
Loss modeling features of actuar
Christophe Dutang

Université Paris Dauphine

Vincent Goulet
Université Laval

Mathieu Pigeon
Université du Québec à Montréal

1 Introduction
One important task of actuaries is the modeling of claim amount and claim
count distributions for ratemaking, loss reserving or other risk evaluation pur-
poses. Package actuar features many support functions for loss distributions
modeling:

1. support for heavy tail continuous distributions useful in loss severity model-
ing;

2. support for phase-type distributions for ruin theory;

3. functions to compute rawmoments, limited moments and the moment gen-
erating function (when it exists) of continuous distributions;

4. support for zero-truncated and zero-modified extensions of the discrete dis-
tributions commonly used in loss frequency modeling;

5. extensive support of grouped data;

6. functions to compute empirical raw and limited moments;

7. support for minimum distance estimation using three different measures;

8. treatment of coverage modifications (deductibles, limits, inflation, coinsur-
ance).

1

Vignette"distributions" covers the points 1–4 above in great detail. This
document concentrates on points 5–8.

2 Grouped data
Grouped data is data represented in an interval-frequency manner. Typically, a
grouped data set will report that there were 𝑛𝑗 claims in the interval (𝑐𝑗−1, 𝑐𝑗],
𝑗 = 1,… , 𝑟 (with the possibility that 𝑐𝑟 = ∞). This representation ismuchmore
compact than an individual data set —where the value of each claim is known
— but it also carries far less information. Now that storage space in computers
has essentially become a non issue, grouped data has somewhat fallen out of
fashion. Still, grouped data remains useful as a means to represent data, if only
graphically— for example, a histogram is nothing but a density approximation
for grouped data. Moreover, various parameter estimation techniques rely on
grouped data.

For these reasons, actuar provides facilities to store, manipulate and sum-
marize grouped data. A standard storage method is needed since there are
many ways to represent grouped data in the computer: using a list or a ma-
trix, aligning 𝑛𝑗 with 𝑐𝑗−1 or with 𝑐𝑗 , omitting 𝑐0 or not, etc. With appropriate
extraction, replacement and summary methods, manipulation of grouped data
becomes similar to that of individual data.

Function grouped.data creates a grouped data object similar to — and
inheriting from— a data frame. The function accepts two types of input:

1. a vector of group boundaries 𝑐0, 𝑐1,… , 𝑐𝑟 and one or more vectors of group
frequencies 𝑛1,… , 𝑛𝑟 (note that there should be one more group boundary
than group frequencies);

2. individual data 𝑥1,… , 𝑥𝑛 and either a vector of breakpoints 𝑐1,… , 𝑐𝑟, a num-
ber 𝑟 of breakpoints or an algorithm to determine the latter.

In the second case, grouped.data will group the individual data using func-
tion hist. The function always assumes that the intervals are contiguous.

Example 1. Consider the following already grouped data set:

2

Group Frequency (Line 1) Frequency (Line 2)
(0, 25] 30 26
(25, 50] 31 33
(50, 100] 57 31
(100, 150] 42 19
(150, 250] 65 16
(250, 500] 84 11

We can conveniently and unambiguously store this data set in R as follows:

> x <- grouped.data(Group = c(0, 25, 50, 100,
+ 150, 250, 500),
+ Line.1 = c(30, 31, 57, 42, 65, 84),
+ Line.2 = c(26, 33, 31, 19, 16, 11))

Internally, object x is a list with class

> class(x)
[1] "grouped.data" "data.frame"

The package provides a suitable printmethod to display grouped data ob-
jects in an intuitive manner:
> x

Group Line.1 Line.2
1 (0, 25] 30 26
2 (25, 50] 31 33
3 (50, 100] 57 31
4 (100, 150] 42 19
5 (150, 250] 65 16
6 (250, 500] 84 11

Example 2. Consider Data Set B of Klugman et al. (2012, Table 11.2):

27 82 115 126 155 161 243 294 340 384
457 680 855 877 974 1,193 1,340 1,884 2,558 15,743

We can represent this data set as grouped data using either an automatic or a
suggested number of groups (see ?hist for details):

> y <- c(27, 82, 115, 126, 155, 161, 243, 294,
+ 340, 384, 457, 680, 855, 877, 974, 1193,

3

+ 1340, 1884, 2558, 15743)
> grouped.data(y)

y
1 (0, 2000] 18
2 (2000, 4000] 1
3 (4000, 6000] 0
4 (6000, 8000] 0
5 (8000, 10000] 0
6 (10000, 12000] 0
7 (12000, 14000] 0
8 (14000, 16000] 1
> grouped.data(y, breaks = 5)

y
1 (0, 5000] 19
2 (5000, 10000] 0
3 (10000, 15000] 0
4 (15000, 20000] 1

The above grouping methods use equi-spaced breaks. This is rarely appro-
priate for heavily skewed insurance data. For this reason, grouped.data also
supports specified breakpoints (or group boundaries):

> grouped.data(y, breaks = c(0, 100, 200, 350, 750,
+ 1200, 2500, 5000, 16000))

y
1 (0, 100] 2
2 (100, 200] 4
3 (200, 350] 3
4 (350, 750] 3
5 (750, 1200] 4
6 (1200, 2500] 2
7 (2500, 5000] 1
8 (5000, 16000] 1

The package supports the most common extraction and replacement meth-
ods for "grouped.data" objects using the usual [and [<- operators. In par-
ticular, the following extraction operations are supported. (In the following,
object x is the grouped data object of Example 1.)

4

i) Extraction of the vector of group boundaries (the first column):

> x[, 1]

[1] 0 25 50 100 150 250 500

ii) Extraction of the vector or matrix of group frequencies (the second and
third columns):

> x[, -1]

Line.1 Line.2
1 30 26
2 31 33
3 57 31
4 42 19
5 65 16
6 84 11

iii) Extraction of a subset of the whole object (first three lines):

> x[1:3,]

Group Line.1 Line.2
1 (0, 25] 30 26
2 (25, 50] 31 33
3 (50, 100] 57 31

Notice how extraction results in a simple vector or matrix if either of the group
boundaries or the group frequencies are dropped.

As for replacement operations, the package implements the following.

i) Replacement of one or more group frequencies:

> x[1, 2] <- 22; x

Group Line.1 Line.2
1 (0, 25] 22 26
2 (25, 50] 31 33
3 (50, 100] 57 31
4 (100, 150] 42 19
5 (150, 250] 65 16
6 (250, 500] 84 11

> x[1, c(2, 3)] <- c(22, 19); x

5

Group Line.1 Line.2
1 (0, 25] 22 19
2 (25, 50] 31 33
3 (50, 100] 57 31
4 (100, 150] 42 19
5 (150, 250] 65 16
6 (250, 500] 84 11

ii) Replacement of the boundaries of one or more groups:

> x[1, 1] <- c(0, 20); x

Group Line.1 Line.2
1 (0, 20] 22 19
2 (20, 50] 31 33
3 (50, 100] 57 31
4 (100, 150] 42 19
5 (150, 250] 65 16
6 (250, 500] 84 11

> x[c(3, 4), 1] <- c(55, 110, 160); x

Group Line.1 Line.2
1 (0, 20] 22 19
2 (20, 55] 31 33
3 (55, 110] 57 31
4 (110, 160] 42 19
5 (160, 250] 65 16
6 (250, 500] 84 11

It is not possible to replace the boundaries and the frequencies simultaneously.
The mean of grouped data is

�̂� = 1
𝑛

𝑟
∑
𝑗=1

𝑎𝑗𝑛𝑗 , (1)

where 𝑎𝑗 = (𝑐𝑗−1 + 𝑐𝑗)/2 is the midpoint of the 𝑗th interval, and 𝑛 = ∑𝑟
𝑗=1 𝑛𝑗 ,

whereas the variance is
1
𝑛

𝑟
∑
𝑗=1

𝑛𝑗(𝑎𝑗 − �̂�)2. (2)

The standard deviation is the square root of the variance. The package defines
methods to easily compute the above descriptive statistics:

6

> mean(x)
Line.1 Line.2
188.0 108.2

> var(x)
Line.1 Line.2
25050 14945

> sd(x)
Line.1 Line.2
158.3 122.3
Higher empirical moments can be computed with emm; see section 4.
The R function hist splits individual data into groups and draws an his-

togram of the frequency distribution. The package introduces a method for
already grouped data. Only the first frequencies column is considered (see Fig-
ure 1 for the resulting graph):

> hist(x[, -3])

Remark 1. One will note that for an individual data set like y of Example 2, the
following two expressions yield the same result:

> hist(y)
> hist(grouped.data(y))

R has a function ecdf to compute the empirical cdf 𝐹𝑛(𝑥) of an individual
data set:

𝐹𝑛(𝑥) =
1
𝑛

𝑛
∑
𝑗=1

𝐼{𝑥𝑗 ≤ 𝑥}, (3)

where 𝐼{𝒜} = 1 if 𝒜 is true and 𝐼{𝒜} = 0 otherwise. The function returns a
"function" object to compute the value of 𝐹𝑛(𝑥) in any 𝑥.

The approximation of the empirical cdf for grouped data is called an ogive
(Klugman et al., 2012; Hogg and Klugman, 1984). It is obtained by joining the
known values of 𝐹𝑛(𝑥) at group boundaries with straight line segments:

̃𝐹𝑛(𝑥) =
⎧⎪
⎨⎪
⎩

0, 𝑥 ≤ 𝑐0
(𝑐𝑗 − 𝑥)𝐹𝑛(𝑐𝑗−1) + (𝑥 − 𝑐𝑗−1)𝐹𝑛(𝑐𝑗)

𝑐𝑗 − 𝑐𝑗−1
, 𝑐𝑗−1 < 𝑥 ≤ 𝑐𝑗

1, 𝑥 > 𝑐𝑟.

(4)

The package includes a generic function ogive with methods for individual
and for grouped data. The function behaves exactly like ecdf.

7

Histogram of c(0, 20, 55, 110, 160, 250, 500)

c(0, 20, 55, 110, 160, 250, 500)

D
en

si
ty

0 100 200 300 400 500

0.
00

0
0.

00
1

0.
00

2
0.

00
3

Figure 1: Histogram of a grouped data object

Example 3. Consider first the grouped data set of Example 1. Function ogive
returns a function to compute the ogive ̃𝐹𝑛(𝑥) in any point:
> (Fnt <- ogive(x))
Ogive for grouped data
Call: ogive(x = x)

x = 0, 20, 55, ..., 2.5e+02, 5e+02
F(x) = 0, 0.073, 0.18, ..., 0.72, 1

Methods for functions knots and plot allow, respectively, to obtain the
knots 𝑐0, 𝑐1,… , 𝑐𝑟 of the ogive and to draw a graph (see Figure 2):

> knots(Fnt)
[1] 0 20 55 110 160 250 500
> Fnt(knots(Fnt))
[1] 0.00000 0.07309 0.17608 0.36545 0.50498 0.72093

8

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ogive(x = x)

x

F
(x

)

Figure 2: Ogive of a grouped data object

[7] 1.00000
> plot(Fnt)

To add further symmetry between functions hist and ogive, the latter also
accepts in argument a vector individual data. It will call grouped.data and
then computes the ogive. (Below, y is the individual data set of Example 2.)

> (Fnt <- ogive(y))
Ogive for grouped data
Call: ogive(x = y)

x = 0, 2e+03, 4e+03, ..., 1.4e+04, 1.6e+04
F(x) = 0, 0.9, 0.95, ..., 0.95, 1

> knots(Fnt)
[1] 0 2000 4000 6000 8000 10000 12000 14000
[9] 16000

9

A method of function quantile for grouped data objects returns linearly
smoothed quantiles, that is, the inverse of the ogive evaluated at various points:

> quantile(x)
0% 25% 50% 75% 100%

0.00 76.47 158.21 276.04 500.00
> Fnt(quantile(x))
[1] 0.00 0.25 0.50 0.75 1.00
Finally, a summary method for grouped data objects returns the quantiles

and the mean, as is usual for individual data:

> summary(x)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0 76.5 158.2 188.0 276.0 500.0

3 Data sets
This is certainly not the most spectacular feature of actuar, but it remains use-
ful for illustrations and examples: the package includes the individual dental
claims and grouped dental claims data of Klugman et al. (2012):

> data("dental"); dental
[1] 141 16 46 40 351 259 317 1511 107

[10] 567
> data("gdental"); gdental

cj nj
1 (0, 25] 30
2 (25, 50] 31
3 (50, 100] 57
4 (100, 150] 42
5 (150, 250] 65
6 (250, 500] 84
7 (500, 1000] 45
8 (1000, 1500] 10
9 (1500, 2500] 11
10 (2500, 4000] 3

10

4 Calculation of empirical moments
The package provides two functions useful for estimation based on moments.
First, function emm computes the 𝑘th empirical moment of a sample, whether
in individual or grouped data form. For example, the following expressions
compute the first three moments for individual and grouped data sets:

> emm(dental, order = 1:3)
[1] 3.355e+02 2.931e+05 3.729e+08
> emm(gdental, order = 1:3)
[1] 3.533e+02 3.577e+05 6.586e+08
Second, in the same spirit as ecdf and ogive, function elev returns a func-

tion to compute the empirical limited expected value — or first limited mo-
ment — of a sample for any limit. Again, there are methods for individual and
grouped data (see Figure 3 for the graphs):

> lev <- elev(dental)
> lev(knots(lev))
[1] 16.0 37.6 42.4 85.1 105.5 164.5 187.7 197.9
[9] 241.1 335.5

> plot(lev, type = "o", pch = 19)
> lev <- elev(gdental)
> lev(knots(lev))
[1] 0.00 24.01 46.00 84.16 115.77 164.85
[7] 238.26 299.77 324.90 347.39 353.34

> plot(lev, type = "o", pch = 19)

5 Minimum distance estimation
Twomethods are widely used by actuaries to fit models to data: maximum like-
lihood andminimum distance. The first technique applied to individual data is
well covered by function fitdistr of the packageMASS (Venables and Ripley,
2002).

The second technique minimizes a chosen distance function between theo-
retical and empirical distributions. Package actuar provides function mde, very
similar in usage and inner working to fitdistr, to fit models according to any
of the following three distance minimization methods.

11

0 500 1000 1500

50
10

0
15

0
20

0
25

0
30

0

elev(x = dental)

x

E
m

pi
ric

al
 L

E
V

0 1000 2000 3000 4000

0
50

10
0

20
0

30
0

elev(x = gdental)

x

E
m

pi
ric

al
 L

E
V

Figure 3: Empirical limited expected value function of an individual data object
(left) and a grouped data object (right)

1. The Cramér-von Mises method (CvM) minimizes the squared difference be-
tween the theoretical cdf and the empirical cdf or ogive at their knots:

𝑑(𝜃) =
𝑛
∑
𝑗=1

𝑤𝑗[𝐹(𝑥𝑗 ; 𝜃) − 𝐹𝑛(𝑥𝑗 ; 𝜃)]2 (5)

for individual data and

𝑑(𝜃) =
𝑟
∑
𝑗=1

𝑤𝑗[𝐹(𝑐𝑗 ; 𝜃) − ̃𝐹𝑛(𝑐𝑗 ; 𝜃)]2 (6)

for grouped data. Here, 𝐹(𝑥) is the theoretical cdf of a parametric family,
𝐹𝑛(𝑥) is the empirical cdf, ̃𝐹𝑛(𝑥) is the ogive and 𝑤1 ≥ 0,𝑤2 ≥ 0,… are
arbitrary weights (defaulting to 1).

2. Themodified chi-squaremethod (chi-square) applies to grouped data only
and minimizes the squared difference between the expected and observed
frequency within each group:

𝑑(𝜃) =
𝑟
∑
𝑗=1

𝑤𝑗[𝑛(𝐹(𝑐𝑗 ; 𝜃) − 𝐹(𝑐𝑗−1; 𝜃)) − 𝑛𝑗]2, (7)

where 𝑛 = ∑𝑟
𝑗=1 𝑛𝑗 . By default, 𝑤𝑗 = 𝑛−1𝑗 .

3. The layer average severity method (LAS) applies to grouped data only and
minimizes the squared difference between the theoretical and empirical lim-

12

ited expected value within each group:

𝑑(𝜃) =
𝑟
∑
𝑗=1

𝑤𝑗[LAS(𝑐𝑗−1, 𝑐𝑗 ; 𝜃) − ̃LAS𝑛(𝑐𝑗−1, 𝑐𝑗 ; 𝜃)]2, (8)

where LAS(𝑥, 𝑦) = 𝐸[𝑋 ∧𝑦]−𝐸[𝑋 ∧𝑥], ̃LAS𝑛(𝑥, 𝑦) = ̃𝐸𝑛[𝑋 ∧ 𝑦]− ̃𝐸𝑛[𝑋 ∧𝑥]
and ̃𝐸𝑛[𝑋 ∧ 𝑥] is the empirical limited expected value for grouped data.

The arguments of mde are a data set, a function to compute 𝐹(𝑥) or 𝐸[𝑋∧𝑥],
starting values for the optimization procedure and the name of the method to
use. The empirical functions are computed with ecdf, ogive or elev.

Example 4. The expressions below fit an exponential distribution to the grouped
dental data set, as per example 2.21 of Klugman et al. (1998):

> mde(gdental, pexp, start = list(rate = 1/200),
+ measure = "CvM")

rate
0.003551

distance
0.002842

> mde(gdental, pexp, start = list(rate = 1/200),
+ measure = "chi-square")

rate
0.00364

distance
13.54

> mde(gdental, levexp, start = list(rate = 1/200),
+ measure = "LAS")

rate
0.002966

distance
694.5

It should be noted that optimization is not always as simple to achieve as in
Example 4. For example, consider the problem of fitting a Pareto distribution
to the same data set using the Cramér–von Mises method:

13

> mde(gdental, ppareto,
+ start = list(shape = 3, scale = 600),
+ measure = "CvM")

Error in mde(gdental, ppareto, start = list(shape = 3,
scale = 600), measure = "CvM") :

l'optimisation a échoué

Working in the log of the parameters often solves the problem since the
optimization routine can then flawlessly workwith negative parameter values:

> pparetolog <- function(x, logshape, logscale)
+ ppareto(x, exp(logshape), exp(logscale))
> (p <- mde(gdental, pparetolog,
+ start = list(logshape = log(3),
+ logscale = log(600)),
+ measure = "CvM"))
logshape logscale

1.581 7.128

distance
0.0007905
The actual estimators of the parameters are obtained with

> exp(p$estimate)
logshape logscale

4.861 1246.485
This procedure may introduce additional bias in the estimators, though.

6 Coverage modifications
Let𝑋 be the randomvariable of the actual claim amount for an insurance policy,
𝑌𝐿 be the random variable of the amount paid per loss and 𝑌𝑃 be the random
variable of the amount paid per payment. The terminology for the last two ran-
dom variables refers to whether or not the insurer knows that a loss occurred.
Now, the random variables 𝑋 , 𝑌𝐿 and 𝑌𝑃 will differ if any of the following cov-
erage modifications are present for the policy: an ordinary or a franchise de-
ductible, a limit, coinsurance or inflation adjustment (see Klugman et al., 2012,
chapter 8 for precise definitions of these terms). Table 1 summarizes the defi-

14

Coverage modification Per-loss variable (𝑌𝐿) Per-payment variable (𝑌𝑃)

Ordinary deductible (𝑑) {0, 𝑋 ≤ 𝑑
𝑋 − 𝑑, 𝑋 > 𝑑

{𝑋 − 𝑑, 𝑋 > 𝑑

Franchise deductible (𝑑) {0, 𝑋 ≤ 𝑑
𝑋, 𝑋 > 𝑑

{𝑋, 𝑋 > 𝑑

Limit (𝑢) {𝑋, 𝑋 ≤ 𝑢
𝑢, 𝑋 > 𝑢

{𝑋, 𝑋 ≤ 𝑢
𝑢, 𝑋 > 𝑢

Coinsurance (𝛼) 𝛼𝑋 𝛼𝑋
Inflation (𝑟) (1 + 𝑟)𝑋 (1 + 𝑟)𝑋

Table 1: Coveragemodifications for per-loss variable (𝑌𝐿) and per-payment vari-
able (𝑌𝑃) as defined in Klugman et al. (2012).

nitions of 𝑌𝐿 and 𝑌𝑃.
Often, one will want to use data 𝑌𝑃

1 ,… , 𝑌𝑃
𝑛 (or 𝑌𝐿

1 ,… , 𝑌𝐿
𝑛) from the random

variable 𝑌𝑃 (𝑌𝐿) to fit a model on the unobservable random variable 𝑋 . This
requires expressing the pdf or cdf of 𝑌𝑃 (𝑌𝐿) in terms of the pdf or cdf of 𝑋 .
Function coverage of actuar does just that: given a pdf or cdf and any com-
bination of the coverage modifications mentioned above, coverage returns a
function object to compute the pdf or cdf of the modified random variable. The
function can then be used in modeling like any other dfoo or pfoo function.

Example 5. Let𝑌𝑃 represent the amount paid by an insurer for a policywith an
ordinary deductible 𝑑 and a limit 𝑢 − 𝑑 (or maximum covered loss of 𝑢). Then
the definition of 𝑌𝑃 is

𝑌𝑃 = {𝑋 − 𝑑, 𝑑 ≤ 𝑋 ≤ 𝑢
𝑢 − 𝑑, 𝑋 ≥ 𝑢

(9)

and its pdf is

𝑓𝑌𝑃 (𝑦) =

⎧
⎪⎪
⎨
⎪⎪
⎩

0, 𝑦 = 0
𝑓𝑋(𝑦 + 𝑑)
1 − 𝐹𝑋(𝑑)

, 0 < 𝑦 < 𝑢 − 𝑑
1 − 𝐹𝑋(𝑢)
1 − 𝐹𝑋(𝑑)

, 𝑦 = 𝑢 − 𝑑

0, 𝑦 > 𝑢 − 𝑑.

(10)

15

Assume 𝑋 has a gamma distribution. Then an R function to compute the
pdf (10) in any 𝑦 for a deductible 𝑑 = 1 and a limit 𝑢 = 10 is obtained with
coverage as follows:

> f <- coverage(pdf = dgamma, cdf = pgamma,
+ deductible = 1, limit = 10)
> f
function (x, shape, rate = 1, scale = 1/rate)
{

Call <- match.call()
Sd <- Call
Sd$lower.tail <- FALSE
Sd[[1L]] <- as.name("pgamma")
names(Sd)[2L] <- "q"
Sd[[2L]] <- 1
Su <- Sd
Su[[2L]] <- 10
f <- Call
f[[1L]] <- as.name("dgamma")
res <- numeric(length(x))
w <- which(0 < x & x < 9)
f[[2L]] <- x[w] + 1
res[w] <- eval.parent(f)/(p <- eval.parent(Sd))
res[x == 9] <- eval.parent(Su)/p
res

}
<environment: 0x122edf8e0>
> f(0, shape = 5, rate = 1)
[1] 0
> f(5, shape = 5, rate = 1)
[1] 0.1343
> f(9, shape = 5, rate = 1)
[1] 0.02936
> f(12, shape = 5, rate = 1)
[1] 0

Note how function f in the previous example is built specifically for the

16

coveragemodifications submitted and contains as little useless code as possible.
The function returned by coveragemay be used for various purposes, most

notably parameter estimation, as the following example illustrates.

Example 6. Let object y contain a sample of claims amounts from policies with
the deductible and limit of Example 5. One can fit a gamma distribution by
maximum likelihood to the claim severity distribution as follows:

> library(MASS)
> fitdistr(y, f, start = list(shape = 2, rate = 0.5))

shape rate
5.0187 0.9595

(0.8148) (0.1627)

Vignette "coverage" contains more detailed formulas for the pdf and the
cdf under various combinations of coverage modifications.

References
R. V. Hogg and S. A. Klugman. Loss Distributions. Wiley, New York, 1984. ISBN
0-4718792-9-0.

S. A. Klugman, H. H. Panjer, and G. Willmot. Loss Models: From Data to Deci-
sions. Wiley, New York, 1998. ISBN 0-4712388-4-8.

S. A. Klugman, H. H. Panjer, and G. Willmot. Loss Models: From Data to Deci-
sions. Wiley, New York, 4 edition, 2012. ISBN 978-1-118-31532-3.

W. N. Venables and B. D. Ripley. Modern applied statistics with S. Springer, New
York, 4 edition, 2002. ISBN 0-3879545-7-0.

17

	1 Introduction
	2 Grouped data
	3 Data sets
	4 Calculation of empirical moments
	5 Minimum distance estimation
	6 Coverage modifications

