Title: | Extended Dynamic Quantile Linear Models |
Version: | 0.1.4 |
Author: | Raquel Barata [aut, cre], Raquel Prado [ths], Bruno Sanso [ths], Antonio Aguirre [aut] |
Maintainer: | Raquel Barata <raquel.a.barata@gmail.com> |
Description: | Routines for Bayesian estimation and analysis of dynamic quantile linear models utilizing the extended asymmetric Laplace error distribution, also known as extended dynamic quantile linear models (exDQLM) described in Barata et al (2020) <doi:10.1214/21-AOAS1497>. |
License: | MIT + file LICENSE |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.3.3 |
Depends: | R (≥ 2.10) |
Imports: | stats, methods, graphics, dlm, coda, tictoc, magic, crch, truncnorm, HyperbolicDist, GeneralizedHyperbolic, brms, FNN, LaplacesDemon, grDevices |
NeedsCompilation: | no |
Packaged: | 2025-09-11 01:20:22 UTC; antonio |
Repository: | CRAN |
Date/Publication: | 2025-09-11 05:40:08 UTC |
Suggests: | testthat (≥ 3.0.0) |
Config/testthat/edition: | 3 |
Monthly time-series of water flow at Big Tree water gauge.
Description
Average monthly natural water flow (cubic feet per second) at the Big Tree gauge of the San Lorenzo river in Santa Cruz County, CA from 1937 through 2014.
Usage
BTflow
Format
A time series of length 936.
Source
https://waterdata.usgs.gov/nwis/
References
U.S. Geological Survey (2016). National Water Information System data available on the World Wide Web (USGS Water Data for the Nation). https://waterdata.usgs.gov/nwis/.
Daily time-series of ELI anomalies.
Description
ELI anomalies on the daily time-scale from January 1, 1979 to December 31, 2019 with all February 29ths omitted.
Usage
ELIanoms
Format
A time series of length 14965.
Source
https://portal.nersc.gov/archive/home/projects/cascade/www/ELI
References
Patricola, C.M., O’Brien, J.P., Risser, M.D. et al. Maximizing ENSO as a source of western US hydroclimate predictability. Clim Dyn 54, 351–372 (2020). doi:10.1007/s00382-019-05004-8
Combines state space blocks of an exDQLM
Description
The function combines two models into a single state space model for an exDQLM.
Usage
combineMods(m1, m2)
Arguments
m1 |
List containing the first model to be combined. |
m2 |
List containing the second model to be combined. |
Value
List containing the new combined state space model components.
Examples
trend.comp = polytrendMod(2,rep(0,2),10*diag(2))
seas.comp = seasMod(365,c(1,2,4),C0=10*diag(6))
model = combineMods(trend.comp,seas.comp)
# using dlm package
library(dlm)
model = combineMods(dlmModPoly(order=2,C0=10*diag(2)),dlmModTrig(365,2,C0=10*diag(4)))
Plot a component of an exDQLM
Description
The function plots the dynamic MAP estimates and 95
Usage
compPlot(
y,
m1,
index,
add = FALSE,
col = "purple",
just.theta = FALSE,
cr.percent = 0.95
)
Arguments
y |
A univariate time-series. |
m1 |
An object of class "'exdqlm'". |
index |
Index of the component or element of the state vector to be plotted. |
add |
If 'TRUE', the dynamic component will be added to existing plot. |
col |
Color of dynamic component to be plotted. Default is 'purple'. |
just.theta |
If 'TRUE', the function plots the dynamic distribution of the 'index' element of the state vector. If 'just.theta=TRUE', 'index' must have length 1. |
cr.percent |
Percentage used in the calculation of the credible intervals. |
Value
A list of the following is returned:
'map.comp' - MAP estimate of the dynamic component (or element of the state vector).
'lb.comp' - Lower bound of the 95
'ub.comp' - Upper bound of the 95
Examples
y = scIVTmag[1:365]
trend.comp = polytrendMod(2,rep(0,2),10*diag(2))
seas.comp = seasMod(365,c(1,2,4),C0=10*diag(6))
model = combineMods(trend.comp,seas.comp)
M0 = exdqlmISVB(y,p0=0.85,model,df=c(0.98,1),dim.df = c(2,6),
gam.init=-3.5,sig.init=15,tol=0.05)
# plot first harmonic component
compPlot(y,M0,index=c(3,4),col="blue")
Create state space model of exDQLM from DLM
Description
The function creates a state space model of an exDQLM from "'dlm'" object.
Usage
dlmMod(m)
Arguments
m |
An object of class "'dlm'" representing the DLM version of the desired exDQLM state space model. Only time-invariant 'dlm' objects are currently considered. |
Value
List containing only the components of 'm' needed for the exDQLM state space model.
Examples
library(dlm)
m = dlmModPoly(order=2,C0=10*diag(2)) + dlmModTrig(365,2,C0=10*diag(4))
model = dlmMod(m)
exDQLM Diagnostics
Description
The function computes the following for the model(s) provided: the posterior predictive loss criterion based off the check loss, the one-step-ahead distribution sequence and its KL divergence from normality. The function also plots the following: the qq-plot and ACF plot corresponding to the one-step-ahead distribution sequence, and a time series plot of the MAP standard forecast errors.
Usage
exdqlmChecks(
y,
m1,
m2 = NULL,
plot = TRUE,
cols = c("grey", "grey"),
ref = NULL
)
Arguments
y |
A univariate time-series. |
m1 |
An object of class "'exdqlm'". |
m2 |
An optional additional object of class "'exdqlm'" to compare with 'm1'. |
plot |
If 'TRUE', the following will be plotted for 'm1' and 'm2' (if provided): a qq-plot and ACF plot of the MAP one-step-ahead distribution sequence, and a time series plot of the standardized forecast errors. |
cols |
Color(s) used to plot diagnostics. |
ref |
Reference sample of size 'length(y)' from a standard normal distribution used to compute the KL divergence. |
Value
A list containing the following is returned:
'm1.uts' - The one-step-ahead distribution sequence of 'm1'.
'm1.KL' - The KL divergence of 'm1.uts' and a standard normal.
'm1.pplc' - The posterior predictive loss criterion of 'm1' based off the check loss function.
'm1.qq' - The ordered pairs of the qq-plot comparing 'm1.uts' with a standard normal distribution.
'm1.acf' - The autocorrelations of 'm1.uts' by lag.
If 'm2' is provided, analogous results for 'm2' are also included in the list.
Examples
y = scIVTmag[1:100]
model = polytrendMod(1,mean(y),10)
M0 = exdqlmISVB(y,p0=0.85,model,df=c(0.95),dim.df = c(1),
gam.init=-3.5,sig.init=15)
check.out = exdqlmChecks(y,M0,plot=FALSE)
check.out$m1.KL
check.out$m1
k-step-ahead quantile forecasts
Description
Computes filtered and k
-step-ahead forecast quantiles from a fitted
dynamic quantile model and optionally adds them to an existing plot.
Usage
exdqlmForecast(
y,
start.t,
k,
m1,
fFF = NULL,
fGG = NULL,
plot = TRUE,
add = FALSE,
cols = c("purple", "magenta"),
cr.percent = 0.95
)
Arguments
y |
A univariate numeric time series (vector or |
start.t |
Integer index at which forecasts start (must be within the span of the fitted model in |
k |
Integer; number of steps ahead to forecast. |
m1 |
A fitted exDQLM model object, typically returned by |
fFF |
Optional state vector(s) for the forecast steps. A numeric matrix with
|
fGG |
Optional evolution matrix/matrices for the forecast steps. Either a numeric
|
plot |
Logical; if |
add |
Logical; if |
cols |
Character vector of length 2 giving the colors for filtered and forecasted
quantiles respectively. Default |
cr.percent |
Numeric in |
Value
A list with components:
-
fa
Forecast state mean vectors (p \times k
matrix). -
fR
Forecast state covariance matrices (p \times p \times k
array). -
ff
Forecast quantile means (length-k
numeric). -
fQ
Forecast quantile variances (length-k
numeric).
Examples
# Toy example; keep small and fast
y <- scIVTmag[1:100]
model <- polytrendMod(1, stats::quantile(y, 0.85), 10)
M0 <- exdqlmISVB(y, p0 = 0.85, model, df = c(0.98), dim.df = c(1),
gam.init = -3.5, sig.init = 15)
exdqlmForecast(y, start.t = 90, k = 10, m1 = M0)
exDQLM - ISVB algorithm
Description
The function applies an Importance Sampling Variational Bayes (ISVB) algorithm to estimate the posterior of an exDQLM.
Usage
exdqlmISVB(
y,
p0,
model,
df,
dim.df,
fix.gamma = FALSE,
gam.init = NA,
fix.sigma = TRUE,
sig.init = NA,
dqlm.ind = FALSE,
exps0,
tol = 0.1,
n.IS = 500,
n.samp = 200,
PriorSigma = NULL,
PriorGamma = NULL,
verbose = TRUE
)
Arguments
y |
A univariate time-series. |
p0 |
The quantile of interest, a value between 0 and 1. |
model |
List of the state-space model including 'GG', 'FF', prior parameters 'm0' and 'C0'. |
df |
Discount factors for each block. |
dim.df |
Dimension of each block of discount factors. |
fix.gamma |
Logical value indicating whether to fix gamma at 'gam.init'. Default is 'FALSE'. |
gam.init |
Initial value for gamma (skewness parameter), or value at which gamma will be fixed if 'fix.gamma=TRUE'. |
fix.sigma |
Logical value indicating whether to fix sigma at 'sig.init'. Default is 'TRUE'. |
sig.init |
Initial value for sigma (scale parameter), or value at which sigma will be fixed if 'fix.sigma=TRUE'. |
dqlm.ind |
Logical value indicating whether to fix gamma at '0', reducing the exDQLM to the special case of the DQLM. Default is 'FALSE'. |
exps0 |
Initial value for dynamic quantile. If 'exps0' is not specified, it is set to the DLM estimate of the 'p0' quantile. |
tol |
Tolerance for convergence of dynamic quantile estimates. Default is 'tol=0.1'. |
n.IS |
Number of particles for the importance sampling of joint variational distribution of sigma and gamma. Default is 'n.IS=500'. |
n.samp |
Number of samples to draw from the approximated posterior distribution. Default is 'n.samp=200'. |
PriorSigma |
List of parameters for inverse gamma prior on sigma; shape 'a_sig' and scale 'b_sig'. Default is an inverse gamma with mean 1 (or 'sig.init' if provided) and variance 10. |
PriorGamma |
List of parameters for truncated student-t prior on gamma; center 'm_gam', scale 's_gam' and degrees of freedom 'df_gam'. Default is a standard student-t with 1 degree of freedom, truncated to the support of gamma. |
verbose |
Logical value indicating whether progress should be displayed. |
Value
A list of the following is returned:
'run.time' - Algorithm run time in seconds.
'iter' - Number of iterations until convergence was reached.
'dqlm.ind' - Logical value indicating whether gamma was fixed at '0', reducing the exDQLM to the special case of the DQLM.
'model' - List of the state-space model including 'GG', 'FF', prior parameters 'm0' and 'C0'.
'p0' - The quantile which was estimated.
'df' - Discount factors used for each block.
'dim.df' - Dimension used for each block of discount factors.
'sig.init' - Initial value for sigma, or value at which sigma was fixed if 'fix.sigma=TRUE'.
'seq.sigma' - Sequence of sigma estimated by the algorithm until convergence.
'samp.theta' - Posterior sample of the state vector variational distribution.
'samp.post.pred' - Sample of the posterior predictive distributions.
'map.standard.forecast.errors' - MAP standardized one-step-ahead forecast errors.
'samp.sigma' - Posterior sample of scale parameter sigma variational distribution.
'samp.vts' - Posterior sample of latent parameters, v_t, variational distributions.
'theta.out' - List containing the variational distribution of the state vector including filtered distribution parameters ('fm' and 'fC') and smoothed distribution parameters ('sm' and 'sC').
'vts.out' - List containing the variational distributions of latent parameters v_t.
If 'dqlm.ind=FALSE', the list also contains:
'gam.init' - Initial value for gamma, or value at which gamma was fixed if 'fix.gamma=TRUE'.
'seq.gamma' - Sequence of gamma estimated by the algorithm until convergence.
'samp.gamma' - Posterior sample of skewness parameter gamma variational distribution.
'samp.sts' - Posterior sample of latent parameters, s_t, variational distributions.
'gammasig.out' - List containing the IS estimate of the variational distribution of sigma and gamma.
'sts.out' - List containing the variational distributions of latent parameters s_t.
Or if 'dqlm.ind=TRUE', the list also contains:
'sig.out' - List containing the IS estimate of the variational distribution of sigma.
Examples
y = scIVTmag[1:1095]
trend.comp = polytrendMod(1,mean(y),10)
seas.comp = seasMod(365,c(1,2,4),C0=10*diag(6))
model = combineMods(trend.comp,seas.comp)
M0 = exdqlmISVB(y,p0=0.85,model,df=c(1,1),dim.df = c(1,6),
gam.init=-3.5,sig.init=15,tol=0.05)
exDQLM - MCMC algorithm
Description
The function applies a Markov chain Monte Carlo (MCMC) algorithm to sample the posterior of an exDQLM.
Usage
exdqlmMCMC(
y,
p0,
model,
df,
dim.df,
fix.gamma = FALSE,
gam.init = NA,
fix.sigma = FALSE,
sig.init = NA,
dqlm.ind = FALSE,
Sig.mh,
joint.sample = FALSE,
n.burn = 2000,
n.mcmc = 1500,
init.from.isvb = TRUE,
PriorSigma = NULL,
PriorGamma = NULL,
verbose = TRUE
)
Arguments
y |
A univariate time-series. |
p0 |
The quantile of interest, a value between 0 and 1. |
model |
List of the state-space model including 'GG', 'FF', prior parameters 'm0' and 'C0'. |
df |
Discount factors for each block. |
dim.df |
Dimension of each block of discount factors. |
fix.gamma |
Logical value indicating whether to fix gamma at 'gam.init'. Default is 'FALSE'. |
gam.init |
Initial value for gamma (skewness parameter), or value at which gamma will be fixed if 'fix.gamma=TRUE'. |
fix.sigma |
Logical value indicating whether to fix sigma at 'sig.init'. Default is 'TRUE'. |
sig.init |
Initial value for sigma (scale parameter), or value at which sigma will be fixed if 'fix.sigma=TRUE'. |
dqlm.ind |
Logical value indicating whether to fix gamma at '0', reducing the exDQLM to the special case of the DQLM. Default is 'FALSE'. |
Sig.mh |
Covariance matrix used in the random walk MH step to jointly sample sigma and gamma. |
joint.sample |
Logical value indicating whether or not to recompute 'Sig.mh' based off the initial burn-in samples of gamma and sigma. Default is 'FALSE'. |
n.burn |
Number of MCMC iterations to burn. Default is 'n.burn = 2000'. |
n.mcmc |
Number of MCMC iterations to sample. Default is 'n.mcmc = 1500'. |
init.from.isvb |
Logical value indicating whether or not to initialize the MCMC using the ISVB algorithm. Default is 'TRUE'. |
PriorSigma |
List of parameters for inverse gamma prior on sigma; shape 'a_sig' and scale 'b_sig'. Default is an inverse gamma with mean 1 (or 'sig.init' if provided) and variance 10. |
PriorGamma |
List of parameters for truncated student-t prior on gamma; center 'm_gam', scale 's_gam' and degrees of freedom 'df_gam'. Default is a standard student-t with 1 degree of freedom, truncated to the support of gamma. |
verbose |
Logical value indicating whether progress should be displayed. |
Value
A list of the following is returned:
'run.time' - Algorithm run time in seconds.
'model' - List of the state-space model including 'GG', 'FF', prior parameters 'm0' and 'C0'.
'p0' - The quantile which was estimated.
'df' - Discount factors used for each block.
'dim.df' - Dimension used for each block of discount factors.
'samp.theta' - Posterior sample of the state vector.
'samp.post.pred' - Sample of the posterior predictive distributions.
'map.standard.forecast.errors' - MAP standardized one-step-ahead forecast errors.
'samp.sigma' - Posterior sample of scale parameter sigma.
'samp.vts' - Posterior sample of latent parameters, v_t.
'theta.out' - List containing the distributions of the state vector including filtered distribution parameters ('fm' and 'fC') and smoothed distribution parameters ('sm' and 'sC').
If 'dqlm.ind=FALSE', the list also contains the following:
'samp.gamma' - Posterior sample of skewness parameter gamma.
'samp.sts' - Posterior sample of latent parameters, s_t.
'init.log.sigma' - Burned samples of log sigma from the random walk MH joint sampling of sigma and gamma.
'init.logit.gamma' - Burned samples of logit gamma from the random walk MH joint sampling of sigma and gamma.
'accept.rate' - Acceptance rate of the MH step.
'Sig.mh' - Covariance matrix used in MH step to jointly sample sigma and gamma.
Examples
y = scIVTmag[1:100]
trend.comp = polytrendMod(1,mean(y),10)
seas.comp = seasMod(365,c(1,2,4),C0=10*diag(6))
model = combineMods(trend.comp,seas.comp)
M2 = exdqlmMCMC(y,p0=0.85,model,df=c(1,1),dim.df = c(1,6),
gam.init=-3.5,sig.init=15,
n.burn=100,n.mcmc=150)
Plot exDQLM
Description
The function plots the MAP estimates and 95
Usage
exdqlmPlot(y, m1, add = FALSE, col = "purple", cr.percent = 0.95)
Arguments
y |
A univariate time-series. |
m1 |
An object of class "'exdqlm'". |
add |
If 'TRUE', the dynamic quantile will be added to existing plot. |
col |
Color of dynamic quantile to be plotted. Default is 'purple'. |
cr.percent |
Percentage used in the calculation of the credible intervals. |
Value
A list of the following is returned:
'map.quant' - MAP estimate of the dynamic quantile.
'lb.quant' - Lower bound of the 95
'ub.quant' - Upper bound of the 95
Examples
y = scIVTmag[1:100]
model = polytrendMod(1,quantile(y,0.85),10)
M0 = exdqlmISVB(y,p0=0.85,model,df=c(0.98),dim.df = c(1),
gam.init=-3.5,sig.init=15)
exdqlmPlot(y,M0,col="blue")
Monthly Niño 3.4 Index.
Description
Monthly Niño 3.4 sea surface temperature (SST) Index time series.
Usage
nino34
Format
A time series of length 936.
Source
https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/
References
Rayner N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, A. Kaplan. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 (D14), 4407 (2003). doi:10.1029/2002JD002670
Create an n-th order polynomial exDQLM component
Description
The function creates an n-th order polynomial exDQLM component.
Usage
polytrendMod(order, m0, C0)
Arguments
order |
The order of the polynomial model. |
m0 |
Prior mean of the state vector. Default is 'm0 = rep(0,order)'. |
C0 |
Prior covariance of the state vector. Default is 'C0 = 1e3*diag(order)'. |
Value
A list of the following:
FF - Observational vector.
GG - Evolution matrix.
m0 - Prior mean of the state vector.
C0 - Prior covariance of the state vector.
Examples
# create a second order polynomial component
trend.comp = polytrendMod(2,rep(0,2),10*diag(2))
Time series of daily average magnitude IVT in Santa Cruz, CA.
Description
ECMWF Re-Analysis 5 (ERA5) daily average magnitude IVT in Santa Cruz, CA (approximately 22 N, 122 W) from January 1, 1979 to December 31, 2019 with all February 29ths omitted.
Usage
scIVTmag
Format
A time series of length 14965.
Source
https://cds.climate.copernicus.eu
References
Hersbach, H, Bell, B, Berrisford, P, et al. The ERA5 global reanalysis. Q J R Meteorol Soc. 2020; 146: 1999– 2049. doi:10.1002/qj.3803
Create Fourier representation of a periodic exDQLM component
Description
The function creates a Fourier form periodic component for given period and harmonics.
Usage
seasMod(p, h, m0, C0)
Arguments
p |
The period. |
h |
Vector of harmonics to be included. |
m0 |
Prior mean of the state vector. |
C0 |
Prior covariance of the state vector. |
Value
A list of the following:
FF - Observational vector.
GG - Evolution matrix.
m0 - Prior mean of the state vector.
C0 - Prior covariance of the state vector.
Examples
# create a seasonal component with first, second and fourth harmonics of a period of 365
seas.comp = seasMod(365,c(1,2,4),C0=10*diag(6))
Transfer Function exDQLM - ISVB algorithm
Description
The function applies an Importance Sampling Variational Bayes (ISVB) algorithm to estimate the posterior of an exDQLM with exponential decay transfer function component.
Usage
transfn_exdqlmISVB(
y,
p0,
model,
X,
df,
dim.df,
lam,
tf.df,
fix.gamma = FALSE,
gam.init = NA,
fix.sigma = TRUE,
sig.init = NA,
dqlm.ind = FALSE,
exps0,
tol = 0.1,
n.IS = 500,
n.samp = 200,
PriorSigma = NULL,
PriorGamma = NULL,
tf.m0 = rep(0, 2),
tf.C0 = diag(1, 2),
verbose = TRUE
)
Arguments
y |
A univariate time-series. |
p0 |
The quantile of interest, a value between 0 and 1. |
model |
List of the state-space model including 'GG', 'FF', prior parameters 'm0' and 'C0'. |
X |
A univariate time-series which will be the input of the transfer function component. |
df |
Discount factors for each block. |
dim.df |
Dimension of each block of discount factors. |
lam |
Transfer function rate parameter lambda, a value between 0 and 1. |
tf.df |
Discount factor(s) used for the transfer function component. |
fix.gamma |
Logical value indicating whether to fix gamma at 'gam.init'. Default is 'FALSE'. |
gam.init |
Initial value for gamma (skewness parameter), or value at which gamma will be fixed if 'fix.gamma=TRUE'. |
fix.sigma |
Logical value indicating whether to fix sigma at 'sig.init'. Default is 'TRUE'. |
sig.init |
Initial value for sigma (scale parameter), or value at which sigma will be fixed if 'fix.sigma=TRUE'. |
dqlm.ind |
Logical value indicating whether to fix gamma at '0', reducing the exDQLM to the special case of the DQLM. Default is 'FALSE'. |
exps0 |
Initial value for dynamic quantile. If 'exps0' is not specified, it is set to the DLM estimate of the 'p0' quantile. |
tol |
Tolerance for convergence of dynamic quantile estimates. Default is 'tol=0.1'. |
n.IS |
Number of particles for the importance sampling of joint variational distribution of sigma and gamma. Default is 'n.IS=500'. |
n.samp |
Number of samples to draw from the approximated posterior distribution. Default is 'n.samp=200'. |
PriorSigma |
List of parameters for inverse gamma prior on sigma; shape 'a_sig' and scale 'b_sig'. Default is an inverse gamma with mean 1 (or 'sig.init' if provided) and variance 10. |
PriorGamma |
List of parameters for truncated student-t prior on gamma; center 'm_gam', scale 's_gam' and degrees of freedom 'df_gam'. Default is a standard student-t with 1 degree of freedom, truncated to the support of gamma. |
tf.m0 |
Prior mean of the transfer function component. |
tf.C0 |
Prior covariance of the transfer function component. |
verbose |
Logical value indicating whether progress should be displayed. |
Value
A list of the following is returned:
'run.time' - Algorithm run time in seconds.
'iter' - Number of iterations until convergence was reached.
'dqlm.ind' - Logical value indicating whether gamma was fixed at '0', reducing the exDQLM to the special case of the DQLM.
'model' - List of the augmented state-space model including 'GG', 'FF', prior parameters 'm0' and 'C0'.
'p0' - The quantile which was estimated.
'df' - Discount factors used for each block, including transfer function component.
'dim.df' - Dimension used for each block of discount factors, including transfer function component.
'lam' - Transfer function rate parameter lambda.
'sig.init' - Initial value for sigma, or value at which sigma was fixed if 'fix.sigma=TRUE'.
'seq.sigma' - Sequence of sigma estimated by the algorithm until convergence.
'samp.theta' - Posterior sample of the state vector variational distribution.
'samp.post.pred' - Sample of the posterior predictive distributions.
'map.standard.forecast.errors' - MAP standardized one-step-ahead forecast errors.
'samp.sigma' - Posterior sample of scale parameter sigma variational distribution.
'samp.vts' - Posterior sample of latent parameters, v_t, variational distributions.
'theta.out' - List containing the variational distribution of the state vector including filtered distribution parameters ('fm' and 'fC') and smoothed distribution parameters ('sm' and 'sC').
'vts.out' - List containing the variational distributions of latent parameters v_t.
'median.kt' - Median number of time steps until the effect of X_t is less than or equal to 1e-3.
If 'dqlm.ind=FALSE', the list also contains:
'gam.init' - Initial value for gamma, or value at which gamma was fixed if 'fix.gamma=TRUE'.
'seq.gamma' - Sequence of gamma estimated by the algorithm until convergence.
'samp.gamma' - Posterior sample of skewness parameter gamma variational distribution.
'samp.sts' - Posterior sample of latent parameters, s_t, variational distributions.
'gammasig.out' - List containing the IS estimate of the variational distribution of sigma and gamma.
'sts.out' - List containing the variational distributions of latent parameters s_t.
Or if 'dqlm.ind=TRUE', the list also contains:
'sig.out' - List containing the IS estimate of the variational distribution of sigma.
Examples
y = scIVTmag[1:1095]
X = ELIanoms[1:1095]
trend.comp = polytrendMod(1,mean(y),10)
seas.comp = seasMod(365,c(1,2,4),C0=10*diag(6))
model = combineMods(trend.comp,seas.comp)
M1 = transfn_exdqlmISVB(y,p0=0.85,model=model,
X,df=c(1,1),dim.df = c(1,6),
gam.init=-3.5,sig.init=15,
lam=0.38,tf.df=c(0.97,0.97))