An implementation of hyperparameter optimization for Gradient Boosted Trees on binary classification and regression problems. The current version provides two optimization methods: Bayesian optimization and random search. Instead of giving the single best model, the final output is an ensemble of Gradient Boosted Trees constructed via the method of ensemble selection.
| Version: | 1.2.0 | 
| Depends: | R (≥ 3.3.0) | 
| Imports: | doParallel, doRNG, foreach, gbm, earth | 
| Suggests: | testthat | 
| Published: | 2017-02-27 | 
| DOI: | 10.32614/CRAN.package.gbts | 
| Author: | Waley W. J. Liang | 
| Maintainer: | Waley W. J. Liang <wliang10 at gmail.com> | 
| License: | GPL-2 | GPL-3 | file LICENSE [expanded from: GPL (≥ 2) | file LICENSE] | 
| NeedsCompilation: | no | 
| Materials: | README, NEWS | 
| CRAN checks: | gbts results | 
| Reference manual: | gbts.html , gbts.pdf | 
| Package source: | gbts_1.2.0.tar.gz | 
| Windows binaries: | r-devel: gbts_1.2.0.zip, r-release: gbts_1.2.0.zip, r-oldrel: gbts_1.2.0.zip | 
| macOS binaries: | r-release (arm64): gbts_1.2.0.tgz, r-oldrel (arm64): gbts_1.2.0.tgz, r-release (x86_64): gbts_1.2.0.tgz, r-oldrel (x86_64): gbts_1.2.0.tgz | 
| Old sources: | gbts archive | 
Please use the canonical form https://CRAN.R-project.org/package=gbts to link to this page.