The 'binomialRF' is a new feature selection technique for decision trees that aims at providing an alternative approach to identify significant feature subsets using binomial distributional assumptions (Rachid Zaim, S., et al. (2019)) <doi:10.1101/681973>. Treating each splitting variable selection as a set of exchangeable correlated Bernoulli trials, 'binomialRF' then tests whether a feature is selected more often than by random chance.
| Version: | 0.1.0 | 
| Imports: | randomForest, data.table, stats, rlist | 
| Suggests: | foreach, knitr, rmarkdown, correlbinom | 
| Published: | 2020-03-26 | 
| DOI: | 10.32614/CRAN.package.binomialRF | 
| Author: | Samir Rachid Zaim [aut, cre] | 
| Maintainer: | Samir Rachid Zaim <samirrachidzaim at math.arizona.edu> | 
| License: | GPL-2 | 
| URL: | https://www.biorxiv.org/content/10.1101/681973v1.abstract | 
| NeedsCompilation: | no | 
| Materials: | README, NEWS | 
| CRAN checks: | binomialRF results | 
| Reference manual: | binomialRF.html , binomialRF.pdf | 
| Vignettes: | "binomialRF Feature Selection Vignette" (source, R code) | 
| Package source: | binomialRF_0.1.0.tar.gz | 
| Windows binaries: | r-devel: binomialRF_0.1.0.zip, r-release: binomialRF_0.1.0.zip, r-oldrel: binomialRF_0.1.0.zip | 
| macOS binaries: | r-release (arm64): binomialRF_0.1.0.tgz, r-oldrel (arm64): binomialRF_0.1.0.tgz, r-release (x86_64): binomialRF_0.1.0.tgz, r-oldrel (x86_64): binomialRF_0.1.0.tgz | 
| Old sources: | binomialRF archive | 
Please use the canonical form https://CRAN.R-project.org/package=binomialRF to link to this page.