
  data_list = temporal_ndvi_series,
  dates = as.character(years),
  analysis_type = "change_detection"
)
# Statistical analysis
statistics_results <- analyze_temporal_changes(
  data_list = temporal_ndvi_series,
  dates = as.character(years),
  analysis_type = "statistics"
)
print("Temporal analysis completed:")
print("Trend analysis:", !is.null(temporal_analysis_results$trend_rasters))
print("Change detection:", length(change_detection_results$change_rasters), "change maps")
print("Statistical summary:", length(statistics_results$statistics_rasters), "statistic layers")# Identify areas of significant change
identify_change_hotspots <- function(trend_results, change_results, threshold_slope = 0.02) {
  
  # Extract slope (trend) raster
  slope_raster <- trend_results$trend_rasters$slope
  r_squared_raster <- trend_results$trend_rasters$r_squared
  
  # Identify significant trends
  significant_trends <- abs(slope_raster) > threshold_slope & r_squared_raster > 0.5
  
  # Classify change types
  change_types <- slope_raster
  change_types[slope_raster > threshold_slope & significant_trends] <- 2   # Increasing
  change_types[slope_raster < -threshold_slope & significant_trends] <- 1  # Decreasing
  change_types[!significant_trends] <- 0  # No significant change
  
  names(change_types) <- "change_type"
  
  # Calculate change statistics
  n_total <- terra::ncell(change_types)
  n_increasing <- sum(terra::values(change_types) == 2, na.rm = TRUE)
  n_decreasing <- sum(terra::values(change_types) == 1, na.rm = TRUE)
  n_stable <- sum(terra::values(change_types) == 0, na.rm = TRUE)
  
  change_stats <- list(
    total_pixels = n_total,
    increasing_pixels = n_increasing,
    decreasing_pixels = n_decreasing,
    stable_pixels = n_stable,
    increasing_percent = round(n_increasing / n_total * 100, 1),
    decreasing_percent = round(n_decreasing / n_total * 100, 1)
  )
  
  return(list(
    change_types = change_types,
    significant_trends = significant_trends,
    change_statistics = change_stats
  ))
}
# Identify hotspots
change_hotspots <- identify_change_hotspots(temporal_analysis_results, change_detection_results)
print("Change Hotspot Analysis:")
print(paste("Pixels with increasing vegetation:", change_hotspots$change_statistics$increasing_pixels))
print(paste("Pixels with decreasing vegetation:", change_hotspots$change_statistics$decreasing_pixels))
print(paste("Percentage of area with significant decline:", 
           change_hotspots$change_statistics$decreasing_percent, "%"))# Synthesize results from all case studies
comprehensive_synthesis <- function(agricultural_results, environmental_results, temporal_results) {
  
  synthesis_report <- list()
  
  # 1. Agricultural insights
  synthesis_report$agricultural_summary <- list(
    total_fields_analyzed = nrow(field_boundaries),
    management_zones_created = management_zones$optimal_zones,
    average_ndvi = round(mean(terra::values(enhanced_ndvi), na.rm = TRUE), 3),
    precision_ag_benefits = "Variable-rate applications recommended for all zones"
  )
  
  # 2. Environmental insights  
  synthesis_report$environmental_summary <- list(
    water_stations_monitored = nrow(water_stations),
    parameters_analyzed = length(parameters),
    watersheds_assessed = length(unique(water_stations$watershed)),
    high_risk_areas_identified = nrow(conservation_priorities$high_risk_stations)
  )
  
  # 3. Temporal insights
  synthesis_report$temporal_summary <- list(
    years_analyzed = length(years),
    significant_change_areas = change_hotspots$change_statistics$decreasing_percent,
    trend_analysis_completed = TRUE,
    monitoring_recommendations = "Continue monitoring areas with significant decline"
  )
  
  # 4. Integrated recommendations
  synthesis_report$integrated_recommendations <- list(
    precision_agriculture = "Implement zone-based management for optimal yields",
    water_quality = "Focus conservation efforts on high-risk watersheds",
    land_change_monitoring = "Establish permanent monitoring plots in change hotspots",
    data_integration = "Continue multi-source data integration for comprehensive assessment"
  )
  
  return(synthesis_report)
}
# Generate comprehensive synthesis
final_synthesis <- comprehensive_synthesis(
  agricultural_results, 
  water_quality_results, 
  temporal_analysis_results
)
print("COMPREHENSIVE ANALYSIS SYNTHESIS")
print("=====================================")
for (section in names(final_synthesis)) {
  cat("\n", toupper(gsub("_", " ", section)), ":\n")
  for (item in names(final_synthesis[[section]])) {
    cat("  ", gsub("_", " ", item), ":", final_synthesis[[section]][[item]], "\n")
  }
}# Performance optimization for large-scale analyses
optimization_tips <- function() {
  cat("WORKFLOW OPTIMIZATION GUIDE\n")
  cat("===========================\n\n")
  
  cat("Data Management:\n")
  cat("  - Process data in chunks for large datasets\n")
  cat("  - Use appropriate raster resolutions for analysis scale\n")
  cat("  - Implement data caching for repeated analyses\n")
  cat("  - Clean up intermediate files regularly\n\n")
  
  cat("Memory Management:\n")
  cat("  - Monitor memory usage with gc() and object.size()\n")
  cat("  - Use terra's out-of-memory processing for large rasters\n")
  cat("  - Remove unused objects with rm()\n")
  cat("  - Consider parallel processing for independent operations\n\n")
  
  cat("Quality Control:\n")
  cat("  - Validate inputs before processing\n")
  cat("  - Implement checkpoints in long workflows\n")
  cat("  - Log processing steps and parameters\n")
  cat("  - Create reproducible analysis scripts\n")
}
optimization_tips()# Framework for reproducible geospatial research
create_reproducible_workflow <- function(project_name, analysis_config) {
  
  # Create project structure
  project_dirs <- c(
    file.path(project_name, "data", "raw"),
    file.path(project_name, "data", "processed"),
    file.path(project_name, "scripts"),
    file.path(project_name, "results", "figures"),
    file.path(project_name, "results", "tables"),
    file.path(project_name, "documentation")
  )
  
  for (dir in project_dirs) {
    if (!dir.exists(dir)) dir.create(dir, recursive = TRUE)
  }
  
  # Create analysis log
  analysis_log <- list(
    project_name = project_name,
    creation_date = Sys.time(),
    geospatialsuite_version = "0.1.0",
    analysis_config = analysis_config,
    r_session_info = sessionInfo()
  )
  
  # Save analysis configuration
  saveRDS(analysis_log, file.path(project_name, "analysis_log.rds"))
  
  cat("Reproducible workflow structure created for:", project_name, "\n")
  cat("Project directories:", length(project_dirs), "created\n")
  cat("Analysis log saved\n")
  
  return(project_dirs)
}
# Example usage
workflow_config <- list(
  analysis_types = c("agricultural", "environmental", "temporal"),
  study_region = "Ohio Agricultural Region",
  temporal_extent = "2020-2024",
  spatial_resolution = "30m",
  coordinate_system = "WGS84"
)
project_structure <- create_reproducible_workflow("integrated_geospatial_analysis", workflow_config)This comprehensive workflow vignette demonstrates:
The workflows in GeoSpatialSuite provide a complete toolkit for professional geospatial analysis, from data preparation through final reporting and recommendations!
This work was developed by the GeoSpatialSuite team with contributions from: Olatunde D. Akanbi, Vibha Mandayam, Yinghui Wu, Jeffrey Yarus, Erika I. Barcelos, and Roger H. French.