| Title: | General Regression Neural Networks Package | 
| Version: | 0.1.0 | 
| Description: | This General Regression Neural Networks Package uses various distance functions. It was motivated by Specht (1991, ISBN:1045-9227), and updated from previous published paper Li et al. (2016) <doi:10.1016/j.palaeo.2015.11.005>. This package includes various functions, although "euclidean" distance is used traditionally. | 
| License: | GPL (≥ 3) | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| RoxygenNote: | 7.1.1 | 
| Imports: | cvTools, rdist, scales, stats, vegan | 
| Depends: | R (≥ 3.5.0) | 
| Suggests: | rmarkdown, knitr, testthat (≥ 3.0.0) | 
| Config/testthat/edition: | 3 | 
| VignetteBuilder: | knitr | 
| NeedsCompilation: | no | 
| Packaged: | 2021-09-06 09:43:08 UTC; paleowind | 
| Author: | Shufeng LI | 
| Maintainer: | Shufeng LI <lisf@xtbg.org.cn> | 
| Repository: | CRAN | 
| Date/Publication: | 2021-09-08 09:30:04 UTC | 
Find best spread
Description
Find best spread
Usage
findSpread(p_train, v_train, k, fun, scale = TRUE)
Arguments
| p_train | The dataframe of training predictor dataset | 
| v_train | The dataframe of training response variables | 
| k | The numeric number of k folds | 
| fun | The distance function | 
| scale | The logic statements (TRUE/FALSE) | 
Value
Best spread
Examples
data("met")
data("physg")
## Not run: best.spread<-findSpread(physg,met,10,"bray",scale=TRUE)
find best spreads using Rdist
Description
find best spreads using Rdist
Usage
findSpreadRdist(x, y, k, fun, scale = TRUE)
Arguments
| x | The dataframe of training predictor dataset | 
| y | The dataframe of training response variables | 
| k | The numeric number of k folds | 
| fun | The distance function | 
| scale | The logic statements (TRUE/FALSE) | 
Value
The vector of best spreads
Find best spread using vegan function
Description
Find best spread using vegan function
Usage
findSpreadVegan(x, y, k, fun, scale = TRUE)
Arguments
| x | The dataframe of training predictor dataset | 
| y | The dataframe of training response variables | 
| k | The numeric number of k folds | 
| fun | The distance function | 
| scale | The logic statements (TRUE/FALSE) | 
Value
The vector of best spreads
General Regression Neural Networks (GRNNs)
Description
This GRNNs uses various distance functions including: "euclidean", "minkowski", "manhattan", "maximum", "canberra", "angular", "correlation", "absolute_correlation", "hamming", "jaccard","bray", "kulczynski", "gower", "altGower", "morisita", "horn", "mountford", "raup", "binomial", "chao", "cao","mahalanobis".
Usage
grnn(p_input, p_train, v_train, fun = "euclidean", best.spread, scale = TRUE)
Arguments
| p_input | The dataframe of input predictors | 
| p_train | The dataframe of training predictor dataset | 
| v_train | The dataframe of training response variables | 
| fun | The distance function | 
| best.spread | The vector of best spreads | 
| scale | The logic statements (TRUE/FALSE) | 
Value
The predictions
Examples
data("met")
data("physg")
best.spread<-c(0.33,0.33,0.31,0.34,0.35,0.35,0.32,0.31,0.29,0.35,0.35)
predict<-physg[1,]
physg.train<-physg[-1,]
met.train<-met[-1,]
prediction<-grnn(predict,physg.train,met.train,fun="euclidean",best.spread,scale=TRUE)
grnn distance
Description
grnn distance
Usage
grnn.distance(x, y, fun)
Arguments
| x | The dataframe of training predictor dataset | 
| y | The dataframe of training response variables | 
| fun | The distance function | 
Value
The matrix of distance between a and b
Examples
data("physg")
physg.train<-physg[1:10,]
physg.test<-physg[11:30,]
distance<-grnn.distance(physg.test,physg.train,"bray")
General Regression Neural Networks (GRNNs)
Description
General Regression Neural Networks (GRNNs)
Usage
grnn.kfold(x, y, k, fun, scale = TRUE)
Arguments
| x | The dataframe of training predictor dataset | 
| y | The dataframe of training response variables | 
| k | The numeric number of k folds | 
| fun | The distance function | 
| scale | The logic statements (TRUE/FALSE) | 
Value
rmse,stdae,stdev,mae,r,pvalue,best spread
Examples
data("met")
data("physg")
results_kfold<-grnn.kfold(physg,met,10,"euclidean",scale=TRUE)
meteorological dataset
Description
Data from a global collection by Robert A. Spicer. It include 11 climate variables from 378 sites.
Usage
met
Format
A data frame with 378 rows and 11 variables:
- MAT
- double COLUMN_DESCRIPTION 
- WMMT
- double COLUMN_DESCRIPTION 
- CMMT
- double COLUMN_DESCRIPTION 
- GROWSEAS
- double COLUMN_DESCRIPTION 
- GSP
- double COLUMN_DESCRIPTION 
- MMGSP
- double COLUMN_DESCRIPTION 
- Three_WET
- double COLUMN_DESCRIPTION 
- Three_DRY
- double COLUMN_DESCRIPTION 
- RH
- double COLUMN_DESCRIPTION 
- SH
- double COLUMN_DESCRIPTION 
- ENTHAL
- double COLUMN_DESCRIPTION 
Details
DETAILS
physiognomy dataset
Description
Data from a global collection by Robert A. Spicer. It include 31 leaf physiognomies variables from 378 sites.
Usage
physg
Format
A data frame with 378 rows and 31 variables:
- Lobed
- double COLUMN_DESCRIPTION 
- No.Teeth
- double COLUMN_DESCRIPTION 
- Regular.teeth
- double COLUMN_DESCRIPTION 
- Close.teeth
- double COLUMN_DESCRIPTION 
- Round.teeth
- double COLUMN_DESCRIPTION 
- Acute.teeth
- double COLUMN_DESCRIPTION 
- Compound.teeth
- double COLUMN_DESCRIPTION 
- Nanophyll
- double COLUMN_DESCRIPTION 
- Leptophyll.1
- double COLUMN_DESCRIPTION 
- Leptophyll.2
- double COLUMN_DESCRIPTION 
- Microphyll.1
- double COLUMN_DESCRIPTION 
- Microphyll.2
- double COLUMN_DESCRIPTION 
- Microphyll.3
- double COLUMN_DESCRIPTION 
- Mesophyll.1
- double COLUMN_DESCRIPTION 
- Mesophyll.2
- double COLUMN_DESCRIPTION 
- Mesophyll.3
- double COLUMN_DESCRIPTION 
- Emarginate.apex
- double COLUMN_DESCRIPTION 
- Round.apex
- double COLUMN_DESCRIPTION 
- Acute.apex
- double COLUMN_DESCRIPTION 
- Attenuate.apex
- double COLUMN_DESCRIPTION 
- Cordate.base
- double COLUMN_DESCRIPTION 
- Round.base
- double COLUMN_DESCRIPTION 
- Acute.base
- double COLUMN_DESCRIPTION 
- L.W..1.1
- double COLUMN_DESCRIPTION 
- L.W.1.2.1
- double COLUMN_DESCRIPTION 
- L.W.2.3.1
- double COLUMN_DESCRIPTION 
- L.W.3.4.1
- double COLUMN_DESCRIPTION 
- L.W..4.1
- double COLUMN_DESCRIPTION 
- Obovate
- double COLUMN_DESCRIPTION 
- Elliptic
- double COLUMN_DESCRIPTION 
- Ovate
- double COLUMN_DESCRIPTION 
Details
DETAILS
distance using vegdist
Description
distance using vegdist
Usage
veg.distance(a, b, fun = "bray")
Arguments
| a | The dataframe of training predictor dataset | 
| b | The dataframe of validation predictor dataset | 
| fun | The distance function | 
Value
The matrix of distance between a and b
Examples
data("physg")
physg.train<-physg[1:10,]
physg.test<-physg[11:30,]
distance<-veg.distance(physg.test,physg.train,"bray")