Package ‘MIC’

February 7, 2025

Title Analysis of Antimicrobial Minimum Inhibitory Concentration Data
Version 1.0.2

Description Analyse, plot, and tabulate antimicrobial minimum inhibitory concentration (MIC) data.
Validate the results of an MIC experiment by comparing observed MIC values to
a gold standard assay, in line with standards from the International Organization for
Standardization (2021) <https:
//www.iso.org/standard/79377.html>. Perform MIC prediction from
whole genome sequence data stored in the Pathosystems Resource Integration Center (2013)
<doi:10.1093/nar/gkt1099> database or locally.

License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.3.2

Imports AMR, glue, readr, dplyr, Rcpp, data.table, Biostrings,
stringr, rlang, tidyr, future.apply, progressr, lemon, ggplot2,
forcats, purrr, tibble

Depends R (>=4.1.0)
LazyData true
LinkingTo Rcpp

Suggests testthat (>= 3.0.0), xgboost, flextable, caret, lifecycle,
future

Config/testthat/edition 3
URL https://github.com/agerada/MIC

BugReports https://github.com/agerada/MIC/issues
NeedsCompilation yes

Author Alessandro Gerada [aut, cre, cph]
(<https://orcid.org/0000-0002-6743-4271>)

Maintainer Alessandro Gerada <alessandro.gerada@liverpool.ac.uk>
Repository CRAN
Date/Publication 2025-02-07 09:40:02 UTC

https://www.iso.org/standard/79377.html
https://www.iso.org/standard/79377.html
https://doi.org/10.1093/nar/gkt1099
https://github.com/agerada/MIC
https://github.com/agerada/MIC/issues
https://orcid.org/0000-0002-6743-4271

2

Contents

Index

Contents

bias e e 3
clean_raw_miC L e e e 3
combined_file_system 4
COMPATE_IMIC .« . . v v v v e e et e e e e e e e e e e e e 5
COMPATE_SIT . .« « v v v v v e e e e e e e e e e e e e e e e e e e 6
download_patric_db 7
ecoffs . . . e e e e e 8
essential_agreement L. Lo e 8
eXample_MmiCs L. e e e e e 9
fill_dilution_levels e 10
force_Mic s, 11
genomes_to_kmer_libsvmo 12
genome_to_libsvmo 13
GELMIC o e e e e e e e 14
kmers 15
load_patric_db 17
MIC_CENSOT + v v v v v o e e e e e e e e e e e e e 17
MIC_TANZE .« .« ¢ v v v v e e e e e e e e e e e e e e e e e e e 18
mic_r_breakpoint L 19
mic_s_breakpoint L. e 20
MIC_UNCENSOT . . &« v v v e v e 20
move_flles e 22
plot.mic_validation 23
print.mic_validation oL 24
print.mic_validation_summary 25
pull_PATRIC_genomes o ittt e e 25
QC_N_TAange v i e e 26
JC_ON_LArZel o vt i e e e e e e e e e e e e e e e e e e 27
replace_multiple_slashes L o 28
reverse_complement L.l L e e e 29
split_and_combine_files L o 29
squeezed_index_to_Str L. e e 31
SQUEEZEd_IMEIS v vt e e e e e e e e e e 32
standardise_MIC e e e e e 32
summary.mic_validation e 34
table e e 34
tidy_patric_meta_data. L. e e 35
train_test_filesystem 36
unsqueezed_index_to_Str L. 38
unsqueezed_METS u e e e e e e e e 38
xgbevlowmem 39
41

bias 3

bias Calculate MIC bias

Description

Calculate the bias between two AMR::mic vectors. The bias is calculated as the percentage of test
MICs that are above the gold standard MICs minus the percentage of test MICs that are below the
gold standard MICs.

Usage

bias(gold_standard, test)

Arguments

gold_standard AMR::mic vector
test AMR::mic vector

Value

numeric value

References

International Organization for Standardization. ISO 20776-2:2021 Available from: https://www.iso.org/standard/79377.html

Examples

gold_standard <- c("<@.25", "8", "64", ">64")
teSt <_ C(”<®.25“, IIZM, “16"’ II64II)
bias(gold_standard, test)

clean_raw_mic Clean up raw MIC for use as a feature

Description

n_mn

Removes leading which can sometimes be present in raw MIC results. Also converts co-
trimoxazole to trimethprim component only.

Usage

clean_raw_mic(mic)

Arguments

mic character containing MIC/s

4 combined._file_system

Value

character of clean MIC/s

Examples

clean_raw_mic(c("==>64","0.25/8.0"))

combined_file_system Combine train and test filesystem into single folder

Description

This function reorganises files that have been split into train and test directories using train_test_filesystem()
back into a single directory. This is a convenience function to reverse the effects of train_test_filesystem().

Usage

combined_file_system(
path_to_folders,
file_ext,
train_folder = "train"”,
test_folder = "test”,
overwrite = FALSE

Arguments

path_to_folders
path containing test and train folders; files will be moved here

file_ext file extension to filter

train_folder train folder subdirectory name

test_folder test folder subdirectory name
overwrite force overwrite of files that already exist
Value

Logical vector, indicated success or failure for each file

Examples

set.seed(123)
create 10 random DNA files
tmp_dir <- tempdir()
remove any existing .fna files
file.remove(
list.files(tmp_dir, pattern = "x.fna”, full.names = TRUE)
)

compare_mic 5

for (i in 1:10) {
writeLines(paste@(">", i, "\n", paste@(sample(c("A", "T", "C", "G"),

100, replace = TRUE), collapse = "")), file.path(tmp_dir, paste@(i, ".fna")))
}

split files into train and test directories
paths <- train_test_filesystem(tmp_dir,
file_ext = "fna",
split = 0.8,
shuffle = TRUE,
overwrite = TRUE)
combine files back into a single directory
combined_file_system(tmp_dir, "fna")
list.files(tmp_dir)

compare_mic Compare and validate MIC values

Description

This function compares an vector of MIC values to another. Generally, this is in the context of
a validation experiment — an investigational assay or method (the "test") is compared to a gold
standard. The rules used by this function are in line with "ISO 20776-2:2021 Part 2: Evaluation of
performance of antimicrobial susceptibility test devices against reference broth micro-dilution."

There are two levels of detail that are provided. If only the MIC values are provided, the function
will look for essential agreement between the two sets of MIC. If the organism and antibiotic ar-
guments are provided, the function will also calculate the categorical agreement using EUCAST
breakpoints (or, if breakpoint not available and accept_ecoff = TRUE, ECOFFs).

The function returns a special dataframe of results, which is also an mic_validation object. This ob-
ject can be summarised using summary() for summary metrics, plotted using plot() for an essential
agreement confusion matrix, and tabulated using table().

Usage

compare_mic(
gold_standard,

test,
ab = NULL,
mo = NULL,

accept_ecoff = FALSE,
simplify = TRUE

Arguments

gold_standard vector of MICs to compare against.

test vector of MICs that are under investigation

6 compare_sir

ab character vector (same length as MIC) of antibiotic names (optional)
mo character vector (same length as MIC) of microorganism names (optional)
accept_ecoff if TRUE, ECOFFs will be used when no clinical breakpoints are available

simplify if TRUE, MIC values will be coerced into the closest halving dilution (e.g., 0.55
will be converted to 0.5)

Value

S3 mic_validation object

Examples

Just using MIC values only

gold_standard <- c("<@.25", "8", "64", ">64")
test <- C(”<®.25”, ”2", "16", "64")

val <- compare_mic(gold_standard, test)
summary(val)

Using MIC values and antibiotic and organism names

gold_standard <- c("<@.25", "8", "64", ">64")

test <- c("<0.25", "2", "16", "64")

ab <- c("AMK", "AMK", "AMK", "AMK")

mo <- c("B_ESCHR_COLI", "B_ESCHR_COLI", "B_ESCHR_COLI", "B_ESCHR_COLI")
val <- compare_mic(gold_standard, test, ab, mo)

"error” %in% names(val) # val now has categorical agreement

compare_sir Compare SIR results and generate categorical agreement

Description

Compare two AMR::sir vectors and generate a categorical agreement vector with the following
levels: M (major error), vM (very major error), m (minor error). The error definitions are:

1. Major error (M): The test result is resistant (R) when the gold standard is susceptible (S).

2. VM (very major error): The test result is susceptible (S) when the gold standard is resistant
(R).

3. Minor error (m): The test result is intermediate (I) when the gold standard is susceptible (S)
or resistant (R), or vice versa.

Usage

compare_sir(gold_standard, test)

Arguments

gold_standard Susceptibility results in AMR::sir format
test Susceptibility results in AMR::sir format

download_patric_db

Value

factor vector with the following levels: M, vM, m.

Examples

gold_standard <- c("S", "R", "I", "I")
gold_standard <- AMR::as.sir(gold_standard)
test <- c("S", "I", "R", "R")

test <- AMR::as.sir(test)
compare_sir(gold_standard, test)

download_patric_db Download PATRIC database

Description

Download PATRIC database

Usage

download_patric_db(save_path, ftp_path = patric_ftp_path, overwrite = FALSE)

Arguments
save_path Save path (should be .txt)
ftp_path PATRIC database FTP path to download
overwrite Force overwrite

Value

TRUE if successful, FALSE if failure.

Examples

download_patric_db(tempfile())

8 essential_agreement

ecoffs ECOFF data

Description

A dataset containing the epidemiological cut-off values (ECOFFs) for different antibiotics and mi-
croorganisms. Currently, only the ECOFF values for Escherichia coli are included.

Usage

ecoffs

Format

ecoffs:

A data frame with 85 rows and 25 columns:

organism Microorganism code in AMR::mo format
antibiotic Antibiotic code in AMR::ab format

0.002:512 Counts of isolates in each concentration "bin"
Distributions see EUCAST documentation below
Observations Number of observations

(T)ECOFF see EUCAST documentation below

Confidence interval see EUCAST documentation below

Source

EUCAST https://www.eucast.org/mic_and_zone_distributions_and_ecoffs

These data have (or this document, presentation or video has) been produced in part under ECDC
service contracts and made available by EUCAST at no cost to the user and can be accessed on the
EUCAST website www.eucast.org. The views and opinions expressed are those of EUCAST at a
given point in time. EUCAST recommendations are frequently updated and the latest versions are
available at www.eucast.org.

essential_agreement Essential agreement for MIC validation

Description

Essential agreement calculation for comparing two MIC vectors.

Usage

essential_agreement(x, y, coerce_mic = TRUE, mode = "categorical”)

https://www.eucast.org/mic_and_zone_distributions_and_ecoffs

example_mics 9

Arguments
X AMR::mic or coercible
y AMR::mic or coercible
coerce_mic convert to AMR::mic
mode Categorical or numeric
Details

Essential agreement is a central concept in the comparison of two sets of MIC values. It is most
often used when validating a new method against a gold standard. This function reliably performs
essential agreement in line with ISO 20776-2:2021. The function can be used in two modes: cat-
egorical and numeric. In categorical mode, the function will use traditional MIC concentrations
to determine the MIC (therefore it will use force_mic() to convert both x and y to a clean MIC —
see ?force_mic()). In numeric mode, the function will compare the ratio of the two MICs. In most
cases, categorical mode provides more reliable results. Values within +/- 2 dilutions are considered
to be in essential agreement.

Value

logical vector

References

International Organization for Standardization. ISO 20776-2:2021 Available from: https://www.iso.org/standard/79377.html

Examples

X <- AMR::as.mic(c("<0.25", "8", "64", ">64"))
y <= AMR::as.mic(c("<@.25", "2", "16", "64"))
essential_agreement(x, y)

TRUE FALSE FALSE TRUE

example_mics Example MIC data

Description

Example minimum inhibitory concentration validation data for three antimicrobials on Escherichia
coli strains. This data is synthetic and generated to give an example of different MIC distribution.

Usage

example_mics

10 fill_dilution_levels

Format
example_mics:
A data frame with 300 rows and 4 columns:

gs Gold standard MICs

test Test MICs

mo Microorganism code in AMR::mo format
ab Antibiotic code in AMR::ab format

Source

Synthetic data

fill_dilution_levels Fill MIC dilution levels

Description

Fill MIC dilution levels

Usage

fill_dilution_levels(x, cap_upper = TRUE, cap_lower = TRUE, as.mic = TRUE)

Arguments

X MIC vector

cap_upper If True, will the top level will be the highest MIC dilution in x

cap_lower If True, will the bottom level will be the lowest MIC dilution in x

as.mic By default, returns an ordered factor. Set as.mic = TRUE to return as AMR::mic
Value

ordered factor (or AMR::mic if as.mic = TRUE)

Examples

use in combination with droplevels to clean up levels:
X <- AMR::as.mic(c("<@.25", "8", "64", ">64"))

x <- droplevels(x)

fill_dilution_levels(x)

force_mic 11

force_mic Force MIC-like into MIC-compatible format

Description

Convert a value that is "almost" an MIC into a valid MIC value.

Usage

force_mic(
value,
levels_from_AMR = FALSE,
max_conc = 512,
min_conc = 0.002,

method = "closest”,
prefer = "max"
)
Arguments
value vector of MIC-like values (numeric or character)

levels_from_AMR
conform to AMR::as.mic levels

max_conc maximum concentration to force to

min_conc minimum concentration to force to

method method to use when forcing MICs (closest or round_up)

prefer where value is in between MIC (e.g., 24mg/L) chose the higher MIC ("max") or

lower MIC ("min"); only applies to method = "closest"

Details

Some experimental or analytical conditions measure MIC (or surrogate) in a way that does not
fully conform to traditional MIC levels (i.e., concentrations). This function allows these values to
be coerced into an MIC value that is compatible with the AMR::mic class. When using method
= "closest", the function will choose the closest MIC value to the input value (e.g., 2.45 will be
coerced to 2). When using method = "round up", the function will round up to the next highest MIC
value (e.g., 2.45 will be coerced to 4). "Round up" is technically the correct approach if the input
value was generated from an experiment that censored between concentrations (e.g., broth or agar
dilution). However, "closest" may be more appropriate in some cases.

Value

AMR::as.mic compatible character

Examples

force_mic(c("2.32", "<4.12", ">1.01"))

12 genomes_to_kmer_libsvm

genomes_to_kmer_libsvm
Convert genomes to kmers in libsvm format

Description

Raw genome data (pre- or post-assembly) is usually transformed by k-mer counting prior to ma-
chine learning (ML). XGBoost is a popular ML algorithm for this problem, due to its scalability to
high dimensional data. This function converts genomes to k-mer counts stored in XGBoost’s pre-
ferred format, libsvm. Further information on the libsvm format is available at https://xgboost.
readthedocs.io/en/stable/tutorials/input_format.html. Briefly, libsvm is effectively a
text file that stores data points as x:y pairs, where x is the feature index, and y is the feature value.
Each observation is stored on its own line, with the first column reserved for labels. Labels can be
provided later, during data import.

This function converts each individual genome to an individual libsvm text file of k-mer counts
(therefore, each .txt file will be 1 line long). This function supports parallel processing using the
by setting an appropriate future: :plan() (usually future::multisession) — each genome is
processed in parallel. To monitor progress, use the progressr package by wrapping the function
in with_progress.

Although XGBoost can load a multiple .txt (libsvm) files by providing the directory as an input, this
is generally not recommended as order of import cannot be guaranteed and probably depends on
filesystem. Instead, it is recommended that this function is combined with split_and_combine_files()
which generates a single .txt file (with the order of observations guaranteed and stored in a .csv file).

Usage

genomes_to_kmer_libsvm(
source_dir,
target_dir,
k = 3,
canonical = TRUE,
squeeze = FALSE,

ext = ".fna"
)
Arguments
source_dir directory containing genomes
target_dir target directory to store kmers in libsvm format
k k-mer length
canonical only count canonical kmers
squeeze remove non-canonical kmers

ext file extension to filter

https://xgboost.readthedocs.io/en/stable/tutorials/input_format.html
https://xgboost.readthedocs.io/en/stable/tutorials/input_format.html

genome_to_libsvm 13

Value

TRUE if successful

See Also

to convert a single genome, use genome_to_libsvm()

Examples

set.seed(123)

create 10 random DNA files

tmp_dir <- tempdir()

remove any existing .fna files

file.remove(
list.files(tmp_dir, pattern = "x.fna"”, full.names = TRUE)

)

for (i in 1:10) {

writeLines(paste@(">", i, "\n", paste@(sample(c("A", "T", "C", "G"),
100, replace = TRUE), collapse = "")), file.path(tmp_dir, paste@(i, ".fna")))
3

tmp_target_dir <- file.path(tmp_dir, "kmers")
unlink(tmp_target_dir, recursive = TRUE)

convert genomes to k-mers
future::plan(future::sequential) # use multisession for parallel processing
progressr: :with_progress(
genomes_to_kmer_libsvm(tmp_dir, tmp_target_dir, k = 3)
)

check the output
list.files(tmp_target_dir)
readLines(list.files(tmp_target_dir, full.names = TRUE)[1])

genome_to_libsvm Converts a genome to kmers stored in libsvm format on disk

Description

This function converts a single genome to a libsvm file containing kmer counts. The libsvm format
will be as follows:

label 1:count 2:count 3:count

Label is optional and defaults to 0. The kmer counts are indexed by the kmer index, which is the
lexicographically sorted index of the kmer. Libsvm is a sparse format.

14 get_mic

Usage

genome_to_libsvm(
X,
target_path,
label = as.character(c("0")),
k = 3L,
canonical = TRUE,
squeeze = FALSE

Arguments

X genome in string format

target_path path to store libsvm file (.txt)

label libsvm label
k kmer length
canonical only record canonical kmers (i.e., the lexicographically smaller of a kmer and
its reverse complement)
squeeze remove non-canonical kmers
Value

boolean indicating success

See Also

For multiple genomes in a directory, processed in parallel, see genomes_to_kmer_libsvm()

For more details on libsvm format, see https://xgboost.readthedocs.io/en/stable/tutorials/
input_format.html

Examples

temp_libsvm_path <- tempfile(fileext = ".txt")
genome_to_libsvm("ATCGCAGT", temp_libsvm_path)
readLines(temp_libsvm_path)

get_mic Get MIC meta-data from feature database

Description

This function helps extract MICs from a database of results. It is compatible with the PATRIC meta
data format when used on a tidy_patric_db object, created using tidy_patric_db().

If more than one MIC is present for a particular observation, the function can return the higher MIC
by setting prefer_high_mic = TRUE. If prefer_high_mic = FALSE, the lower MIC will be returned.

https://xgboost.readthedocs.io/en/stable/tutorials/input_format.html
https://xgboost.readthedocs.io/en/stable/tutorials/input_format.html

kmers

Usage

get_mic(

X)
ids,

ab_col,

id_col

NULL,

as_mic = TRUE,
prefer_high_mic = TRUE,
simplify = TRUE

Arguments

X
ids

ab_col
id_col

as_mic

dataframe containing meta-data
vector of IDs to get meta-data for
column name containing MIC results
column name containing IDs

return as AMR::as.mic

prefer_high_mic

where multiple MIC results per ID, prefer the higher MIC

simplify return as vector of MICs (vs dataframe)

Value

vector containing MICs, or dataframe of IDs and MICs

15

Examples
df <- data.frame(genome_id = c("a_12", "b_42", "x_21", "x_21", "r_75"),
gentamicin = c(0.25, 0.125, 32.9, 16.0, "<0.0125"))
get_mic(df,
ids = c("b_42", "x_21"),
ab_col = "gentamicin”,
id_col = "genome_id",
as_mic = FALSE,
prefer_high_mic = TRUE,
simplify = TRUE)
kmers Generates genome kmers
Description

Generates genome kmers

16

Usage

kmers(
X,
k = 3L,

kmers

simplify = FALSE,
canonical = TRUE,
squeeze = FALSE,

anchor = TRUE

’

clean_up = TRUE,
key_as_int = FALSE,
starting_index = 1L

Arguments

X
k

simplify

canonical

squeeze

anchor

clean_up

key_as_int

starting_index

Value

genome in string format
kmer length

returns a numeric vector of kmer counts, without associated string. This is useful
to save memory, but should always be used with anchor = true.

only record canonical kmers (i.e., the lexicographically smaller of a kmer and
its reverse complement)

remove non-canonical kmers

includes unobserved kmers (with counts of 0). This is useful when generating a
dense matrix where kmers of different genomes align.

only include valid bases (ACTG) in kmer counts (excludes non-coding results
such as N)

return kmer index (as "kmer_index") rather than the full kmer string. Useful for
index-coded data structures such as libsvm.

the starting index, only used if key_as_int = TRUE.

list of kmer values, either as a list of a single vector (if simplify = TRUE), or as a named list
containing "kmer_string" and "kmer_value".

Examples

kmers ("ATCGCAGT")

load_patric_db

17

load_patric_db Load PATRIC database

Description

Load PATRIC database

Usage

load_patric_db(x = patric_ftp_path)

Arguments

X Character path to local or ftp path (.txt or .rds), or data.frame object.

Value

PATRIC database (S3 class ’patric_db’)

Examples

patric_db <- load_patric_db() # will get from PATRIC ftp

make data.frame with single row
p <- data.frame(genome_id = 1,

genome_name = "E. coli”,
antibiotic = "amoxicillin",
measurement = 2.0,
measurement_unit = "mg/L",

laboratory_typing_method = "Agar dilution”,
resistant_phenotype = "R")
load_patric_db(p)

mic_censor Censor MIC values

Description

MIC datasets often arise from different laboratories or experimental conditions. In practice, this
means that there can be different levels of censoring (<= and >) within the data. This function can
be used to harmonise the dataset to a single level of censoring. The function requires a set of rules

that specify the censoring levels (see example).

Usage

mic_censor(mic, ab, mo, rules)

18

Arguments
mic
ab

mo
rules

Value

mic_range

MIC (coercible to AMR::as.mic)
antibiotic name (coercible to AMR::as.ab)
microorganism name (coercible to AMR::as.mo)

censor rules - named list of pathogen (in AMR::as.mo code) to antibiotic (in
AMR::as.ab code) to censoring rules. The censoring rules should provide a min
or max value to censor MICs to. See example for more.

censored MIC values (S3 mic class)

Examples

example_ru
"AMK" =
"CHL" =
"GEN" =
"CIP" =
"MEM" =
"AMX" =
"AMC" =
"FEP" =
"CAZ" =
"TGC" =
D)

mic_censor

les <- list("B_ESCHR_COLI" = list(
list(min = 2, max = 32),
list(min = 4, max = 64),
list(min = 1, max = 16),
list(min = 0.015, max = 4),
list(min = ©0.016, max = 16),
list(min = 2, max = 64),
list(min = 2, max = 64),
list(min = ©0.5, max = 64),
list(min = 1, max = 128),
list(min = 0.25, max = 1)

(AMR: :as.mic(512),

"AMK" |
"B_ESCHR_COLI",
example_rules) == AMR::as.mic(">32")

mic_range

Generate dilution series

Description

Generate dilution series

Usage

mic_range

Arguments

start
dilutions
min

precise

(start = 512, dilutions = Inf, min = 0.002, precise = FALSE)

starting (highest) concentration
number of dilutions
minimum (lowest) concentration

force range to be high precision (not usually desired behaviour)

mic_r_breakpoint 19

Value

Vector of numeric concentrations

Examples

mic_range(128)
mic_range(128, dilutions = 21) # same results

mic_r_breakpoint R breakpoint for MIC

Description

R breakpoint for MIC
Usage

mic_r_breakpoint(mo, ab, accept_ecoff = FALSE, ...)
Arguments

mo mo name (coerced using AMR::as.mo)

ab ab name (coerced using AMR::as.ab)

accept_ecoff if TRUE, ECOFFs will be used when no clinical breakpoints are available

additional arguments to pass to AMR::as.sir, which is used to calculate the R
breakpoint

Value

MIC value

Examples

mic_r_breakpoint("B_ESCHR_COLI", "AMK")
mic_r_breakpoint("B_ESCHR_COLI", "CHL", accept_ecoff = TRUE)

20 mic_uncensor

mic_s_breakpoint S breakpoint for MIC

Description

S breakpoint for MIC
Usage

mic_s_breakpoint(mo, ab, accept_ecoff = FALSE, ...)
Arguments

mo mo name (coerced using AMR::as.mo)

ab ab name (coerced using AMR::as.ab)

accept_ecoff if TRUE, ECOFFs will be used when no clinical breakpoints are available

additional arguments to pass to AMR::as.sir, which is used to calculate the S
breakpoint

Value

MIC value

Examples

mic_s_breakpoint("B_ESCHR_COLI", "AMK")
mic_s_breakpoint("B_ESCHR_COLI", "CHL", accept_ecoff = TRUE)

mic_uncensor Uncensor MICs

Description

Uncensor MICs

Usage

mic_uncensor(
mic,
method = "scale”,
scale = 2,
ab = NULL,
mo = NULL,
distros = NULL

mic_uncensor 21

Arguments
mic vector of MICs to uncensor; will be coerced to MIC using AMR::as.mic
method method to uncensor MICs (scale, simple, or bootstrap)
scale scalar to multiply or divide MIC by (for method = scale)
ab antibiotic name (for method = bootstrap)
mo microorganism name (for method = bootstrap)
distros dataframe of epidemiological distributions (only used, optionally, for method =
bootstrap)
Details

Censored MIC data is generally unsuitable for modelling without some conversion of censored
data. The default behaviour (method = scale) is to halve MICs under the limit of detection (<=)
and double MICs above the limit of detection (>). When used with method = simple, this function
effectively just removes the censoring symbols, e.g., <=2 becomes 2, and >64 becomes 64.

The bootstrap method is the more complex of the three available methods. It attempts to use a
second (uncensored) MIC distribution to sample values in the censored range. These values are
then used to populate and uncensor the MIC data provided as input (mic). The second (uncen-
sored) MIC distribution is ideally provided from similar experimental conditions. Alternatively,
epidemiological distributions can be used. These distributions should be provided as a dataframe
to the distros argument. The format for this dataframe is inspired by the EUCAST epidemiological
distributions, see: https://www.eucast.org/mic_and_zone_distributions_and_ecoffs. The dataframe
should contain columns for antimicrobial (converted using AMR::as.ab), organism (converted using
AMR::as.mo), and MIC concentrations. An example is provided in the ’ecoffs’ dataset available
with this pacakge. Currently, only Escherichia coli is available in this dataset. Each observation
(row) consists of the frequency a particular MIC concentration is observed in the distribution. If
such a dataframe is not provided to distros, the function will attempt to use ’ecoffs’, but remains
limited to E. coli.

Value

vector of MICs in AMR::mic format

References

https://www.eucast.org/mic_and_zone_distributions_and_ecoffs

Examples

mic_uncensor(c(">64.0", "<@.25", "8.0"), method = "scale”, scale = 2)

move_files

move_files

Move or copy files using logical vector

Description

This is simply a wrapper around file.copy/file.rename that allows for filtering by a logical vector
(move_which). This can replicate the behaviour of a predicate function (see example), and may be

easier to read.

for (i in 1:10) {

Usage
move_files(source_dir, target_dir, move_which, ext = ".txt", copy = FALSE)
Arguments
source_dir move from directory
target_dir move to directory
move_which logical vector to filter (or use TRUE to move all)
ext file extension to filter
copy copy files (rather than move)
Value
Logical vector, indicating success or failure for each file
Examples
set.seed(123)
create 10 random DNA files
tmp_dir <- tempdir()
remove any existing .fna files
file.remove(
list.files(tmp_dir, pattern = "%.fna”, full.names = TRUE)
)

writeLines(paste@(">", i, "\n", paste@(sample(c("A", "T", "C", "G"),
100, replace = TRUE), collapse = "")), file.path(tmp_dir, paste@(i, ".fna")))

}

move files with even numbers to a new directory
new_dir <- file.path(tempdir(), "even_files")
unlink(new_dir, recursive = TRUE)
move_files(tmp_dir,
new_dir,
move_which = as.integer(
tools::file_path_sans_ext(

list.files(tmp_dir, pattern = "x.

ext = "fna")
list.files(new_dir)

fna"))) %% 2 == o,

plot.mic_validation 23

plot.mic_validation Plot MIC validation results

Description

Plot MIC validation results

Usage

S3 method for class 'mic_validation
plot(
X,
match_axes = TRUE,
add_missing_dilutions = TRUE,
facet_wrap_ncol = NULL,
facet_wrap_nrow = NULL,

)

Arguments
X object generated using compare_mic
match_axes Same x and y axis

add_missing_dilutions
Axes will include dilutions that are not

facet_wrap_ncol
Facet wrap into n columns by antimicrobial (optional, only available when more
than one antimicrobial in validation)

facet_wrap_nrow
Facet wrap into n rows by antimicrobial (optional, only available when more
than one antimicrobial in validation) represented in the data, based on a series
of dilutions generated using mic_range().

additional arguments

Value

ggplot object

Examples

gold_standard <- c("<@.25", "8", "64", ">64")
teSt <_ C(”<®.25”, IIZII, 1116”, 11641‘)

val <- compare_mic(gold_standard, test)
plot(val)

works with validation that includes categorical agreement
categorical agreement is ignored

24 print.mic_validation

ab <- c("AMK", "AMK", "AMK", "AMK")

mo <- c("B_ESCHR_COLI", "B_ESCHR_COLI", "B_ESCHR_COLI", "B_ESCHR_COLI")
val <- compare_mic(gold_standard, test, ab, mo)

plot(val)

if the validation contains multiple antibiotics, i.e.,

ab <- c("CIP", "CIP", "AMK", "AMK")

val <- compare_mic(gold_standard, test, ab, mo)

the following will plot all antibiotics in a single plot (pooled results)
plot(val)

use the faceting arguments to split the plot by antibiotic

plot(val, facet_wrap_ncol = 2)

print.mic_validation Print MIC validation object

Description

Print MIC validation object

Usage

S3 method for class 'mic_validation'
print(x, ...)

Arguments

X mic_validation object

additional arguments

Value

character

Examples

gold_standard <- c("<@.25", "8", "64", ">64")
test <- c("<0@.25", "2", "16", "64")

val <- compare_mic(gold_standard, test)
print(val)

print.mic_validation_summary

25

print.mic_validation_summary
Print MIC validation summary

Description

Print MIC validation summary

Usage

S3 method for class 'mic_validation_summary'
print(x, ...)

Arguments
X mic_validation_summary object
additional arguments
Value
character
Examples

gold_standard <- c("<@.25", "8", "64", ">64")
test <- c("<0.25", "2", "16", "64")

val <- compare_mic(gold_standard, test)
print(summary(val))

pull_PATRIC_genomes Automated download of genomes from PATRIC database

Description

Automated download of genomes from PATRIC database

Usage

pull_PATRIC_genomes(
output_directory,
taxonomic_name = NULL,
database = patric_ftp_path,
filter = "MIC",
n_genomes = @

26 gc_in_range

Arguments

output_directory
local directory to save to

taxonomic_name character of taxonomic bacterial name to download

database local or ftp path to PATRIC database, or loaded database using load_patric_db()
filter "MIC" or "disk" or "all" phenotypes
n_genomes number of genomes (0 = all)

Value

The number of failed downloads (i.e., 0 if all attempted downloads were successful).

Examples

pull_PATRIC_genomes(tempdir(),
taxonomic_name = "Escherichia coli”,
filter = "MIC",
n_genomes = 10)

gc_in_range Check that MIC is within QC range

Description

Check whether MIC values are within acceptable range for quality control (QC). Every MIC ex-
periment should include a control strain with a known MIC. The results of the experiment are only
valid if the control strain MIC falls within the acceptable range. This function checks whether an
MIC result is within the acceptable range given: 1) a control strain (usually identified as an ATCC
or NCTC number), 2) an antibiotic name, and 3) a guideline (EUCAST or CLSI). The acceptable
range is defined by *QC_table’, which is a dataset which is loaded with this package.

The source of the QC values is the WHONET QC Ranges and Targets available from the ’An-
timicrobial Resistance Test Interpretation Engine’ (AMRIE) repository: https://github.com/AClark-
WHONET/AMRIE

Usage

gc_in_range(
measurement,
strain,
ab,
ignore_na = TRUE,
guideline = "EUCAST",
year = "2023"

qc_on_target 27

Arguments
measurement measured QC MIC
strain control strain identifier (usually ATCC)
ab antibiotic name (will be coerced to AMR::as.ab)
ignore_na ignores NA (returns TRUE)
guideline Guideline to use (EUCAST or CLSI)
year Guideline year (version)
Value

logical vector

References

O’Brien TF, Stelling JM. WHONET: An Information System for Monitoring Antimicrobial Resis-
tance. Emerg Infect Dis. 1995 Jun;1(2):66-66.

Examples

gc_in_range(AMR: :as.mic(@.5), 25922, "GEN") == TRUE
gc_in_range(AMR::as.mic(8.0), 25922, "GEN") == FALSE

gc_on_target Check that QC measurement is at the required target [Experimental]

Description

MIC experiments should include a control strain with a known MIC. The MIC result for the control
strain should be a particular target MIC. This function checks whether the target MIC was achieved
given: 1) a control strain (usually identified as an ATCC or NCTC number), 2) an antibiotic name,
and 3) a guideline (EUCAST or CLSI).

Since QC target values are currently not publicly available in an easy to use format, this function
takes a pragmatic approach — for most antibiotics and QC strains, the target is assumed to be the
midpoint of the acceptable range. This approximation is not necessarily equal to the QC target
reported by guideline setting bodies such as EUCAST. Therefore, this function is considered exper-
imental and should be used with caution.

This function can be used alongnside qc_in_range(), which checks whether the MIC is within the
acceptable range.

The source of the QC values is the WHONET QC Ranges and Targets available from the *An-
timicrobial Resistance Test Interpretation Engine’ (AMRIE) repository: https://github.com/AClark-
WHONET/AMRIE

28 replace_multiple_slashes

Usage

gc_on_target(
measurement,
strain,
ab,
ignore_na = TRUE,
guideline = "EUCAST",

year = "2023"
)
Arguments
measurement measured QC MIC
strain control strain identifier (usually ATCC)
ab antibiotic name (will be coerced to AMR::as.ab)
ignore_na ignores NA (returns TRUE)
guideline Guideline to use (EUCAST or CLSI)
year Guideline year (version)
Value

logical vector

References

O’Brien TF, Stelling JM. WHONET: An Information System for Monitoring Antimicrobial Resis-
tance. Emerg Infect Dis. 1995 Jun;1(2):66—66.

Examples

gc_on_target(AMR: :as.mic(@.5), 25922, "GEN") == TRUE

replace_multiple_slashes
Removes multiple slashes in a path or url

Description

Removes multiple slashes in a path or url

Usage

replace_multiple_slashes(path)

Arguments

path character vector

reverse_complement 29

Value

character vector of paths without duplicate slashes

reverse_complement Reverse complement of DNA string

Description

Reverse complement of DNA string

Usage

reverse_complement (dna)

Arguments

dna DNA string

Value

reverse complement of DNA string

Examples

reverse_complement ("ATCG")

split_and_combine_files
Create test train files from a number of files

Description

This function combines files into a train and test set, stored on disk. It can be used in combina-
tion with genomes_to_kmer_libsvm() to create a dataset that can be loaded into XGBoost (either
by first creating an xgboost::DMatrix, or by using the data argument in xgboost::xgb.train() or xg-
boost::xgb.cv()). The following three files will be created:

1. train.txt - the training data

2. test.txt - the testing data (if split < 1)

3. names.csv - a csv file containing the original filenames and their corresponding type (train or
test)

30

split_and_combine_files

The function will check if the data is already in the appropriate format and will not overwrite unless
forced using the overwrite argument.

By providing 1.0 to the split argument, the function can be used to combine files without a train-test
split. In this case, all the files will be classed as ’train’, and there will be no ’test’ data. This is
useful if one wants to perform cross-validation using xgboost::xgb.cv() or MIC::xgb.cv.lowmem().
It is also possible to combine all data into train and then perform splitting after loading into an
xgboost::DMatrix, using xgboost::slice().

Usage

split_and_combine_files(
path_to_files,
file_ext = ".txt",
split = 0.8,
train_target_path = NULL,
test_target_path = NULL,
names_backup = NULL,
shuffle = TRUE,
overwrite = FALSE

Arguments

path_to_files path containing files or vector of filepaths
file_ext file extension to filter

split train-test split

train_target_path

name of train file to save as (by default, will be train.txt in the path_to_files
directory)

test_target_path
name of test file to save as (by default, will be test.txt in the path_to_files direc-
tory)

names_backup name of file to save backup of filename metadata (by default, will be names.csv
in the path_to_files directory)

shuffle randomise prior to splitting
overwrite overwrite target files
Value

named list of paths to created train/test files, original filenames

Examples

set.seed(123)

create 10 random libsvm files
tmp_dir <- tempdir()

remove any existing .txt files

squeezed_index_to_str

file.remove(

list.files(tmp_dir, pattern = "x.txt"”, full.names = TRUE)
)

for (i in 1:10) {

each line is K: V

writeLines(paste@(i, ": ", paste@(sample(1:100, 10, replace = TRUE),
collapse = " ")), file.path(tmp_dir, paste@(i, ".txt")))
}

split files into train and test directories

paths <- split_and_combine_files(

tmp_dir,

file_ext = "txt",

split = 0.8,

train_target_path = file.path(tmp_dir, "train.txt"),
test_target_path = file.path(tmp_dir, "test.txt"),
names_backup = file.path(tmp_dir, "names.csv"),
overwrite = TRUE)

readLines(paths[["train”1])

31

squeezed_index_to_str Get str conversion of squeezed kmer using index

Description

Get str conversion of squeezed kmer using index

Usage

squeezed_index_to_str(x, k, starting_index = 1L)

Arguments
X integer vector of kmer indices
k kmer length

starting_index starting index (libsvm is usually indexed starting at 1)

Value

vector of squeezed kmer strings

Examples

squeezed_index_to_str(2, k = 3)

32

standardise_mic

squeezed_mers Generates all permutations of squeezed kmers

Description

Generates all permutations of squeezed kmers

Usage

squeezed_mers(k = 3L)

Arguments

k kmer length

Value

vector of squeezed kmers

Examples

squeezed_mers(3)

standardise_mic Standardise MIC to control strain [Experimental]

Description

MIC experiments are generally quality-controlled by including a control strain with a known MIC.
The MIC result for the control strain should be a particular target MIC, or at least within an ac-
ceptable range. This function standardises a measured MIC to the target MIC given: 1) a control
strain (usually identified as an ATCC or NCTC number), 2) an antibiotic name, and 3) a guideline
(EUCAST or CLSI). The definition of standardisation in this context is to adjust the measured MIC
based on the QC MIC. This is based on the following principles and assumption:

1. A measured MIC is composed of two components: the true MIC and a measurement error.
The measurement error is considered to be inevitable when measuring MICs, and is likely to
be further composed of variability in laboratory conditions and operator interpretation.

2. It is assumed that the MIC of the control strain in the experiment has also been affected by
this error.

The standardisation applied by this function uses the measured QC strain MIC as a reference point,
and scales the rest of the MICs to this reference. In general, this means that the MICs are doubled or
halved, depending on the result of the QC MIC. A worked example is provided below and illustrates
the transformation that this function applies.

There is no current evidence base for this approach, therefore, this function is considered experi-
mental and should be used with caution.

standardise_mic

Usage

standardise_mic(
test_measurement,
gc_measurement,
strain,
ab,
prefer_upper = FALSE,
ignore_na = TRUE,
guideline = "EUCAST",

year = "2023",
force = TRUE
)
Arguments

test_measurement

Measured MIC to standardise

gc_measurement Measured QC MIC to standardise to

strain

control strain identifier (usually ATCC)

ab antibiotic name (will be coerced to AMR::as.ab)

prefer_upper
ignore_na
guideline
year

force

Value

AMR::mic vector

Where the target MIC is a range, prefer the upper value in the range
Ignore NA (returns AMR::NA_mic_)
Guideline to use (EUCAST or CLSI)
Guideline year (version)

Force into MIC-compatible format after standardisation

33

Examples
Ref strain QC MIC for GEN is 0.5
standardise_mic(
test_measurement = c(AMR::as.mic(">8.0"), # QC = 1, censored MIC remains censored
AMR::as.mic(4.0), # QC = 0.5 which is on target, so stays same
AMR::as.mic(2), # QC = 1, so scaled down to 1
AMR::as.mic(2)), # QC = 0.25, so scaled up to 8
qgc_measurement = c(AMR::as.mic(1),

AMR::as.mic(0.5),
AMR::as.mic(1),
AMR::as.mic(0.25)),

strain = 25922,
ab = AMR::as.ab("GEN"))

34 table

summary.mic_validation
Summary of MIC validation results

Description

Summarise the results of an MIC validation generated using compare_mic().

Usage
S3 method for class 'mic_validation'
summary (object, ...)

Arguments
object S3 mic_validation object

further optional parameters

Value

S3 mic_validation_summary object

Examples

gold_standard <- c("<0.25", "8", "64", ">64")
test <- c("<0@.25", "2", "16", "64")

val <- compare_mic(gold_standard, test)
summary (val)

or, for more detailed results
as.data.frame(summary(val))

table Table

Description

Table

Usage
table(x, ...)

Default S3 method:
table(x, ...)

S3 method for class 'mic_validation'

tidy_patric_meta_data 35

table(
X,
format = "flextable”,
fill_dilutions = TRUE,
bold = TRUE,
ea_color = NULL,
gold_standard_name = "Gold Standard”,

test_name = "Test”,
)
Arguments
X mic_validation S3 object
further arguments
format simple or flextable

fill_dilutions Fill dilutions that are not present in the data in order to match the y- and x- axes
bold Bold cells where essential agreement is TRUE

ea_color Background color for essential agreement cells

gold_standard_name
Name of the gold standard to display in output

test_name Name of the test to display in output

Value

table or flextable object

Examples

gold_standard <- c("<@.25", "8", "64", ">64")
test <- c("<0.25", "2", "16", "64")

val <- compare_mic(gold_standard, test)
table(val)

tidy_patric_meta_data Tidy PATRIC data

Description

Tidy PATRIC data

36 train_test_filesystem

Usage
tidy_patric_meta_data(
X,
prefer_more_resistant = TRUE,
as_ab = TRUE,
filter_abx = NULL
)
Arguments
X PATRIC database loaded using MIC::load_patric_db

prefer_more_resistant

High MICs, narrow zones, or resistant phenotypes will be preferred where mul-
tiple reported for the same isolate

as_ab convert antibiotics to AMR::ab class (column names are antibiotic codes)

filter_abx filter antibiotics of interest, provided as a vector of antibiotics character names/codes,
or ideally, as AMR::ab classes, created using AMR::as.ab
Value

Tidy data, with antimicrobials in wide format, column names describing methodology ("mic_"
"disk_", "pheno_"). S3 class "tidy_patric_db".

s

Examples

db <- data.frame(genome_id = 1,

genome_name = "E. coli”,
antibiotic = "amoxicillin”,
measurement = 2.0,
measurement_unit = "mg/L",

laboratory_typing_method = "Agar dilution”,
resistant_phenotype = "R")

db <- load_patric_db(db)

tidy_patric_meta_data(db)

train_test_filesystem Organise files into a train-test filesystem

Description

Organise files into a train-test filesystem

train_test_filesystem 37

Usage

train_test_filesystem(
path_to_files,
file_ext,
split = 0.8,
train_folder = "train”,
test_folder = "test”,
shuffle = TRUE,
overwrite = FALSE

Arguments

path_to_files directory containing files
file_ext file extension to filter
split training data split

train_folder name of training folder (subdirectory), will be created if does not exist

test_folder name of testing folder (subdirectory), will be created if does not exist
shuffle randomise files when splitting (if FALSE, files will be sorted by filename prior
to splitting)
overwrite force overwrite of files that already exist
Value

named vector of train and test directories

Examples

set.seed(123)
create 10 random DNA files
tmp_dir <- tempdir()
remove any existing .fna files
file.remove(
list.files(tmp_dir, pattern = "x.fna", full.names = TRUE)
)

for (i in 1:10) {

writeLines(paste@(">", i, "\n", paste@(sample(c("A", "T", "C", "G"),

100, replace = TRUE), collapse = "")), file.path(tmp_dir, paste@(i, ".fna")))
3

split files into train and test directories
paths <- train_test_filesystem(tmp_dir,
file_ext = "fna",
split = 0.8,
shuffle = TRUE,
overwrite = TRUE)

38 unsqueezed_mers

list.files(paths[["train"1])
list.files(paths[["test"]1])

unsqueezed_index_to_str
Get str conversion of unsqueezed kmer using index

Description

Get str conversion of unsqueezed kmer using index

Usage

unsqueezed_index_to_str(x, k, starting_index = 1L)

Arguments
X integer vector of kmer indices
k kmer length

starting_index starting index (libsvm is usually indexed starting at 1)

Value

vector of unsqueezed kmer strings

Examples

unsqueezed_index_to_str(2, k = 3)

unsqueezed_mers Generates all permutations of unsqueezed kmers

Description

Generates all permutations of unsqueezed kmers

Usage

unsqueezed_mers(k = 3L)

Arguments

k kmer length

Value

vector of unsqueezed kmers

xgb.cv.lowmem 39

Examples

unsqueezed_mers(3)

xgb.cv.lowmem Low memory cross-validation wrapper for XGBoost

Description

This function performs similar operations to xgboost::xgb.cv, but with the operations performed in a
memory efficient manner. Unlike xgboost::xgb.cv, this version does not load all folds into memory
from the start. Rather it loads each fold into memory sequentially, and trains trains each fold using
xgboost::xgb.train. This allows larger datasets to be cross-validated.

The main disadvantage of this function is that it is not possible to perform early stopping based the
results of all folds. The function does accept an early stopping argument, but this is applied to each
fold separately. This means that different folds can (and should be expected to) train for a different
number of rounds.

This function also allows for a train-test split (as opposed to multiple) folds. This is done by
providing a value of less than 1 to nfold, or a list of 1 fold to folds. This is not possible with xg-
boost::xgb.cv, but can be desirable if there is downstream processing that depends on an xgb.cv.synchromous
object (which is the return object of both this function and xgboost::xgb.cv).

Otherwise, where possible this function tries to return the same data structure as xgboost::xgb.cv,
with the exception of callbacks (not supported as a field within the return object). To save models,
use the save_models argument, rather than the cb.cv.predict(save_models = TRUE) callback.

Usage

xgb.cv.lowmem(
params = list(),
data,
nrounds,
nfold,
label = NULL,
missing = NA,
prediction = FALSE,
metrics = list(),
obj = NULL,
feval = NULL,
stratified = TRUE,
folds = NULL,
train_folds = NULL,
verbose = 1,
print_every_n = 1L,
early_stopping_rounds = NULL,
maximize = NULL,
save_models = FALSE,

Arguments

params
data
nrounds
nfold

label
missing
prediction
metrics

obj

feval
stratified
folds
train_folds

verbose

print_every_n

parameters for xgboost
DMatrix or matrix

number of training rounds

number of folds, or if < 1 then the proportion will be used as the training split in

a train-test split

data labels (alternatively provide with DMatrix)
handling of missing data (see xgb.cv)
return predictions

evaluation metrics

custom objective function

custom evaluation function

whether to use stratified folds
custom folds

custom train folds

verbosity level

print every n iterations

early_stopping_rounds

maximize

save_models

Value

early stopping rounds (applied to each fold)
whether to maximize the evaluation metric
whether to save the models

additional arguments passed to xgb.train

xgb.cv.synchronous object

Examples

train <- list(data = matrix(rnorm(20), ncol = 2),

dtrain <- xgboost::

label = rbinom(10, 1, 0.5))
xgb.DMatrix(train$data, label = train$label, nthread = 1)

cv <- xgb.cv.lowmem(data = dtrain,

cv

params = list(objective = "binary:logistic"),
nrounds = 2,

nfold = 3,

prediction = TRUE,

nthread = 1)

xgb.cv.owmem

Index

x datasets
ecoffs, 8
example_mics, 9

bias, 3

clean_raw_mic, 3
combined_file_system, 4
compare_mic, 5
compare_sir, 6

download_patric_db, 7

ecoffs, 8
essential_agreement, 8
example_mics, 9

fill_dilution_levels, 10
force_mic, 11

genome_to_libsvm, 13
genome_to_libsvm(), 13
genomes_to_kmer_libsvm, 12
genomes_to_kmer_libsvm(), 14
get_mic, 14

kmers, 15
load_patric_db, 17

mic_censor, 17
mic_r_breakpoint, 19
mic_range, 18
mic_s_breakpoint, 20
mic_uncensor, 20
move_files, 22

plot.mic_validation, 23
print.mic_validation, 24

print.mic_validation_summary, 25

pull_PATRIC_genomes, 25

gc_in_range, 26
qc_on_target, 27

replace_multiple_slashes, 28
reverse_complement, 29

split_and_combine_files, 29
split_and_combine_files(), 12
squeezed_index_to_str, 31
squeezed_mers, 32
standardise_mic, 32
summary.mic_validation, 34

table, 34
tidy_patric_meta_data, 35
train_test_filesystem, 36

unsqueezed_index_to_str, 38
unsqueezed_mers, 38

with_progress, 12

xgb.cv.lowmem, 39

	bias
	clean_raw_mic
	combined_file_system
	compare_mic
	compare_sir
	download_patric_db
	ecoffs
	essential_agreement
	example_mics
	fill_dilution_levels
	force_mic
	genomes_to_kmer_libsvm
	genome_to_libsvm
	get_mic
	kmers
	load_patric_db
	mic_censor
	mic_range
	mic_r_breakpoint
	mic_s_breakpoint
	mic_uncensor
	move_files
	plot.mic_validation
	print.mic_validation
	print.mic_validation_summary
	pull_PATRIC_genomes
	qc_in_range
	qc_on_target
	replace_multiple_slashes
	reverse_complement
	split_and_combine_files
	squeezed_index_to_str
	squeezed_mers
	standardise_mic
	summary.mic_validation
	table
	tidy_patric_meta_data
	train_test_filesystem
	unsqueezed_index_to_str
	unsqueezed_mers
	xgb.cv.lowmem
	Index

