
The purpose of this RLoptimal package is to easily
construct an adaptive allocation rule that directly optimizes a
performance metric, such as power, accuracy of the estimated target
dose, or mean absolute error over the estimated dose-response curve.
Several high-level functions are also provided to make it easy to
perform simulation studies.
You can install the stable version from CRAN as follows.
install.packages("RLoptimal")You can install the development version from GitHub as follows.
# install.packages("remotes")
remotes::install_github("MatsuuraKentaro/RLoptimal")We demonstrate computing an optimal adaptive allocation by reinforcement learning for the example in Section 3 of the original paper.
When you load RLoptimal as follows, Python itself and
the Python packages to conduct reinforcement learning will be
installed.
library(RLoptimal)We build the dose-response models to be used in the MCPMod method, which we plan to execute at the end of the clinical trial.
doses <- c(0, 2, 4, 6, 8)
models <- DoseFinding::Mods(
doses = doses, maxEff = 1.65,
linear = NULL, emax = 0.79, sigEmax = c(4, 5)
)We obtain an optimal adaptive allocation rule by executing
learn_allocation_rule() with the models.
allocation_rule <- learn_allocation_rule(
models,
N_total = 150, N_ini = rep(10, 5), N_block = 10, Delta = 1.3,
outcome_type = "continuous", sd_normal = sqrt(4.5),
seed = 123, rl_config = rl_config_set(iter = 1000),
alpha = 0.025
)
allocation_rule
#> <AllocationRule>
#> dir: allocation_rules/20241201_114609
#> created at: 2024-12-01 14:48:40
#> call:
#> learn_allocation_rule(models = models, N_total = 150, N_ini = rep(10,
#> 5), N_block = 10, Delta = 1.3, outcome_type = "continuous",
#> sd_normal = sqrt(4.5), seed = 123, rl_config = rl_config_set(iter = 1000),
#> alpha = 0.025)
#> iterations: 1000
#> checkpoints: 500, 600, 700, 800, 900, 1000With the default settings, it takes roughly 10-50 seconds per iter,
so it would take about 3-14 hours when iter = 1000.
To compute allocation ratios using the obtained allocation rule, pass
dose and response data to opt_allocation_probs().
some_doses <- c( 0, 0, 0, 0, 2, 2, 4, 4, 4, 6, 6, 8, 8, 8)
some_resps <- c(.2, .1, .0, .3, .2, .4, .1, .6, .8, .5, .8, 1.1, .9, 1.6)
allocation_rule$opt_allocation_probs(some_doses, some_resps)
#> 0 2 4 6 8
#> 6.023860e-02 5.389110e-06 3.485905e-04 1.684970e-05 9.393906e-01When 10 subjects in the next block are allocated to each dose
according to these probabilities, we recommend using
DoseFinding::rndDesign().
probs <- allocation_rule$opt_allocation_probs(some_doses, some_resps)
DoseFinding::rndDesign(probs, 10)
#> [1] 1 0 1 0 8In general, an adaptive allocation may inflate alpha (see Section 3.3
in the original paper). Therefore, the significance level should be
adjusted by simulation using adjust_significance_level
function.
adjusted_alpha <- adjust_significance_level(
allocation_rule, models,
N_total = 150, N_ini = rep(10, 5), N_block = 10,
outcome_type = "continuous", sd_normal = sqrt(4.5),
alpha = 0.025, n_sim = 10000, seed = 123
)
adjusted_alpha
#> [1] 0.02021423A convenient high-level function (simulate_one_trial) is
provided to evaluate the obtained allocation rule. The following is an
example of code to perform a simulation study similar to Section 3 in
the original paper.
eval_models <- DoseFinding::Mods(
doses = doses, maxEff = 1.65,
linear = NULL, emax = 0.79, sigEmax = c(4, 5), exponential = 1, quadratic = - 1/12
)
true_response_matrix <- DoseFinding::getResp(eval_models, doses = doses)
true_response_list <- as.list(data.frame(true_response_matrix, check.names = FALSE))
n_sim <- 1000 # the number of simulated clinical trials
sim_list <- list()
for (true_model_name in names(true_response_list)) {
true_response <- true_response_list[[true_model_name]]
for (simID in seq_len(n_sim)) {
sim_one <- simulate_one_trial(
allocation_rule, models,
true_response = true_response,
N_total = 150, N_ini = rep(10, 5), N_block = 10,
Delta = 1.3, outcome_type = "continuous", sd_normal = sqrt(4.5),
alpha = adjusted_alpha, seed = simID, eval_type = "all"
)
sim_list[[length(sim_list) + 1]] <- data.frame(
simID = simID, true_model_name = true_model_name, sim_one, check.names = FALSE)
}
}
d_sim <- do.call(rbind, sim_list)
head(d_sim, 10)
#> simID true_model_name min_p_value selected_model_name estimated_target_dose MAE n_of_0 n_of_2 n_of_4 n_of_6 n_of_8
#> 1 1 linear 2.664834e-03 linear 6.4373669 0.02152038 0.2800000 0.4866667 0.06666667 0.07333333 0.09333333
#> 2 2 linear 5.367406e-03 linear 7.5199780 0.16688577 0.4733333 0.1333333 0.06666667 0.18666667 0.14000000
#> 3 3 linear 1.146988e-04 sigEmax 5.3126300 0.31777648 0.2800000 0.4466667 0.06666667 0.07333333 0.13333333
#> 4 4 linear 2.559644e-02 <NA> NA NA 0.4133333 0.0800000 0.08666667 0.24000000 0.18000000
#> 5 5 linear 5.367572e-03 linear 7.3541945 0.14740065 0.3733333 0.2600000 0.12000000 0.13333333 0.11333333
#> 6 6 linear 6.299454e-04 emax 3.4787829 0.38459844 0.3466667 0.4200000 0.06666667 0.06666667 0.10000000
#> 7 7 linear 3.397589e-05 linear 5.2822467 0.19928701 0.3200000 0.3733333 0.06666667 0.08666667 0.15333333
#> 8 8 linear 2.107865e-02 <NA> NA NA 0.2866667 0.4733333 0.06666667 0.06666667 0.10666667
#> 9 9 linear 4.607294e-05 linear 5.6278953 0.12371108 0.3600000 0.2333333 0.14666667 0.06666667 0.19333333
#> 10 10 linear 4.710722e-04 emax 0.3685151 0.45576455 0.2533333 0.4933333 0.06666667 0.10666667 0.08000000It is recommended that the models used in reinforcement learning
include possible models in addition to the models used in the MCPMod
method. Here, we add the exponential model according to the supporting
information in the original paper, and specify the argument
rl_models in learn_allocation_rule
function.
rl_models <- DoseFinding::Mods(
doses = doses, maxEff = 1.65,
linear = NULL, emax = 0.79, sigEmax = c(4, 5), exponential = 1
)
allocation_rule <- learn_allocation_rule(
models,
N_total = 150, N_ini = rep(10, 5), N_block = 10, Delta = 1.3,
outcome_type = "continuous", sd_normal = sqrt(4.5),
seed = 123, rl_models = rl_models, rl_config = rl_config_set(iter = 1000),
alpha = 0.025
)The above workflow can be applied in the same way when the outcome is
binary. We build the dose-response models to be used in the MCPMod
method on the logit scale (see this
vignette of DoseFinding package), and specify the
argument outcome_type = "binary" in
learn_allocation_rule function.
doses <- c(0, 0.5, 1.5, 2.5, 4)
models <- DoseFinding::Mods(
doses = doses,
placEff = qlogis(0.1),
maxEff = qlogis(0.35) - qlogis(0.1),
emax = c(0.25, 1), sigEmax = rbind(c(1, 3), c(2.5, 4)), betaMod = c(1.1, 1.1)
)
allocation_rule <- learn_allocation_rule(
models,
N_total = 200, N_ini = rep(10, 5), N_block = 10,
Delta = 1.4, outcome_type = "binary",
seed = 123, rl_config = rl_config_set(iter = 1000),
alpha = 0.05
)The allocation_rule above is an object of the Allocation
Rule Class (R6). Here is a brief explanation of how to use it.
The obtained allocation rule can be saved using saveRDS,
a standard R function.
saveRDS(allocation_rule, file = "allocation_rule.RDS")To load it, use readRDS.
allocation_rule <- readRDS(file = "allocation_rule.RDS")learn_allocation_rule functionThe inputs passed to the learn_allocation_rule function
can be retrieved as follows.
allocation_rule$inputThe statistics of returns during reinforcement learning can be retrieved as follows.
allocation_rule$logReinforcement learning can be resumed with the following function.
allocation_rule$resume_learning(iter = 100)Multiple checkpoints are created by
learn_allocation_rule function. By default, the last
checkpoint is used to build an allocation rule. If you want to build
another allocation rule using another checkpoint, specify the directory
name created by learn_allocation_rule function as
follows.
another_allocation_rule <- AllocationRule$new(dir = "checkpoints/20241201_114609_00900")