Title: | The Echelon Analysis and the Detection of Spatial Clusters using Echelon Scan Method |
Version: | 0.4.0 |
Description: | Functions for the echelon analysis proposed by Myers et al. (1997) <doi:10.1023/A:1018518327329>, and the detection of spatial clusters using echelon scan method proposed by Kurihara (2003) <doi:10.20551/jscswabun.15.2_171>. |
License: | GPL-3 |
Depends: | R (≥ 4.1.0) |
Suggests: | sf, spData, spdep, mapview |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
LinkingTo: | Rcpp |
Imports: | Rcpp |
NeedsCompilation: | yes |
Packaged: | 2025-08-21 00:53:24 UTC; fishioka |
Author: | Fumio Ishioka [aut, cre] |
Maintainer: | Fumio Ishioka <fishioka@okayama-u.ac.jp> |
Repository: | CRAN |
Date/Publication: | 2025-08-21 05:00:02 UTC |
Echelon spatial scan statistic based on Binomial model
Description
The echebin
function detects spatial clusters using the echelon spatial scan statistic with a Binomial model.
Usage
echebin(echelon.obj, cas, ctl, K = length(cas)/2, Kmin = 1, n.sim = 99,
cluster.type = "high", cluster.legend.pos = "bottomleft",
dendrogram = TRUE, cluster.info = FALSE, coo = NULL, ...)
Arguments
echelon.obj |
An object of class |
cas |
A numeric (integer) vector of case counts. |
ctl |
A numeric (integer) vector of control counts. |
K |
Maximum cluster size. If |
Kmin |
Minimum cluster size. |
n.sim |
The number of Monte Carlo replications used for significance testing of detected clusters. If set to 0, significance is not assessed. |
cluster.type |
A character string specifying the cluster type. If |
cluster.legend.pos |
The location of the legend on the dendrogram. (See |
dendrogram |
Logical. If TRUE, draws an echelon dendrogram with the detected clusters. |
cluster.info |
Logical. If TRUE, returns detailed results of the detected clusters. |
coo |
An array of (x, y) coordinates for the region centroids to plot a cluster map. |
... |
Related to dendrogram drawing. (See the help for |
Value
clusters |
Each detected cluster. |
scanned.regions |
A region list of all scanning processes. |
simulated.LLR |
Monte Carlo samples of the log-likelihood ratio. |
Note
The function echebin
requires either cas
or ctl
.
Population is defined as the sum of cas
and ctl
.
Typical values of n.sim
are 99, 999, 9999, ...
Author(s)
Fumio Ishioka
References
[1] Kulldorff M, Nagarwalla N. (1995). Spatial disease clusters: Detection and inference. Statistics in Medicine, 14, 799–810.
[2] Kulldorff M. (1997). A spatial scan statistic. Communications in Statistics: Theory and Methods, 26, 1481–1496.
See Also
echelon
for the echelon analysis.
echepoi
for cluster detection based on echelons using Poisson model.
echenor
for cluster detection based on echelons using Normal model.
Examples
##Hotspot detection for non-white birth in North Carolina using echelon scan
#Load required packages and data
library(spData)
data("nc.sids")
#Non-white birth from 1974 to 1984 (case data)
nwb <- nc.sids$NWBIR74 + nc.sids$NWBIR79
#White birth from 1974 to 1984 (control data)
wb <- (nc.sids$BIR74 - nc.sids$NWBIR74) + (nc.sids$BIR79 - nc.sids$NWBIR79)
##Hotspot detection based on Binomial model
#Echelon analysis
SIDS.echelon <- echelon(x = nwb/wb, nb = ncCR85.nb, name = row.names(nc.sids))
#Basic cluster detection (significance not evaluated)
SIDS.clusters <- echebin(SIDS.echelon, cas = nwb, ctl = wb, K = 20,
n.sim = 0, cluster.info = TRUE, main = "Hgih rate clusters", ens = FALSE)
#Significance assessment of clusters using Monte Carlo simulation
SIDS.clusters <- echebin(SIDS.echelon, cas = nwb, ctl = wb, K = 20,
n.sim = 199, cluster.info = TRUE, main = "Hgih rate clusters", ens = FALSE)
text(SIDS.echelon$coord, labels = SIDS.echelon$regions.name,
adj = -0.1, cex = 0.7)
#Detected clusters and neighbors map
#XY coordinates of each polygon centroid point
NC.coo <- cbind(nc.sids$lon, nc.sids$lat)
echebin(SIDS.echelon, cas = nwb, ctl = wb, K = 20,
n.sim = 0, coo = NC.coo, dendrogram = FALSE)
#Load geospatial information for North Carolina
nc <- sf::st_read(system.file("shape/nc.shp", package = "sf"))
#Extract detected clusters
MLC <- SIDS.clusters$clusters[[1]]
Secondary <- SIDS.clusters$clusters[[2]]
#Assign colors to clusters for plotting
cluster.col <- rep(0, length(nwb))
cluster.col[MLC$regionsID] <- 2
cluster.col[Secondary$regionsID] <- 3
#Plot detected high-rate clusters on a simple map
plot(nc$geom, col = cluster.col,
main = "Detected high rate clusters")
legend("bottomleft",
legend = c(
paste("1- p-value:", MLC$p),
paste("2- p-value:", Secondary$p)
),
text.col = c(2, 3)
)
#Interactive map visualization with mapview
library(mapview)
nc$cluster.col <- cluster.col
mapview(nc, zcol = "cluster.col",
col.regions=c("white", "red", "green"),
label = "NAME", legend=FALSE)
Echelon analysis for spatial data
Description
The echelon
function divides the study area into structural entities, called 'echelons', based on neighbor information and draws a dendrogram.
Usage
echelon(x, nb, dendrogram = TRUE, name = NULL,
main = NULL, ylab = NULL, yaxes = TRUE, ylim = NULL,
xaxes = FALSE, xdper = c(0, 1), dmai = NULL,
col = 1, lwd = 1, symbols = 4, cex.symbols = 1, col.symbols = 4,
ens = TRUE, adj.ens = 1, cex.ens = 0.8, col.ens = 1,
profiles = FALSE, nb.check = TRUE)
Arguments
x |
A numeric vector containing data values. |
nb |
Neighbor information data: an object of class |
name |
Region names. if NULL, it is assigned |
dendrogram |
Logical. if TRUE, draws an echelon dendrogram. |
main |
Related to dendrogram drawing. The main title for the dendrogram. |
ylab |
Related to dendrogram drawing. The title for the y-axis. |
yaxes |
Related to dendrogram drawing. Logical. if TRUE, draws the y-axis. |
ylim |
Related to dendrogram drawing. If not specified, the y-axis scale is set to |
xaxes |
Related to dendrogram drawing. Logical. if TRUE, draws the x-axis. |
xdper |
Related to dendrogram drawing. The percentage of the x-axis to display, specified in [0, 1]. |
dmai |
Related to dendrogram drawing. A numeric vector of the form |
col |
Related to dendrogram drawing. The line color of the dendrogram. |
lwd |
Related to dendrogram drawing. The line width of the dendrogram. |
symbols |
Related to dendrogram drawing. An integer specifying a symbol or a single character. If integer, it corresponds to |
cex.symbols |
Related to dendrogram drawing. A magnification factor for the plotting symbols. |
col.symbols |
Related to dendrogram drawing. The color for the plotting symbols. |
ens |
Related to dendrogram drawing. Logical. if TRUE, draw the labels of echelon numbers. |
adj.ens |
Related to dendrogram drawing. Adjusts the position of echelon number labels (see |
cex.ens |
Related to dendrogram drawing. A magnification factor for the echelon number labels. |
col.ens |
Related to dendrogram drawing. The color for the echelon number labels. |
profiles |
Logical. If TRUE, returns the echelon profiles result (see [2] for details). |
nb.check |
Logical. if TRUE, checks for errors in the neighbor information data. |
Value
The echelon
function returns an object of class echelon
, which contains the following components:
Table |
A summary of each echelon. |
Echelons |
The regions that make up each echelon. |
Note
Any NA
values in x
are replaced with the minimum value of x
.
The functions Sf::st_read
and spdep::poly2nb
are helpful for creating the object specified in the nb
argument.
Author(s)
Fumio Ishioka
References
[1] Myers, W.L., Patil, G.P. and Joly, K. (1997). Echelon approach to areas of concern in synoptic regional monitoring. Environmental and Ecological Statistics, 4, 131–152.
[2] Kurihara, K., Myers, W.L. and Patil, G.P. (2000) Echelon analysis of the relationship between population and land cover patter based on remote sensing data. Community ecology, 1, 103–122.
See Also
echepoi
, echebin
and echenor
for cluster detection based on echelons.
Examples
##Echelon analysis for one-dimensional data with 25 regions
#A weights matrix
one.nb <- matrix(0,25,25)
one.nb[1,2] <- 1
for(i in 2:24) one.nb[i,c(i-1,i+1)] <- c(1,1)
one.nb[25,24] <- 1
#25 random values
one.dat <- runif(25) * 10
#Echelon analysis
echelon(x = one.dat, nb = one.nb)
##Echelon analysis for SIDS data for North Carolina
#Mortality rate per 1,000 live births from 1974 to 1984
library(spData)
data("nc.sids")
SIDS.cas <- nc.sids$SID74 + nc.sids$SID79
SIDS.pop <- nc.sids$BIR74 + nc.sids$BIR79
SIDS.rate <- SIDS.cas * 1000 / SIDS.pop
#Echelon analysis
SIDS.echelon <- echelon(x = SIDS.rate, nb = ncCR85.nb, name = row.names(nc.sids),
symbols = 12, cex.symbols = 1.5, ens = FALSE)
text(SIDS.echelon$coord, labels = SIDS.echelon$regions.name,
adj = -0.1, cex = 0.7)
#Echelon Profiles
echelon(x = SIDS.rate, nb = ncCR85.nb, profiles = TRUE)
Echelon spatial scan statistic based on Normal model
Description
The echenor
function detects spatial clusters using the echelon spatial scan statistic with a Normal model.
Usage
echenor(echelon.obj, val, weight = NULL, K = length(val)/2, Kmin = 2, n.sim = 99,
cluster.type = "high", cluster.legend.pos = "bottomleft",
dendrogram = TRUE, cluster.info = FALSE, coo = NULL, ...)
Arguments
echelon.obj |
An object of class |
val |
A numeric vector of observed values, which may be positive or negative. |
weight |
A numeric vector of weighted values (must be positive). If |
K |
Maximum cluster size. If |
Kmin |
Minimum cluster size. Must be at least 2, due to the use of a permutation-based Monte Carlo test. |
n.sim |
The number of Monte Carlo replications used for significance testing of detected clusters. If set to 0, significance is not assessed. |
cluster.type |
A character string specifying the cluster type. If |
cluster.legend.pos |
The location of the legend on the dendrogram. (See |
dendrogram |
Logical. If TRUE, draws an echelon dendrogram with the detected clusters. |
cluster.info |
Logical. If TRUE, returns detailed results of the detected clusters. |
coo |
An array of (x, y) coordinates for the region centroids to plot a cluster map. |
... |
Related to dendrogram drawing. (See the help for |
Value
clusters |
Each detected cluster. |
scanned.regions |
A region list of all scanning processes. |
simulated.LLR |
Monte Carlo samples of the log-likelihood ratio. |
Note
Typical values of n.sim
are 99, 999, 9999, ...
Author(s)
Fumio Ishioka
References
[1] Kulldorff M, Huang L, and Konty K. (2009). A scan statistic for continuous data based on the normal probability model. International Journal of Health Geographics, 8, 58.
[2] Huang L, Tiwari R, Zuo J, Kulldorff M, and Feuer E. (2009) Weighted normal spatial scan statistic for heterogeneous population data. Journal of the American Statistical Association, 104, 886–898.
See Also
echelon
for the echelon analysis.
echepoi
for cluster detection based on echelons using Poisson model.
echebin
for cluster detection based on echelons using Binomial model.
Examples
##Hotspot detection for predicting SIDS rate in North Carolina using echelon scan
#Load required packages and data
library(spData)
data("nc.sids")
SIDS.cas <- nc.sids$SID74 + nc.sids$SID79
SIDS.pop <- nc.sids$BIR74 + nc.sids$BIR79
SIDS.nwpop <- nc.sids$NWBIR74 + nc.sids$NWBIR79
SIDS.rate <- SIDS.cas * 1000 / SIDS.pop
#Fit a linear model: SIDS rate explained by proportion of non-white births
res <- lm(SIDS.rate ~ I(SIDS.nwpop / SIDS.pop))
summary(res)
#Predicted values and reliability weights (inverse of standard error)
pred <- predict(res, newdata = nc.sids, se.fit = TRUE)
V <- res$fitted.values
W <- 1 / (pred$se.fit + 1e-6)
##Hotspot detection based on Normal model
#Echelon analysis
SIDS.echelon <- echelon(x = V, nb = ncCR85.nb, name = row.names(nc.sids))
#Basic cluster detection (significance not evaluated)
SIDS.clusters <- echenor(SIDS.echelon, val = V, weight = W, K = 20,
n.sim = 0, cluster.info = TRUE, main = "Hgih value clusters", ens = FALSE)
#Significance assessment of clusters using Monte Carlo simulation
SIDS.clusters <- echenor(SIDS.echelon, val = V, weight = W, K = 20,
n.sim = 199, cluster.info = TRUE, main = "Hgih value clusters", ens = FALSE)
text(SIDS.echelon$coord, labels = SIDS.echelon$regions.name,
adj = -0.1, cex = 0.7)
#Load geospatial information for North Carolina
nc <- sf::st_read(system.file("shape/nc.shp", package = "sf"))
#Extract detected clusters
MLC <- SIDS.clusters$clusters[[1]]
Secondary <- SIDS.clusters$clusters[[2]]
#Assign colors to clusters for plotting
cluster.col <- rep(0, length(V))
cluster.col[MLC$regionsID] <- 2
cluster.col[Secondary$regionsID] <- 3
#Plot detected high-value clusters on a simple map
plot(nc$geom, col = cluster.col,
main = "Detected high value clusters")
legend("bottomleft",
legend = c(
paste("1- p-value:", MLC$p),
paste("2- p-value:", Secondary$p)
),
text.col = c(2, 3)
)
#Interactive map visualization with mapview
library(mapview)
nc$cluster.col <- cluster.col
mapview(nc, zcol = "cluster.col",
col.regions=c("white", "red", "green"),
label = "NAME", legend=FALSE)
Echelon spatial scan statistic based on Poisson model
Description
The echepoi
function detects spatial clusters using the echelon spatial scan statistic with a Poisson model.
Usage
echepoi(echelon.obj, cas, pop = NULL, ex = NULL, K = length(cas)/2, Kmin = 1, n.sim = 99,
cluster.type = "high", cluster.legend.pos = "bottomleft",
dendrogram = TRUE, cluster.info = FALSE, coo = NULL, ...)
Arguments
echelon.obj |
An object of class |
cas |
A numeric (integer) vector of case counts. |
pop |
A numeric (integer) vector for population. |
ex |
A numeric vector for expected case counts. |
K |
Maximum cluster size. If |
Kmin |
Minimum cluster size. |
n.sim |
The number of Monte Carlo replications used for significance testing of detected clusters. If set to 0, significance is not assessed. |
cluster.type |
A character string specifying the cluster type. If |
cluster.legend.pos |
The location of the legend on the dendrogram. (See |
dendrogram |
Logical. If TRUE, draws an echelon dendrogram with the detected clusters. |
cluster.info |
Logical. If TRUE, returns detailed results of the detected clusters. |
coo |
An array of (x, y) coordinates for the region centroids to plot a cluster map. |
... |
Related to dendrogram drawing. (See the help for |
Value
clusters |
Each detected cluster. |
scanned.regions |
A region list of all scanning processes. |
simulated.LLR |
Monte Carlo samples of the log-likelihood ratio. |
Note
The function echepoi
requires either pop
or ex
.
Typical values of n.sim
are 99, 999, 9999, ...
Author(s)
Fumio Ishioka
References
[1] Kulldorff M. (1997). A spatial scan statistic. Communications in Statistics: Theory and Methods, 26, 1481–1496.
[2] Ishioka F, Kawahara J, Mizuta M, Minato S, and Kurihara K. (2019) Evaluation of hotspot cluster detection using spatial scan statistic based on exact counting. Japanese Journal of Statistics and Data Science, 2, 241–262.
See Also
echelon
for the echelon analysis.
echebin
for cluster detection based on echelons using Binomial model.
echenor
for cluster detection based on echelons using Normal model.
Examples
##Hotspot detection for SIDS cases in North Carolina using echelon scan
#Load required packages and data
library(spData)
data("nc.sids")
SIDS.cas <- nc.sids$SID74 + nc.sids$SID79
SIDS.pop <- nc.sids$BIR74 + nc.sids$BIR79
SIDS.rate <- SIDS.cas * 1000 / SIDS.pop
##Hotspot detection based on Poisson model
#Echelon analysis
SIDS.echelon <- echelon(x = SIDS.rate, nb = ncCR85.nb, name = row.names(nc.sids))
#Basic cluster detection (significance not evaluated)
SIDS.clusters <- echepoi(SIDS.echelon, cas = SIDS.cas, pop = SIDS.pop, K = 20,
n.sim = 0, cluster.info = TRUE, main = "Hgih rate clusters", ens = FALSE)
#Significance assessment of clusters using Monte Carlo simulation
SIDS.clusters <- echepoi(SIDS.echelon, cas = SIDS.cas, pop = SIDS.pop, K = 20,
n.sim = 199, cluster.info = TRUE, main = "Hgih rate clusters", ens = FALSE)
text(SIDS.echelon$coord, labels = SIDS.echelon$regions.name,
adj = -0.1, cex = 0.7)
#Detected clusters and neighbors map
#XY coordinates of each polygon centroid point
NC.coo <- cbind(nc.sids$lon, nc.sids$lat)
echepoi(SIDS.echelon, cas = SIDS.cas, pop = SIDS.pop, K = 20,
n.sim = 0, coo = NC.coo, dendrogram = FALSE)
#Load geospatial information for North Carolina
nc <- sf::st_read(system.file("shape/nc.shp", package = "sf"))
#Extract detected clusters
MLC <- SIDS.clusters$clusters[[1]]
Secondary <- SIDS.clusters$clusters[[2]]
#Assign colors to clusters for plotting
cluster.col <- rep(0, length(SIDS.rate))
cluster.col[MLC$regionsID] <- 2
cluster.col[Secondary$regionsID] <- 3
#Plot detected high-rate clusters on a simple map
plot(nc$geom, col = cluster.col,
main = "Detected high rate clusters")
legend("bottomleft",
legend = c(
paste("1- p-value:", MLC$p),
paste("2- p-value:", Secondary$p)
),
text.col = c(2, 3)
)
#Interactive map visualization with mapview
library(mapview)
nc$cluster.col <- cluster.col
mapview(nc, zcol = "cluster.col",
col.regions=c("white", "red", "green"),
label = "NAME", legend=FALSE)