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Abstract

In the context of macroeconomic/financial time series, the FARS package provides a
comprehensive framework in R for the construction of conditional densities of the variable
of interest based on the factor-augmented quantile regressions (FA-QRs) methodology,
with the factors extracted from multi-level dynamic factor models (ML-DFMs) with po-
tential overlapping group-specific factors. Furthermore, the package also allows the con-
struction of measures of risk as well as modeling and designing economic scenarios based
on the conditional densities. In particular, the package enables users to: (i) extract global
and group-specific factors using a flexible multi-level factor structure; (ii) compute asymp-
totically valid confidence regions for the estimated factors, accounting for uncertainty in
the factor loadings; (iii) obtain estimates of the parameters of the FA-QRs together with
their standard deviations; (iv) recover full predictive conditional densities from estimated
quantiles; (v) obtain risk measures based on extreme quantiles of the conditional densities;
and (vi) estimate the conditional density and the corresponding extreme quantiles when
the factors are stressed.

Keywords: Multi-level dynamic factor model, Quantile regression, Scenario analysis, R.

1. Introduction

In the context of macroeconomic/financial time series, there is a growing interest in the devel-
opment of new econometric tools to obtain predictions of the probability densities of specific
key variables; see, for example, Granger and Pesaran (2000a) and Granger and Pesaran
(2000b), who argue that point forecasts are not sufficient from the perspective of a properly
informed decision-maker. In addition to being of interest in themselves, these densities can
also serve to obtain measures of macroeconomic vulnerability, which are crucial for the design
of resilience policies; see, for example, Delle Monache, De Polis, and Petrella (2024). Fur-
thermore, econometricians, policy makers, and financial analysts are also interested in the
construction of realistic scenarios for the distribution of key variables that can help to further
understand the resilience of economic systems by providing early warning signals of what to
expect should such conditions materialize in adverse outlooks; see, for example, Gonzélez-
Rivera, Rodriguez-Caballero, and Ruiz (2024) and Adrian, Giannone, Lucciani, and West
(2024).

To start with, estimation of the conditional density of interest is often based on assuming that
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underlying economic and /or financial latent factors drive it. As proposed by Bai and Ng (2008)
and Ando and Tsay (2011), and popularized by Adrian, Boyarchenko, and Giannone (2019),
the quantiles of the distribution of the target variable can be estimated by fitting factor-
augmented quantile regressions (FA-QRs) with underlying latent factors, which summarize
economic and/or financial activity, as regressors. The FA-QR model allows for different
impacts of underlying factors on different quantiles of the distribution of the variable of
interest, and consequently, for potential asymmetries in the downside and upside risks. After
estimating the quantiles, and following Azzalini and Capitanio (2003), the corresponding h-
step-ahead conditional density is obtained by fitting a skew-t distribution to them. The skew-t
distribution has been shown to be flexible enough to provide an appropriate approximation
to the conditional density of a large number of economic variables; see Mitchell, Poon, and
Zhu (2024) for alternative estimators of densities, which are shown to outperform the popular
skew-t distribution in the unlikely case of multimodal distributions. The estimated conditional
density delivers any quantile of interest, and, in particular, extreme quantiles, which are often
used as measures of vulnerability as, for example, the Growth at Risk (GaR) proposed by
Adrian et al. (2019), or the Inflation at Risk (IaR) as in Lopez-Salido and Loria (2024).

The factors needed as regressors for FA-QRs can be extracted from a dynamic factor model
(DFM), with the preferred estimation method being Principal Components (PC); see, for
example, Bai (2003) and Bai and Ng (2013) for technical details.! Over the last few decades,
when dealing with large systems of economic variables, it is not unusual to empirically observe
that some of the latent factors, which summarize the common movements in the system, only
load on particular groups of variables. This block structure may represent economic, geo-
graphical, cultural, or other characteristics. In this context, PC may face difficulties. Alter-
natively, factors can be extracted from Multi-level Dynamic Factor models (ML-DFMs) with
the matrix of factor loadings subjected to the adequate blocks of zero restrictions. The factor
structure of the ML-DFM allows for pervasive (or global) factors that are common across all
variables in the system, as well as group-specific factors associated with one or more blocks of
variables. The ML-DFM can incorporate non-overlapping or overlapping blocks of variables.
The factors of ML-DFMs can be extracted using the sequential Least Squares (LS) estimator
proposed by Breitung and Eickmeier (2016) for non-overlapping factors and generalized by
Rodriguez-Caballero and Caporin (2019) to overlapping factors. It is also important to note
that, when the extracted factors are used as regressors of predictive regressions, obtaining
measures of their uncertainty becomes relevant; see, for example, Amburgey and McCracken
(2022) and Lewis, Mertens, Stock, and Trivedi (2022). The asymptotic distribution of the
factors extracted by sequential LS is established by Choi, Kim, Kim, and Kwark (2018) for
DFMs without overlapping factors and by Lu, Jin, and Su (2025) for overlapping factors.

Finally, in order to generate stressed scenarios (or stressed factors) for the conditional densi-
ties, the methodology proposed by Gonzalez-Rivera, Maldonado, and Ruiz (2019) can be used.
Under unexpected and rare circumstances, the factors driving the distribution of the vari-
able of interest are under stress, and thus deviate substantially from their averages. Stressed
factors are probabilistically derived based on their multidimensional distribution, focusing on
the observations located on its extreme autocontours.

This paper presents the FARS package, which provides a comprehensive framework in R

'Note that on top of being used as predictors of FA-QRs, there are many other applications in which the
factors can be of interest in themselves as, for example, when using them to construct economic/financial
indexes or as predictors of diffusion indexes; see the survey on DFMs by Stock and Watson (2011).
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for modeling and forecasting conditional densities based on ML-DFMs and FA-QRs.? The
package enables users to:

1. Use sequential-LS to extract (pervasive, semipervasive, and block-specific) factors based
on a flexible specification of the ML-DFM allowing for potential overlapping factors. To
the best of our knowledge, there are no alternative published R packages that do this
task. The only package available in R designed to extract factors in ML-DFMs with
overlapping factors is GCCfactor by Lin and Shin (2023), which supports model selection
and estimation in the context of a Generalized Canonical Correlation (GCC) estimator,
which is closely related to sequential-LS; see Lin and Shin (2022) for a description of
the GCC estimator.?

2. Compute asymptotically valid confidence regions for the factors extracted using se-
quential LS, accounting for uncertainty in the factor loadings, and for potential cross-
correlations of the idiosyncratic components. As far as we are concerned, the only
software in R that allows inference on factors is that mentioned above by Lin and Shin
(2023). However, note that the confidence regions obtained in the latter package are
based on bootstrap instead of being asymptotic.

3. Estimate the parameters of the FA-QR models and obtain their standard deviations.
Recover full predictive conditional densities from these estimated quantiles. Obtain risk
measures such as GaR and IaR. To our knowledge, only Lajaunie, Flament, Hurlin, and
Kazemi (2025) provides unpublished software to estimate factor-augmented quantile
regressions and the corresponding densities.?

4. Obtain scenarios for the conditional density and associated risk measures when the
factors are stressed.

The functionalities of the FARS package are illustrated by extracting the underlying factors of
headline inflation observed in a large number of countries in the euro area (EA). We also show
how to use the extracted factors to estimate the conditional density of aggregate inflation in a
given country and the corresponding risk of large inflation, both when the economy is under
business-as-usual conditions and when it is under stress. A second illustration of the FARS
package considers building scenarios for the density of economic growth in the United States
(US), as in Gonzalez-Rivera et al. (2024).

2Version 0.6.0 of the FARS package is available in CRAN: https://CRAN.R-project.org/package=FARS.

3Some alternative implementations of DFMs (but not multilevel) are available in the R programming lan-
guage, although it is not published. The sparseDFM package implements popular estimation methods for
DFMs, including the recent Sparse DFM approach by Mosley, Chan, and Gibberd (2024); see Mosley, Chan,
and Gibberd (2023). The MARSS, KFAS packages provide a flexible framework for modeling DFMs within
state-space structures (Holmes, Ward, Scheuerell, and Wills (2023) and Helske (2017)). Furthermore, the dfms
package offers a broad suite of DFM estimation techniques under the assumption of idiosyncratic components
independently and identically distributed (i.i.d.) (Krantz, Bagdziunas, Tikka, and Holmes 2025). Also, there
is commercial software that can be used to extract factors from DFMs; see, for example, Solberger and Spanger
(2020) for the estimation of the DFM in the context of state-space models.

“There is available R software for quantile regressions (including linear, nonlinear, censored, locally poly-
nomial and additive quantile regressions but not factor-augmented regressions) (Koenker 2025), or for factor-
augmented regressions but without being regressions for the quantiles (Mevik and Wehrens 2007). Note that
the former package has not been published.
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The rest of this paper is organized as follows. The methodology is briefly described in Section
2. Section 3 describes the code. Section 4 is devoted to illustrating the capabilities of the FARS
package with two empirical applications, namely, factor extraction and density estimation
of aggregate inflation in the EA, and estimating (business-as-usual and stressed) conditional
densities of economic growth in the US as a function of underlying domestic and international
factors. Finally, Section 5 concludes with a summary.

2. Methodology

In this section, we provide a brief description of the methodology for extracting underlying
factors and obtaining conditional density forecasts of the target variable under standard eco-
nomic dynamics and stressed scenarios of the underlying factors. First, we discuss the factor
structures involved in the DFMs and ML-DFMs (with and without overlapping blocks), and
describe the asymptotic distribution of the PC estimated factors, assuming that idiosyncratic
components are either cross-sectionally uncorrelated or weakly correlated. Second, we de-
scribe how to obtain forecasts of the density of the target variable under both stressed and
non-stressed scenarios using FA-QRs.

2.1. Dynamic Factor Model (DFM)

The DFM has been extensively studied in the literature to reduce the dimensionality of large
sets of variables by assuming that they can be represented by a relatively small number of
common underlying factors; see, for example, Stock and Watson (2002a,b), Bai (2003), and
Bai and Ng (2013). Consider X; = (214, ...,2n¢)’, the N x 1 vector of weakly stationary
variables observed at time t = 1,...,T. The DFM is given by

Xt = PF; + ¢, (1)

where P = (p},...,ply) is the N x r matrix of factor loadings, F} = (Fi,...,Fy) is an
r x 1 vector of weakly stationary latent factors, and e = (€, ..., ent)" is the N X 1 vector of
idiosyncratic components, which are assumed to be weakly stationary and cross-sectionally
weakly correlated, and uncorrelated with the common factors F;. Finally, the number of
factors, r, is known.

In model (1), the loadings and factors cannot be separately identified. They can only be
estimated consistently up to a rotation of the factor space. Consequently, the standard
identification restrictions often assumed in the literature are that %F ' = I, and that %P’ P
is a diagonal matrix with distinct elements on the main diagonal, ordered from largest to
smallest. Under these restrictions, estimated factors are identified up to a sign transformation;
see Bai and Ng (2013) for more details about the identification of DFMs in the context of PC
estimation.

In practice, factors are often estimated using PC. Let X = (X3,...,X7) denote the T'x N
matrix of observed data. The PC-estimated factors, Ft, are obtained as v/T times the eigen-
vectors associated with the r highest eigenvalues of the matrix X X', ordered in decreasing
magnitude. The corresponding loading matrix is then estimated by P’ = %F 'X.

2.2. Multi-level Dynamic Factor Model

In many economic/financial applications, the variables in X are naturally grouped into blocks,
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such as countries, geographical regions, or economic sectors. In some cases, not all variables
in X; load onto all factors in the DFM, which implies the presence of zeros in the matrix of
loadings, P. The standard PC approach is suboptimal in this context, as it neglects the block
structure. Consequently, when the block structure is known, a more appropriate approach
is to extract the factors from a ML-DFM, where the relevant zero restrictions are imposed
directly on P. In what follows, we present two alternative specifications of the ML-DFM,
depending on whether the blocks of variables overlap.

ML-DFM without overlapping blocks
Breitung and Eickmeier (2016) propose the following ML-DFM with non-overlapping blocks

Gy
A 0 . 0
X1t Ha A Fiy €1t
Ho 0 AQ 0
| = B+ | 1 |, (2)
D : 0 -0 . .
Kt pr 0 0 ... Ag| | K.t
Fry

where, for £ = 1,..., K, X} is the Nj x 1 vector of variables within block &, such that
the cross-sectional dimension of X; = (Xi, ...,XK,t)' is N = fo:l Nj. Furthermore, G} =
(Git,-.-,Gret) is the rg x 1 vector of pervasive factors that load on all variables in the
system, while Fi,; = (Fi4,...,F,, +)" is the 1, x 1 vector of block-specific factors that load
only within the block X} ;. The matrix of loadings and the idiosyncratic noise are defined
conformably; see Breitung and Eickmeier (2016) and Choi et al. (2018) for further technical

details and identification conditions.

ML-DFM with overlapping blocks

For clarity of exposition of the ML-DFM with overlapping blocks, consider the case with
K = 3; see Rodriguez-Caballero and Caporin (2019) for a detailed description.® Assume

the presence of pervasive factors, G, and block-specific factors, Fj; = (F{’t,FQ/J,F?:,t) ,
as described earlier. In addition, a general factor structure may also include pairwise (or

semipervasive) factors, Fjj; = (F1/27t, F1/37t, F2/37t) . For instance, the factor Fia; loads on the
variables in blocks X7 ; and Xy ;; that is, the semipervasive factor captures the commonality
only between blocks 1 and 2 without any dependence on block 3. This type of factor structure
is illustrated in Figure 1, which represents the relationships between pervasive, semipervasive,
and block-specific factors, when K = 3.

The ML-DFM with overlapping blocks is given by
Tt = MGt + Kl Frje + N iFet + €rit,

where k = 1,2, 3 indicates the block, index ¢ = 1,..., Ny denotes the ¢'th cross-section unit
of block k, t = 1,...,T is the period of time, and kj means interaction between blocks
kand j € (1,2,3) with k # j. pgi, k), and Ag; are the rg,rp,;, and rp- dimensional

5The FARS package supports K > 3 blocks, including triple-wise (and higher-order) interactions. However,
the computational burden naturally increases when the number of blocks and/or the order of interactions
increases.
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vectors of factor loadings. The number of pervasive, pairwise, and block-specific factors can
naturally vary in each block k. The idiosyncratic term denoted by ey, ;; satisfies the standard
assumptions of the DFM in (1).

The vector representation of the three-block ML-DFM with overlapping blocks is given by

X1,4 B K2, Kiz; 0 A 0 0 |Figy €1,
Xot| = |y Kiz, 0 Koz, 0 Ao O [Foge| + €24 - (3)
X3¢ s 0 Kiz, Koz, 0 0 As| | Fig €31

Note that the total number of unobserved common factors involved in (3) is rg + rp, +
rp, +Try +Tr +rp, +re. Hallin and Liska (2011) and Ergemen and Rodriguez-Caballero
(2023) propose a simple methodology based on the inclusion-exclusion principle of set theory
to determine the number of pervasive, semipervasive and block-specific factors. However, the
FARS package assumes that this number is known.

Figure 1: Factor structure of the ML-DFM with three different overlapping blocks of data.

Sequential least squares estimation

Estimation of the ML-DFM is based on the sequential approach proposed by Breitung and
Eickmeier (2016) in which the main goal is to minimize the following residual sums of squares
(RSS) function:

A A A~ ~\/ A A
S(F, P) =Y (X - PE) (X, - PFy), (4)
t=1
by a sequence of LS regressions. The algorithm can be executed for the general case of K
blocks with overlapping factors as follows:

1. Obtain initial values of the factors as follows:

(a) Employ canonical correlation analysis (CCA) on X} + to obtain initial estimates of
the global factor, GoO) — (@50)7 égo), o @(TO))'.
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(b) Filter out the global component by regressing Xy, ; on GO and get the correspond-

ing residuals, X tho), from each of the K separate regressions.

(¢c) Employ CCA on X Z(O) to obtain the following lower-level factors, selecting the
corresponding blocks.

(d) Regress X Z(to ) on the respective lower-level factors involved and get the residuals.

(e) Steps ¢) and d) are executed sequentially until the initial estimates of the pair-
wise block factors are obtained. Denote by X Z’;go) the residuals after filtering the

pairwise factors of each block k.
(f) Run PC on XZ:;(O) to get the block-specific factors FO) = ( Al(g), Fég), e Fég)),.

(g) The initial matrix of loadings, PO s estimated through time-series regressions
of X, on the global factors, X ;,t on the semi-pervasive factors, and X ,’;*t on the
non-pervasive factors.

2. Updated estimates for the unobserved factors, F (1) are obtained by LS regression of
. . s AN =L Ay
Xp on PO) a5 follows £V = (P(O) P(O)) PO Xt

3. The updated factors F(!) are used to obtain the associated loadings matrix, PW asin
Step 1.

4. Steps 2 and 3 are repeated until the RSS converges to a minimum, from which F* and

A

P* are obtained.

The algorithm above does not impose any normalization. Henceforth, although the vector
of common components P*F} is consistently estimated, the factors and loading matrices are
not identified separately. Consequently, Breitung and Eickmeier (2016) adapt the standard
normalization in PC analysis to separately identify P* and F}*. First, the different levels
of estimated factors (pervasive, pairwise, and block-specific) are orthogonalized with respect
to each other. A practical implementation consists of recursively regressing each factor on
the previously ordered ones and using the residuals as updated orthogonalized estimates.
For example, block-specific factors can be regressed on pairwise factors, and the resulting
residuals can then be regressed on pervasive factors. Since each regression corresponds to a
projection operation, this sequential procedure is equivalent to applying the Gram-Schmidt
orthogonalization process to the vector of estimated factors, Ft*, following a predetermined
ordering.® Finally, the normalized pervasive factors are obtained as the main rg components
of the estimated common components. These are derived from the nonzero eigenvalues and
the corresponding eigenvectors of the matrix M (% pra ét@;) M', where M represents the
matrix of loadings corresponding to global factors. The same normalization procedure can be
applied to the semipervasive and block-specific factors, using the sample covariance matrices
of their respective common components.

5This sequential orthogonalization procedure, though operationally implemented through regressions, re-
flects the structure of the Gram-Schmidt process and leverages the projection logic underpinning the famous
Frisch—-Waugh—Lovell (FWL) theorem in regression analysis. Although we do not estimate coefficients, the
residuals obtained by regressing one factor level on another correspond to their orthogonal components, as in
the FWL decomposition.
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In step 1 of the algorithm, initialization of P* and F}* is carried out using CCA. Alterna-
tively, the FARS package provides the alternative of using PC. Although both approaches
produce approximately the same estimated common components p*Ft*, the convergence of
CCA is typically faster, requiring fewer iterations to minimize RSS. However, when the factor
structure is highly complex, initializing with PC tends to be computationally more efficient;
see also Breitung and Eickmeier (2016) for the comparison of the small sample properties of
the sequential LS estimator initialized with CCA and PC for the two-level DFM.

2.3. Asymptotic distribution of factors

The construction of probabilistic scenarios for the unobserved factors requires knowledge of
their joint distribution. The asymptotic distribution of PC factors obtained from the DFM

in (1) is derived by Bai (2003). If # = I, and g — 0 when N, T — oo, the asymptotic
distribution of }?’t, at each moment, ¢, is given by

VN (Fi = F) 5 N (0,55'Ti55), (5)

where Yp = limy_y00 LNP and I'; = limpy_eo Zfil Ejvzl pip;»E(Eitsjt) with p; and ¢;; being
defined as in the DFM in (1). The finite sample approximation of the asymptotic covariance
matrix of F; can be estimated as follows:

A a1 A Aoay =1
PR\'D, (PP
MSEt—<N> ]\;<N> , (6)

where f‘t is a consistent estimator for I';. Under the assumption of cross-sectionally uncorre-
lated idiosyncratic components, Bai and Ng (2006) propose the following estimator:

N

_ 1 &

TP = < Do pibich, (7)
=1

where &;; = x;s — ﬁ;ﬁt are the residuals from the DFM model.

In many empirical settings, assuming that the idiosyncratic covariance matrix Y. is diagonal
imposes a stringent restriction that may not hold in practice. Therefore, alternatively, we
relax this assumption allowing the idiosyncratic components to be weakly cross-sectionally
correlated. Under these circumstances, I';y can be consistently estimated as proposed by
Fresoli, Poncela, and Ruiz (2024) by using adaptive thresholding of the sample covariances of
the idiosyncratic residuals, 6;;, as follows:

<rpR_ 1 v 1 &

== ZZﬁiﬁéf > uid (| 645 1> cij) (8)
i=1j=1 t=1

where I(-) is the indicator function that takes value one when the argument is true and
_ 1/2 _

zero otherwise, and ¢;; = dwnT [Var [éitéjt]} , with Var ;6] = %Zthl 6t — 61’3‘]2,

WNT = \/iﬁ + h)g}N), and § chosen as proposed by Qiu and Liyanage (2019). It is important

to note that the estimator of I'; in (8) requires stationarity and, consequently, is constant
over time.
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Regardless of whether T'; is obtained from (7) or (8), the estimated asymptotic covariance
matrix in (6) does not account for the uncertainty arising from the estimation of the loading
matrix. In this light, Maldonado and Ruiz (2021) propose a correction of the asymptotic
MSE based on subsampling in the cross-sectional space subsets of series of size N* < N,
with each series in the subsample containing all temporal observations. For each subsample,
the loadings and factors are estimated by PC, obtaining Ft*(s) and p*(s), for s = 1,..., 5.
The corrected finite sample approximation of the asymptotic MSE of F} can be estimated as
follows:

* 1 p/ﬁ _1A p/p ! N* s A*(s) A A*(s) A /
MsEt=N<N> rt<N> +NS§1((Ft - &) (£ —Ft)). 9)

Based on the asymptotic normality in (5), Maldonado and Ruiz (2021) construct confidence
ellipsoids for the estimated factors with coverage probability 100 x a% as follows:

g(Fy,0) ={F, e R"|(F, — F)MSE ' (F, — F}) < X2y }» (10)

where XE( o) is the a-quantile of the y? distribution with r degrees of freedom, with r being
the number of factors. Each point on the surface of the ellipsoid represents a possible joint
realization of all factors in the DFM. These boundary points correspond to extreme, yet
plausible, stress conditions.

2.4. Density Forecasts Under Stressed and Non-Stressed Conditions

The estimated factors, which summarize the information contained in a large set of predictors
X, are used to estimate the temporal evolution of the conditional density of a target variable.
In this subsection, we describe how these densities can be obtained under both stressed and
non-stressed conditions for the underlying factors.

Let y; be the observation at time ¢ of the target variable. We start by obtaining h-step-ahead
forecasts of the 7*-quantile of the conditional distribution of y; by estimating the following
FA-QR:

T
Gre (Yern | Y6 Fr) = p(7 ) + ¢(7%, B)ye + > Br(7*, h) Ft, (11)
k=1
where p(7*,h), ¢(7*,h), and Br(7*, h), for k = 1,...,r, are parameters, and F; is the r x 1
vector of the underlying unobserved factors at time ¢. In practice, the underlying factors in
(11) are replaced by their estimations, F;, obtained as described above.

The parameters of the FA-QR model in (11) are estimated using the algorithm by Koenker
and D’Orey (1987), which implements the quantile regression method originally developed
by Koenker and Bassett (1978). When the error terms are assumed to be independently
distributed according to a Laplace distribution, the estimator coincides with the Maximum
Likelihood (ML) estimator; see Ando and Tsay (2011). Bai and Ng (2008) establishes its
asymptotic normality.

The FA-QR provides estimates of the quantile function of the target variable, ¢-+ (ys+n |y, F1),
for several values of 7*. However, in practice, it is challenging to map these estimates into
a probability distribution function because of approximation errors and estimation noise.
Consequently, as in Adrian et al. (2019), we use the skew-t distribution proposed by Azzalini
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and Capitanio (2003) to smooth the quantile function and estimate the conditional density
of y;. The skew-t density depends on four parameters as follows:

2 — — 1
f(y;u,a,aw)Ist(y u;’v)sT oLt ot 5v+ 1], (12)

g g g Yy—p

U—i-(T,)

where st(-) and sT'(-) denote the probability density function and the cumulative distribution
function of the Student’s t distribution, respectively. The skew-t distribution is specified by
its location p, scale o, shape «, and fatness v. At each time ¢, a skew-t distribution is fitted by
choosing the parameters that minimize the squared differences between the quantile estimates
and the skew-t implied quantiles, ¢, (y; u, o, a, v), as follows:

T—h
(fitshs Otahs Qo Dpgn) = ai%%ligl > G (yern Ly Fr) = g (s g0, 0,0))% (13)

TV
The methodology described above estimates the conditional density of 3 under non-stressed
conditions. To construct conditional densities based on stressed scenarios, Gonzalez-Rivera
et al. (2019) and Gonzalez-Rivera et al. (2024) use the confidence ellipsoids defined in (10),
and determine the value of the factors on the a%-contour (stress level of the underlying
factors) that minimize (or maximize) a given quantile (7) of the conditional distribution of the
target variable. For instance, consider that we are interested in deriving a stress scenario for
7 = 0.05, with the factors stressed at their a% level, FARS solves the following optimization

problem at each ¢

. S
min QO.05(yt+h|ytaFt( )) (14)
£

S)

s.t. g(Ft( ,a) =0,

where g(Ft(S), a) = 0 is a predetermined a-contour of the factors, that is, an ellipsoid that
contains F} with probability a.

The values of Ft(s) on the boundary of the ellipsoid g(Ft(S), a) = 0 represent extreme events of
the factors. After solving the optimization problem in (14), these optimized values are plugged
into the estimated FA-QRs. The conditional density of y; under stress is then obtained by
smoothing the corresponding quantiles as described in (13).”

3. The FARS package

In this section, we provide a detailed overview of the FARS package functionalities and explain
how users can implement the methodology described in Section 2 using the available functions.

3.1. ML-DFM in FARS

We begin by introducing the m1dfm() function, which provides users with a flexible tool for
extracting factors using DFM or ML-DFM, with non-overlapping or overlapping blocks. In

"Note that the stressed scenarios are slightly different from that in Gonzélez-Rivera et al. (2019) and
Gonzélez-Rivera et al. (2024), who obtain stressed factors for each quantile of the distribution.
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the case of a simple DFM, the function requires two input arguments. The first is data, which
contains the N variables from which the factors are extracted, structured as a T" x N matrix.
The second argument is global, which specifies the number of factors r to be extracted from
the data.

In the case of the ML-DFM without overlapping blocks, additional arguments must be pro-
vided to the m1dfm function: i) the argument blocks defines the number of blocks K that make
up the data sample (the default is 1, corresponding to the DFM case); ii) block_ind requires
a vector that indicates the indices of the end column for each block k. For example, if K =3
and N = Nj+ Na+ N3, the argument block_ind should contain [Ny, Ni + Na, N1 + Na + N3;
iii) the argument local is a vector of integers, indicating the number of block-specific factors
rF, to be extracted from each block k; iv) global specifies the number of pervasive factors
rg; v) method defines the factor initialization strategy for the sequential LS estimation: 0 for
the CCA (default) and 1 for PC?; vi) the arguments tol and max_iter define the tolerance
level and the maximum number of iterations allowed for the RSS minimization process, with
default values set to 107% and 1000, respectively.

In the case of the ML-DFM with overlapping blocks, an additional middle_layer argument
must be provided. middle_layer is a named list, where each name is a string specifying a
group of overlapping blocks (e.g. kj in the case of pairwise groups), and each value is the
number of factors r;; to extract from that group. For example, if we want to extract one
pairwise factor from blocks 1 and 3 (r;3 = 1), the list should be defined as 1ist("1-3" = 1).

Regardless of the particular specification of the model, the ml1dfm() function returns an S3
object of class mldfm as output. The object is a list containing several attributes described
in Table 1.

Attribute Description

factors T x r matrix containing all the extracted factors.

loadings N x r matrix of factor loadings with necessary zero restrictions.
residuals T x N residual matrix from the model fit.

method The initialization strategy used (CCA or PCA).

iterations Number of iterations performed until convergence (0 in DFM).

factors_list A summary list indicating the number of factors extracted at each level.

Table 1: Attributes of the mldfm object. The data stored in the factors and loadings
matrices follow the hierarchical order (from global to local) described in factors_list.

The mldfm object has typical S3 methods: print(), summary() and plot(). The first two
functions offer a brief overview of the model estimation outcome, while plot() offers pre-
configured visualization tools. The call of the plot function on a mldfm object generates
distinct line charts for all estimated factors, each enriched with confidence interval bands that
assume cross-sectionally independent and homoskedastic idiosyncratic components. Further-
more, an optional input argument dates can be provided. dates is a vector of dates to be
displayed on the x-axis, replacing the default integer time index ranging from 1 to 7. An
additional optional argument, £1ip, can be supplied to improve the interpretability of the
plots. flip is a binary vector (with values 0 or 1) indicating whether each estimated factor
or the corresponding loadings should be sign-flipped before plotting. A value of 1 for a given

8PC is implemented using the prcomp() function from the package stats.
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element reverses its sign, while 0 leaves it unchanged. This is useful when the arbitrary sign
indeterminacy of factor models leads to less interpretable visualizations. An optional argu-
ment, fpr, can be set to TRUE to estimate the asymptotic MSE of the factors using [FPR a5
defined in equation (8). Differently, the default setup (FALSE) uses I'PN as described in Equa-
tion (7). Moreover, using the plot () function, it is possible to visualize estimated loadings
or residuals, specifying a which argument with values "loadings" or "residuals". With
"loadings", a singular figure is generated, which contains a set of bar charts displaying the
estimated loadings along with their corresponding pairwise confidence intervals. Differently,
with "residuals", a figure depicting the correlation heatmap of the residuals is produced.
In both cases, the user can provide a list of variable names using the optional var_names
argument. This enables the replacement of the default indexes from VAR 1 to VAR N with
the appropriate variable names. Specific attributes of the mldfm object can accessed using
appropriate get functions, get_factors(), get_loadings() and get_residuals().

3.2. Probability distribution of factors in FARS

A two-step procedure is implemented in FARS to obtain the asymptotic joint probability
density of the factors with the subsampling correction.

The first step involves running a subsampling method to extract factors from subsets of N*
variables, selected from the entire data sample. This is implemented using the m1dfm_subsampling()
function. The function iteratively generates n_samples subsamples of size sample_size and
estimates factors using the ML-DFM approach through the mldfm() function®. This ap-
proach offers two main advantages. First, the arguments of mldfm_subsampling() are the
same as those of m1dfm(), with the addition of two additional arguments to define the num-
ber and size of the subsamples. Second, the function returns an object mldfm_subsample
containing a list of m1dfm objects, enabling the user to apply standard methods to each of the
subsample results. In addition, an optional seed argument can be provided to ensure the re-
producibility of the results. A m1dfm_subsample object contains the attributes listed in Table
2 and provides print (), summary() and plot () methods, as well as get_mldfm_list() and

get_mldfm_model () functions to access the entire list or a specific m1dfm object, respectively.

Attribute Description
models A list containing the n_samples mldfm objects.
n_samples The number of subsamples generated.

sample_size The proportion of the sample used for each subsample %
seed The seed used for random sampling.

Table 2: Attributes of the m1dfm_subsample object.

The second step involves constructing confidence regions for the factors, as described in equa-
tion (10). This operation is performed by the create_scenario() function, which requires
three main arguments. The first is model, which contains the result of the ml1dfm() function
applied to the full dataset and serves as the center of the ellipsoid. The second is subsamples,
which uses the output of mldfm_subsampling() to compute the MSE correction as defined

9The argument n_samples is the number of samples, while sample_size is the proportion of the cross-
sectional dimension, N, which composes the subsamples (e.g., 0.9 to selected 90% of the original variables).
In the case of multiple blocks, the proportion is maintained in all the blocks.
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in Equation (9). The third is alpha, which defines the coverage probability (i.e., the level
of stress) of the ellipsoids. An optional argument, fpr, can be set to TRUE to estimate the
asymptotic MSE of the factors using TFPR a5 defined in equation (8). Differently, the default
setup (FALSE) uses I'PN as described in Equation (7). The output of create_scenario()
is a fars_scenario object whose attributes are presented in Table 3. A fars_scenario
object is provided with the standard S3 methos (print (), summary() and plot()) and with
get_ellipsoids() and get_sigma_list () functions to access specific attributes. In partic-
ular, get_ellipsoids() returns a list of T" matrices of size z X r representing the ellipsoid
points in r dimensions at each time ¢t. The number of points z depends on the number of
dimensions 7. In the case of only one factor (r = 1), only a confidence interval is built based
on the specified alpha level; for this reason, z = 2 (i.e., the upper and the lower bounds). In
the case of two dimensions (r = 2), the 2-D ellipsoid is composed of z = 300 points and is
built using the ellipse package; see Murdoch and Chow (2023). Lastly, in the case of more
than two dimensions (r > 2), the r-D ellipsoid is generated through the hyperellipsoid()
and hypercube_mesh() functions from the SyScSelection package (Kopfmann 2023). In this
case, the number of points composing the ellipsoid depends on the phi parameter of the
hypercube_mesh() function, which defines the scalar fineness of the mesh. In FARS, phi is
set to 8.

Attribute Description

ellipsoids A list containing 7" matrices of dimensions r X z.

center T x r matrix containing all the factors used as center coordinates for the ellipsoids.
sigma A list of T' covariance matrices of dimensions r x 7.

periods Number of time periods 7'

n_points Number of points z used to define each ellipsoid.

alpha Confidence level for the ellipsoids.

Table 3: Attributes of the fars_scenario object.

3.3. Conditional Density Under Stressed and Non-Stressed Conditions in
FARS

In this subsection, we present the tools provided by FARS for obtaining conditional density
forecasts in both the non-stressed and stressed scenarios.

The first step is to estimate the FA-QRs'?. This operation is performed through the compute_fars ()
function, which estimates the parameter of the FA-QR in Equation (11). In the non-stressed
setup, the function requires only three arguments to work. First, dep_variable, which con-
tains the dependent variable y;. Second, factors, which includes the factors the user wants
to add to the quantile regression model.'* Third, h, which defines the forecast horizon (the
default is h = 1). The function estimates the FA-QRs for a fixed set of quantiles: 0.05, 0.25,
0.50, 0.75, and 0.95, as these are later used for the skew-t density fit. Alternatively, the user
can modify the extreme quantiles by setting an optional edge argument. For example, setting

1OFARS estimate FA-QRs using the quantreg package (Koenker, Portnoy, Ng, Zeileis, Grosjean, and Ripley
2025). The standard deviations of the estimated parameters are calculated using the sandwich formula proposed
by Powell (1989) under the option ker, which is commonly used in practice.

HThese can be easily accessed through the factors attribute of the mldfm object obtained after estimating
the ML-DFM by mldfm().
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edge = 0.01 forces the edge quantiles to 0.01 and 0.99. The default value is 0.05. In the
stressed scenario setup, additional arguments are required. The ellipsoids argument takes
the list of ellipsoids from a scenario produced by the create_scenario() function. Moreover,
the user must define gtau and min, which correspond to the quantile that will be minimized or
maximized, and the optimization strategy used to compute stressed factors over the ellipsoid
points. The default value for min is TRUE, which means that the objective is to minimize a
given quantile of the target variable y;. Differently, if min value is FALSE, the objective is to
maximize the quantile of y,. The output of compute_fars() is an S3 object of type fars,
which contains a set of attributes listed in Table 4.

Attribute Description

quantiles T x 5 matrix containing the estimated quantiles.

coeff (r+2) x 5 matrix containing the estimated coeffcients.
std_error (r+2) x 5 matrix containing the estimated standard errors.
pvalue (r+2) x 5 matrix containing the estimated standard P-values.
levels The list of estimated quantiles.

qtaux* The quantile selected for the min/max procedure.
stressed_factors* T x r matrix containing the stressed factors.

stressed_quantiles* 7 x 5 matrix containing the estimated stressed quantiles.

Table 4: Attributes of the fars object. Attributes marked with * are included only if the
user provides the necessary argument for the stressed scenario case.

Like the mldfm object, the fars object has standard S3 methods. The print() func-
tion provides a brief overview of the FA-QRs. The summary() function returns a detailed
summary of quantile regression, including estimated coefficients, standard errors, and p-
values for each quantile. Lastly, the plot() function generates two line charts: one com-
posed of non-stressed quantiles and the second of stressed scenario quantiles. The function
can display customized dates on the x-axis by setting the corresponding optional argument
dates. In order to access the attributes of a fars object, a set of getter functions is avail-
able. The function get_quantiles() returns either stressed or non-stressed factors, depend-
ing on whether the parameter stressed is set to TRUE or FALSE (default). The functions
get_stressed_factors() and get_quantile_levels() return the stressed factors and the
list of estimated quantile levels, respectively.

The second step to obtaining a density forecast is to estimate the conditional density of
the target variable y; by fitting a skewed-t distribution. This operation is performed via
the compute_density() function, which requires a quantiles argument, containing the
quantiles estimated by the compute_fars() function'?. Depending on the quantiles pro-
vided, quantiles or stressed_quantiles, the density function returns the non-stressed
or the stressed conditional density, respectively. Additional arguments can be provided to
compute_density(), including est_points, which set the number of estimation points (de-
fault is 512), random_samples, which define the number of random samples to be drawn
from the estimated distribution (default is 5000) and support, which select the lower and

upper bounds of the random variable support (default is c¢(-10,10)). For each period ¢,

121f the quantiles computed with compute_fars() have been modified via the edge argument, the density
function must be informed of the correct quantiles levels. This can be done by setting the levels argument
using the levels attribute of the fars object returned by compute_fars().
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compute_density() initializes the skewed-t distribution by setting three parameters (loca-
tion, scale, and shape) using the quantile values provided as input. The function implements
two optimization procedures to fit the skew-t distribution. The default is a linear optimization
using optim() from stats, which implements the L-BFGS-B method. The second is a non-linear
optimization method that can be selected by setting the argument n1 = TRUE. The non-linear
method is from the nloptr package and is based on NLOPT_LN_SBPLX (Johnson (2007)). In
both cases, the theoretical quantiles and the probability distribution function (pdf) of the
fitted skewed-t distribution are computed using gqst () and dst () from sn (Azzalini (2023)),
respectively. Finally, a seed argument can be provided to ensure the reproducibility of the
results. The compute_density() function returns a fars_density object that provides the
attributes listed in Table 5.

Attribute Description

density The estimated densities at time t.

distribution The random draws from the fitted skew-t distribution at each t.
optimization The optimization method implemented: linear or non-linear.
eval_points  The sequence of evaluation points used to compute the density.

Table 5: Attributes of the fars_density object. Both density and distribution are
provided in matrix form with one row for each time ¢.

The fars_density object is equipped with standard S3 methods. The print() function
provides a brief overview of the estimated density. The summary() function returns the
mean, median, and standard deviation of the distribution at each time ¢. Finally, the plot ()
function generates a 3D plot of the density, with evaluation points (eval_points) on the x-
axis, time indices on the y-axis, and density values on the z-axis. The function can also display
custom dates on the y-axis by setting the optional argument time_index. The distribution
is accessible through the get_distribution() function.

The final step in obtaining a conditional density forecast is to extract the conditional quan-
tile from the estimated skew-t distribution. This can be performed using the function
quantile_risk(). This function requires two parameters: an object of class fars_density
and the quantile that must be extracted qtau. The quantile extraction is implemented via
quantile() from stats. Depending on the fars_density object provided, either a non-
stressed or a stressed density, the quantile_risk() extracts a non-stressed quantile or a
stressed quantile of the target variable (e.g., in the case of GDP growth with qtau = 0.05
(T = 59), it extracts Growth-at-Risk or Growth-in-Stress).

Figure 2 shows a recap of the FARS package workflow for both the non-stressed and the
stressed scenarios.

4. Illustration of FARS package functionalities

In this section, we illustrate the functionalities of the FARS package by extracting factors,
estimating conditional densities and obtaining stress scenarios in the context of: i) aggregate
inflation in Europe; and ii) building scenarios for US growth density. Regardless of the
particular application, the first step is to install and load the package FARS, which is available
publicly on CRAN under the GPL-3 license, as follows:

15
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R> install.packages ("FARS")

The development version is available on GitHub at https://github.com/GPEBellocca/FARS.
This can be downloaded using the devtools package with the following command:

R> devtools::install_github("GPEBellocca/FARS")
After installing the package from CRAN or GitHub, it should be loaded as follows:

R> library(FARS)

4.1. European inflation: Risk in extreme right quantiles.

In the first illustration, we analyze the risk of an inflation increase in Europe. To do this,
we collect monthly headline CPI data (Ha, Kose, and Ohnsorge 2023) from January 2005 to
December 2024 (T = 239) for a set of N = 38 European countries. The countries considered
are divided into three different blocks, depending on geographical location:

o West (N; = 11): Austria, Belgium, France, Germany, Ireland, Italy, Luxembourg,
Portugal, Spain, Switzerland, United Kingdom.

o East (N, = 21): Belarus, Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, Czech
Republic, Estonia, Greece, Hungary, Kosovo, Latvia, Lithuania, Malta, Moldova, Rep.,
North Macedonia, Poland, Romania, Slovakia, Slovenia, Turkey, Ukraine.

e North (N3 = 6): Denmark, Finland, Iceland, The Netherlands, Norway, Sweden.

For each country, CPI prices are transformed into annualized month-on-month (mom) in-
flation, with each inflation series sequentially cleaned of seasonal effects and outliers. The
processed data can be imported using:

R> data("inflation_data", package = "FARS")

To estimate a ML-DFM through m1dfm(), we first need to decide how many factors to extract
from each block. We extract one global factor common to all N countries, and one block-
specific factor common to countries in each of the three blocks. This operation is performed
as follows:

R> mldfm_result <- mldfm(inflation_data,

+ blocks = 3,

+ block_ind = ¢(11,32,38),
+ global = 1,

+ local = c(1,1,1))

Since we do not provide any method, tol, and max_iter, the default values are enforced. The
mldfm object returned is stored in the mldfm_result variable. After completion, the function
summary () can be used to display an overview of the estimated ML-DFM, including the
number of factors extracted at each level of the hierarchical structure used in the Sequential
LS estimation.
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R> summary (mldfm_result)

Summary of Multilevel Dynamic Factor Model (MLDFM)

Number of periods ¢ 239
Number of factors 4
Number of nodes : 4
Initialization method : CCA

Number of iterations to converge: 33

Factor structure:
- 1-2-3 : 1 factor(s)
-1 : 1 factor(s)
-2 1 factor(s)

- 3 : 1 factor(s)

Residual diagnostics:
- Total residual sum of squares (RSS): 4506.23
- Average RSS per time period : 18.85

Additionally, using plot (), it is possible to obtain a graphical representation of the estimated
factors, loadings, and residuals. This is performed by calling the plot function three times
in sequence. For a more precise result, we provide the plot function with appropriate arrays
composed of dates and country names using the optional arguments. Also, we specify that
the global factor and the local factors corresponding to blocks 1 and 2 must be flipped in
sign.

R> plot(mldfm_result, dates = dates, flip = c¢(1,1,1,0))

R> plot(mldfm_result, which = "loadings", var_names = countries, flip = c¢(1,1,1,0))
R> plot(mldfm_result_gm, which = "residuals", var_names = countries)

The results are plotted in Figures 3, 4 and 5, respectively.

Non-stressed scenario

In order to analyze potential inflation risk in Europe we utilize Germany as an example. To
do this, we extract the corresponding inflation series from the data set.

R> dep_variable <- as.numeric(inflation_datal[[4]])

The first step to build the unstressed scenario is to estimate the FA-QRs as follows:!?
R> fars_result <- compute_fars(dep_variable, get_factors(mldfm_result), h = 1)

Running Factor-Augmented Quantile Regressions (FA-QRs)...
Completed

3For this task, we consider the simplest case with h=1
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After this, we can plot the quantiles for the non-stressed scenario (see Figure 6, panel a) and
print a recap of the FA-QRs.

R> plot(fars_result, dates = dates)
R> print(fars_result)

Factor-Augmented Quantile Regressions (FARS)

Forecasted quantiles

Number of periods: 239

Quantile levels: 0.05 0.25 0.50 0.75 0.95
Stressed quantiles: NO

The results stored in fars_result are then used to fit a skew-t distribution, generating the
density for the non-stressed scenario. This is done by applying the non-linear optimization
method and providing an appropriate support for the inflation case.

R> ns_density <- compute_density(get_quantiles(fars_result),

+ support = c(-30,30),
+ seed = 42,
+ nl1=TRUE)

Estimating skew-t densities from forecasted quantiles...
Completed

The generated fars_density object can be used to plot the non-stressed density (see Figure
7, panel a) and visualize an overview of the density estimation.

R> plot(ns_density, time_index = dates)
R> print(ns_density)

FARS Density

Time observations : 239
Estimation points : 512

Random samples : 5000
Support range : [ =30, 301
Optimization : Non-linear

Finally, we estimate the Inflation at Risk (IaR) at qtau = 0.99 applying the quantile_risk()
function to the non-stressed density.

R> IaR <- quantile_risk(ns_density, qtau = 0.99)
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Stressed scenarios.

As explained in Section 3, the computation of stressed scenarios can be performed in two
steps. First, we need to obtain the asymptotic distribution of the factors. For this goal,
we implement the subsampling procedure using the appropriate function. In our case, we
generate 100 samples by extracting 95% of the countries in each block.

R> mldfm_ss_result <- mldfm_subsampling(inflation_data,

blocks = 3,
block_ind = ¢(11,32,38),
global = 1,

local = c(1,1,1),
n_samples = 100,
sample_size = 0.95,
seed = 42)

+ + + + + + +

Generating 100 subsamples...
Subsampling completed.

Each of the 100 models stored in mldfm_ss_result can be manipulated as a distinct mldfm
object. For example, we can visualize the summary of the ML-DFM estimated for sample
number 10.

R> summary(get_mldfm_model (mldfm_ss_result, index = 10))

Summary of Multilevel Dynamic Factor Model (MLDFM)

Number of periods : 239
Number of factors : 4
Number of nodes : 4
Initialization method : CCA

Number of iterations to converge: 23

Factor structure:
- 1-2-3 : 1 factor(s)
-1 : 1 factor(s)
- 2 : 1 factor(s)
-3 1 factor(s)

Residual diagnostics:
- Total residual sum of squares (RSS): 4226.02
- Average RSS per time period : 17.68

The second step is to generate the stressed scenario by calling the create_scenario() func-

tion. For this exercise, we consider the highest stress level of alpha = 0.99 and default
PN
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R> scenario <- create_scenario(model = mldfm_result,
+ subsample = mldfm_ss_result,
+ alpha=0.99)

Constructing scenario using 100 subsamples, alpha = 0.99
and standard time-varying Gamma...
Scenario construction completed.

A summary of the scenario can be displayed as follows:

R> summary (scenario)

FARS Scenario Summary

Number of periods : 239
Ellipsoid dimensions : 4
Points per ellipsoid : 1072
Confidence level : 99 %
FPR Gamma : FALSE

Center (factor estimates):

Mean : 0

Std. Dev : 0.9984
Min : -5.6607
Max . 4.3215

Ellipsoid variability (diagonal of Sigma):

Mean : 0.3317
Std. Dev : 0.5728
Min : 0.0079
Max 1 7.4062

Now that we have the ML-DFM under non-stressed conditions and the stressed scenario stored
in mldfm_result and scenario variables, respectively, we can re-estimate the FA-QRs. Since
we are interested in Inflation risk, our objective is to maximize the dependent variable for the
chosen quantile (qgtau = 0.99).

R> fars_result <- compute_fars(dep_variable,

+ get_factors(mldfm_result),

+ ellipsoids = get_ellipsoids(scenario),
+ h =1,

+ gqtau = 0.99,

+ min = FALSE)

Running Factor-Augmented Quantile Regressions (FA-QRs)...
Completed
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The updated fars object stored in fars_result now contains the non-stressed and stressed
quantiles, which can be visualized by calling the plot function (see Figure 6).

R> plot(fars_result, dates=dates)
As in the non-stressed case, we fit a skew-t distribution using the fars_result. This time
we need to provide the stressed quantiles matrix to generate the stressed density. Again, we

visualize the density with the plot function (see Figure 7, panel b).

R> s_density <- compute_density(get_quantiles(fars_result, stressed = TRUE),

+ support = c(-30,30),
+ seed = 42,
+ nl1=TRUE)

Estimating skew-t densities from forecasted quantiles...
Completed

The last step is to compute the Inflation in Stress (IiS) for gtau = 0.99 by feeding quantile_risk ()
with the stressed densities.

R> IiS <- quantile_risk(s_density, qtau = 0.99)

In Figure 8, we plot the final IaR and IiS estimates along with the dependent variables for
the period spanning from March 2005 to December 2024. We observe that IiS is higher than
IaR. This worse outcome would be neglected if we only estimated IaR, which assumes that
factors evolve according to an average scenario.

4.2. Economic growth in the US: Risk in extreme left quantiles.

In our second illustration, we follow Gonzalez-Rivera et al. (2024) and construct densities
for annualized quarterly GDP growth in the US with the underlying factors extracted in the
context of a ML-DFM using a data sample composed of three blocks. The first block contains
N; = 63 international macroeconomic variables (GDP growth for 63 countries), the second
block contains No = 248 domestic macroeconomic variables, and the third block contains
N3 = 208 international financial variables. All variables are observed quarterly from 2005Q3
to 2020Q1.1* The dataset, composed of N = Ni + Ny + N3 = 519 variables and the US GDP
growth can be imported using:

R> data("mf_data", package = "FARS")
R> data("dep_variable", package = "FARS")

We extract one global factor common to all N variables, a pairwise factor common to all
international variables (international macroeconomic and international financial blocks), and
one block-specific factor common to the variables in each of the three blocks. Then, we check
the summary of the model.

Data are retrieved from the replication files of Gonzalez-Rivera et al. (2024).
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R> mldfm_result <- mldfm(mf_data,

blocks = 3,
block_ind = c(63,311,519),
global = 1,

local = ¢(1,1,1),
middle_layer = list("1-3" = 1))

+ + + + +

R> summary(mldfm_result)

Summary of Multilevel Dynamic Factor Model (MLDFM)

Number of periods : 59
Number of factors : 5
Number of nodes : 5
Initialization method : CCA

Number of iterations to converge: 47

Factor structure:
- 1-2-3 : 1 factor(s)
- 1-3 : 1 factor(s)
-1 1 factor(s)
- 2 : 1 factor(s)
-3 1 factor(s)

Residual diagnostics:
- Total residual sum of squares (RSS): 15215.67
- Average RSS per time period : 257.89

To build the stressed scenario we implement the same two-step procedure using the m1dfm_subsampling ()
and create_scenario() functions. As for the inflation case, we generate 100 samples by ex-

tracting 95% of the variables from each block and consider the highest stress level of alpha

= 0.99 with default T'PN,

R> mldfm_ss_result <- mldfm_subsampling(mf_data,

blocks = 3,
block_ind = c¢(63,311,519),
global = 1,

local = c(1,1,1),

middle_layer = list("1-3" = 1),
n_samples = 100,

sample_size = 0.95,

seed = 42)

+ + + + + + + +

Generating 100 subsamples...
Subsampling completed.

R> scenario <- create_scenario(model = mldfm_result,
+ subsample = mldfm_ss_result,
+ alpha=0.99)
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Constructing scenario using 100 subsamples, alpha = 0.99
and standard time-varying Gamma...
Scenario construction completed.

Regarding the FA-QRs, since we are interested in GDP growth risk, our objective is to
minimize the dependent variable for the chosen low quantile (qtau = 0.01).

R> fars_result <- compute_fars(dep_variable,

+ get_factors(mldfm_result),

+ ellipsoids = get_ellipsoids(scenario),
‘ h=1,

+ qtau = 0.01)

Running Factor-Augmented Quantile Regressions (FA-QRs)...
Completed

The output stored in fars_result contains both the non-stressed and stressed quantiles,
which can be visualized, with appropriate dates, by calling the plot function (see Figure 9).

R> plot(fars_result,dates=dates)

Now that we have the quantiles and the stressed quantiles, so that we can fit two skew-t
distributions to generate the non-stressed and the stressed densities, which we visualize with
the plot function (see Figure 10, panels a) and b). For this exercise, we implement the linear

optimization method.

R> ns_density <- compute_density(get_quantiles(fars_result),

+ support = c¢(-30,10),

+ seed = 42)

R> s_density <- compute_density(get_quantiles(fars_result, stressed = TRUE),
+ support = c¢(-30,10),

+ seed = 42)

Estimating skew-t densities from forecasted quantiles...
Completed
Estimating skew-t densities from forecasted quantiles...
Completed

The final step is to compute GaR and GiS for qgtau = 0.01 by the feeding quantile_risk()
function with the appropriate densities.

R> GaR <- quantile_risk(ns_density, qtau = 0.01)
R> GiS <- quantile_risk(s_density, qtau = 0.01)

In Figure 11, we plot the in-sample GaR and GiS estimates along with the dependent variables.
As in Gonzalez-Rivera et al. (2024), we observe that GiS is more negative than GaR. This
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negative outcome would be neglected if we only estimated GaR, which assumes that factors
evolve according to an average scenario.

5. Summary and discussion

The FARS package offers a suite of tools in R for modeling and designing economic scenarios
based on conditional densities derived from ML-DFMs and FA-QRs. These tools allow re-
searchers to generate both non-stressed and stressed scenarios for target variables, such as the
US growth density (see, Gonzalez-Rivera et al. 2024). The FARS package is available on the
Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=FARS,
including the data matrix retrieved from the replication files of Gonzalez-Rivera et al. (2024).
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