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2 bd.approx

bd.approx Two Block Diagonal Matrix Approximation.

Description

Finds the best two block diagonal matrix approximation of a similarity matrix according to some
distance (linkage) function as described in Bauer (202Xa). Candidate splits are determined by the
first sparse eigenvectors (sparse approximations of the first eigenvectors, i.e., vectors with many
zero entries) of the similarity matrix.

Usage
bd.approx(S, linkage = "average", q = 1, h.power = 2, balance, max.iter)
Arguments

S A scaled pxp similarity matrix. For example, this may be a correlation matrix.

linkage The linkage function to be used. This should be one of "average”, "ncut”,
"rcut”, "RV" (for RV-coefficient), or "single".

q Number of sparse eigenvectors to be used. This should be either a numeric value
between zero and one to indicate percentages, or "Kaiser"” for as many sparse
eigenvectors as there are eigenvalues larger or equal to one. For a numerical
value between zero and one, the number of sparse eigenvectors is determined as
the corresponding share of the total number of eigenvectors. E.g., g =1 (100%)
uses all sparse eigenvectors and q = @.5 (50%) will use half of all sparse eigen-
vectors. For g = 1, identification is best (see Bauer (202Xa) for details).

h.power h-th Hadamard power of S. This should be a positive integer and increases ro-
bustness of the method, as described in Bauer (202Xa).

balance Minimum proportion of the smaller block when splitting into two. Must be a
numeric value in (0, 0.5]. For example, balance = 0.5 enforces an exact 50:50
split, while balance = @. 2 allows splits as unbalanced as 20:80, with more bal-
anced splits such as 30:70 or 40:60 also permitted. If an exact split is not possible
(e.g., balance = 0.5 when p = 9), the closest integer partition is used (e.g., 4
and 5 per block).

max.iter How many iterations should be performed for computing the sparse eigenvec-
tors. Default is 500.

Details

The sparse eigenvectors are computed using the method of Shen and Huang (2008). The method is
implemented by Baglama, Reichel, and Lewis in ssvd (irlba). Here, we use a Rcpp/ReppArmadillo
implementation based on ssvd with slight modifications to suit our method and for faster perfor-
mance.
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Value

A list with four components:

B The best two block diagonal matrix approximation.

BD The best two block diagonal matrix approximation permuted to a block diagonal
shape: BD = PBt(P).

P The permutation matrix P: BD = PBit(P).

clustering The clustering vector as an integer vector of length p, which gives for each
component the number 1 or 2 of the cluster/split to which it belongs.

split A list containing the two splits.

distance The approximation error (distance) according to the selected linkage function.

References

Bauer, J.O. (202Xa). Divisive hierarchical clustering using block diagonal matrix approximations.
Working paper.

Shen, H. and Huang, J.Z. (2008). Sparse principal component analysis via regularized low rank
matrix approximation, J. Multivar. Anal. 99, 1015-1034.

Examples

#We give a trivial example for a block diagonal matrix perturbed by
#noise, for adapting clustering objectives of spectral clustering,
#and for balanced clustering.

### TOY EXAMPLE

A <- matrix(c(2,1,1,3), 2, 2) # 2x2 block
B <- matrix(c(5,4,4,6), 2, 2) # 2x2 block

# Create a 5x5 zero matrix and insert blocks at right positions.
M <- matrix(@, 4, 4)

M[1:2, 1:2] <- A

M[3:4, 3:4] <- B

M.tilde <- M + matrix(rnorm(4*2, 0, 0.2), 4, 4)

#Construct a similaritiy matrix with same block structure
S <- cov2cor(t(M.tilde) %x% M.tilde)
bd <- bd.approx(S)

#Block diagonal approximation:
bd$B

#We can also permute the block diagonal shape:
S2 <= sfc(1, 3, 2, 4), c(1, 3, 2, 9]
bd2 <- bd.approx(S2)
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#bd2$B gives us again the block diagonal approximation
bd2$B

#And bd2$BD gives us the block diagonal approximation permuted to
#block diagonal shape
bd2$BD

### ADAPTING CLUSTERING OBJECTIVES

#We will use the USArrests example (see ?hcsvd).
data("USArrests”)

USArrests["Maryland”, "UrbanPop"”] <- 76.6

D <- as.matrix(dist(USArrests))

S <=1 - D / max(D)

#We compute k = 2 clusters adapting the objective of spectral clustering
#with the ratio cut.
bd.approx(S, linkage = "rcut")

### BALANCED CLUSTERING
#We can also enforce balanced clustering, such as two clusters of equal

#size (50:50). We will do this for the USArrests example from above.
bd.approx(S, linkage = "rcut”, balance = 0.5)

hc.beta Compute Revelle’s Beta for all worst split-halves using HC-SVD.

Description

Performs HC-SVD to reveal the hierarchical variable structure using average linkage as described
in Bauer (202Xa). For a data matrix comprising p items, this means that p — 1 splits are identified.
The obtained structure aligns with the structure according to the worst split-half reliability and is
thus used to compute a hierarchy of all Revelle’s beta as described in Bauer (202XDb).

Usage

hc.beta(R, splits = NULL, n.splits = NULL, is.corr = TRUE, verbose = TRUE)

Arguments

R A correlation matrix of dimension pxp or a data matrix of dimension nxp can be
provided. If a data matrix is supplied, it must be indicated by setting is.corr =
FALSE, and the correlation matrix will then be calculated as cor (X).
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splits An object containing the splits identified by HC-SVD. This can either be the
result of hcsvd (for all splits) or bd.approx (for a single split). If omitted,
hc.beta will internally call hcsvd(R) and compute Revelle’s beta for all p — 1
splits.

n.splits Number of splits for which Revelle’s beta is computed. If splits is from hcsvd,
the default is all p — 1 splits. If splits is from bd.approx, only a single split is
available and n.splitsis setto 1.

is.corr Is the supplied object a correlation matrix. Default is TRUE and this parameter
must be set to FALSE if a data matrix instead of a correlation matrix is supplied.

verbose Print out progress as p — 1 iterations for divisive hierarchical clustering are per-
formed. Default is TRUE.

Details

Supplementary details are in Bauer (202Xb).

Value

A list with n.splits components. Each split is a list of four components:

split The split number.

beta Revelle’s beta for this split.

A One of the two sub-scales that has been split.

B One of the two sub-scales that has been split.

beta.alpha Computes the ratio of Revelle’s beta and Cronbach’s alpha.
References

Bauer, J.O. (202Xa). Divisive hierarchical clustering using block diagonal matrix approximations.
Working paper.

Bauer, J.O. (202Xb). Revelle’s beta: The wait is over - we can compute it!. Working paper.

See Also

bd. approx hcsvd

Examples

#We compute the worst split-half reliabilities on a correlation matrix.

#lLoad the correlation matrix Bechtoldt from the psych

#package (see ?Bechtoldt for more information).

if (requireNamespace("psych”, quietly = TRUE)) {
data(”"Bechtoldt”, package = "psych”)

3
R <- Bechtoldt
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### RUN HC-SVD FOR HIERARCHICAL VARIABLE CLUSTERING

#Compute HC-SVD (with average linkage).
hcsvd.obj <- hcsvd(R)

#The object of type hclust with corresponding dendrogram can be obtained
#directly from hcsvd(...):

hc.div <- hcsvd.obj$hclust

plot(hc.div, axes = FALSE, ylab = "", main = "Revelle's Beta Splits")

### COMPUTE REVELLE'S BETA FOR ALL IDENTIFIED SPLITS

#Compute Revelle's beta
betas <- hc.beta(R = R)

#Alternatively, you can submit the object obtained from hcsvd(). Thus,
#the hiearchy needs not to be computed again using hcsvd().
betas <- hc.beta(R = R, splits = hcsvd.obj)

#Visualize the splits, e.g., as
splits <- sapply(betas, “[[, "split")
beta.values <- sapply(betas, “[[, "beta”)

plot(splits, beta.values,

type = "b",

xlab = "Split”,

ylab = "Revelle's Beta”,

main = "Revelle's Beta Across Splits”,
pch = 19)

#Visualize the ratio of Revelle's beta and Cronbach's alpha
beta.alpha <- sapply(betas, “[[", "beta.alpha")
plot(splits, beta.values,

type = "b",

xlab = "Split”,

ylab = "Beta/Alpha”,

main = "Ratio of Beta and Alpha Across Splits”,

pch = 19)

### COMPUTE REVELLE'S BETA FOR THE FIRST IDENTIFIED SPLIT

#The first split can be identified using bd.approx()
#This is computationally faster, as only the first split
#is identified

hc.beta(R = R, splits = bd.approx(R))
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hcsvd

Hierarchical Clustering Using Singular Vectors (HC-SVD).

Description

Performs HC-SVD to reveal the hierarchical structure as described in Bauer (202Xa). This divisive
approach iteratively splits each cluster into two subclusters. Candidate splits are determined by
the first sparse eigenvectors (sparse approximations of the first eigenvectors, i.e., vectors with many
zero entries) of the similarity matrix. The selected split is the one that yields the best block-diagonal
approximation of the similarity matrix according to a specified linkage function. The procedure
continues until each object is assigned to its own cluster.

Usage
hcsvd(S, linkage = "average”, q = 1, h.power = 2, max.iter, verbose = TRUE)
Arguments

S A scaled pxp similarity matrix. For example, this may be a correlation matrix.

linkage The linkage function to be used. This should be one of "average”, "single”,
or "RV" (for RV-coefficient). Note that the RV-coefficient might not yield an
ultrametric distance.

q Number of sparse eigenvectors to be used. This should be either a numeric value
between zero and one to indicate percentages, or "Kaiser” for as many sparse
eigenvectors as there are eigenvalues larger or equal to one. For a numerical
value between zero and one, the number of sparse eigenvectors is determined as
the corresponding share of the total number of eigenvectors. E.g., g =1 (100%)
uses all sparse eigenvectors and q = 0.5 (50%) will use half of all sparse eigen-
vectors. For q = 1, identification is best (see Bauer (202Xa) for details).

h.power h-th Hadamard power of S. This should be a positive integer and increases ro-
bustness of the method, as described in Bauer (202Xa).

max.iter How many iterations should be performed for computing the sparse eigenvec-
tors. Default is 500.

verbose Print out progress as p — 1 iterations for divisive hierarchical clustering are per-
formed. Default is TRUE.

Details

The sparse loadings are computed using the method proposed by Shen & Huang (2008). The
corresponding implementation is written in Rcpp/RcppArmadillo for computational efficiency and
is based on the R implementation by Baglama, Reichel, and Lewis in ssvd (irlba). However, the
implementation has been adapted to better align with the scope of the bdsvd package which is the
base for the blox package.

Supplementary details are in hc.beta and in Bauer (202Xb).
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Value

A list with four components:

hclust The clustering structure identified by HC-SVD as an object of type hclust.

dist.matrix The ultrametric distance matrix (cophenetic matrix) of the HC-SVD structure as
an object of class dist.

u.sim The ultrametric similarity matrix of .S obtained by HC-SVD as an object of class
matrix. The ultrametric similarity matrix is calculated as 1-dist.matrix.

q.p A vector of length p — 1 containing the ratio ¢; /p; of the g; sparse eigenvectors
used relative to all sparse eigenvectors g; for the split of each cluster. The ratio
is set to NA if the cluster contains only two variables as the search for sparse
eigenvectors that reflect this obvious split is not required in this case.

References

Bauer, J.O. (202Xa). Divisive hierarchical clustering using block diagonal matrix approximations.
Working paper.

Bauer, J.O. (202Xb). Revelle’s beta: The wait is over - we can compute it!. Working paper.

Shen, H. and Huang, J.Z. (2008). Sparse principal component analysis via regularized low rank
matrix approximation, J. Multivar. Anal. 99, 1015-1034.

See Also
bdsvd {bdsvd}

Examples

#We give one example for variable clustering directly on a correlation matrix,
#and we replicate the USArrest example in Bauer (202Xa) for observation clustering.
#More elaborate code alongside a different example for variable clustering can be
#found in the corresponding supplementary material of that manuscripts.

### VARIABLE CLUSTERING

#lLoad the correlation matrix Bechtoldt from the psych

#package (see ?Bechtoldt for more information).

if (requireNamespace("psych”, quietly = TRUE)) {
data("Bechtoldt”, package = "psych")

3

#Compute HC-SVD (with average linkage).
hcsvd.obj <- hcsvd(Bechtoldt)

#The object of type hclust with corresponding dendrogram can be obtained
#directly from hcsvd(...):

hc.div <- hcsvd.obj$hclust

plot(hc.div, ylab = "")
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#The dendrogram can also be obtained from the ultrametric distance matrix:
plot(hclust(hcsvd.obj$dist.matrix), main = "HC-SVD", sub = "", xlab = "")

### OBSERVATION CLUSTERING

#Correct for the known transcription error
data("USArrests")
USArrests["”Maryland”, "UrbanPop"] <- 76.6

#The distance matrix is scaled (divided by max(D)) to later allow a
#transformation to a matrix S that fulfills the properties of a similarity
#matrix.

D <- as.matrix(dist(USArrests))

D <- D / max(D)

S<-1-D

#Compute HC-SVD (with average linkage).
hcsvd.obj <- hcsvd(S)

#The object of type hclust with corresponding dendrogram can be obtained
#directly from hcsvd(...):

hc.div <- hcsvd.obj$hclust

plot(hc.div, ylab = "")

#The dendrogram can also be obtained from the ultrametric distance matrix:

plot(hclust(hcsvd.obj$dist.matrix), main = "HC-SVD", sub = "", xlab = "")
is.ultrametric Ultrametric Distance Property
Description

This function checks the ultrametric property of a distance matrix obtained by HC-SVD.

Usage

is.ultrametric(hcsvd.obj)

Arguments

hcsvd.obj An object of type hcsvd(...)

Value

Returns TRUE if the ultrametric property is fulfilled. Otherwise FALSE.
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References
Bauer, J.O. (202Xa). Divisive hierarchical clustering using block diagonal matrix approximations.
Working paper.

See Also

hcsvd

Examples

#lLoad the correlation matrix Bechtoldt from the psych

#package (see ?Bechtoldt for more information).

if (requireNamespace("psych”, quietly = TRUE)) {
data(”"Bechtoldt”, package = "psych”)

3

#Compute HC-SVD (with average linkage).
hcsvd.obj <- hcsvd(Bechtoldt)

#Check the ultrametric property
is.ultrametric(hcsvd.obj)
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