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Introduction

0.1 Technicalities

First we set some graphics parameters for convenience and load the packages needed:

> options(width = 90,

+ show.signif.stars = FALSE,

+ SweaveHooks=1ist (fig = function()

+ par(mar = c(3, 3, 1, 1),

+ mgp = c(3, 1, 0) / 1.6,
+ las = 1,

+ lend = "butt",

+ bty = ”11”)))

> library(Epi)

> library(popEpi)

> library(survival)
> clear()

R Epi  popEpi
4.4.2 2.59 0.4.12

0.2 About this vignette

This vignette is an introduction to (parts of) the Lexis machinery in the Epi package,
intended for representation and manipulation of follow-up data (“event history data”) from
studies where exact dates of events are known. It accommodates follow-up through
multiple states and on multiple time scales.

We use a data example from the Epi package to illustrate the set-up of a simple Lexis
object (a data frame of follow-up intervals), as well as the subdivision of follow-up intervals
needed for multistate representation and analysis of transition rates by flexible parametric
functions.

The first chapter is exclusively on manipulation of the follow-up representation, but it
points to the subsequent chapter where analysis is based on a Lexis representation with
very small follow-up intervals.

Chapter 2 uses analysis of mortality rates among Danish diabetes patients (available in
the Epi package) currently on insulin treatment or not, to illustrate the use of Lexis
object in the analysis of rates.

Chapter 3 discusses creation and manipulation of multistate data, and chapter 4 is a list
of all Lexis functions.



2 0.3 History

Lexis FU

0.3 History

The Lexis machinery in the Epi package was first conceived and implemented by Martyn
Plummer|1, 2|, and since its first appearance in the Epi package in 2008 it has been
expanded with a number of utilities. An overview of these can be found in the last chapter

of this note, “Lexis functions”.

0.3.1 Wilhelm Lexis

The Lexis machinery is named after the German
demographer and economist Wilhelm Lexis (full name
Wilhelm Hector Richard Albrecht Lexis, 17 July 1837
— 24 August 1914), who in his book “Einleitung in die
Theorie der Bevolkerungsstatistik” (Introduction to
the theory of population statistics), (Strassburg,
1875), devised a diagram showing follow-up of persons
on two time scales, notably calendar time and age.
The diagram that nowadays is called a Lexis diagram,
is usually drawn in a slightly different manner than
that Lexis used in his book.

The display of follow-up on two timescales naturally
leads to representation on several time scales and
statistical modeling of occurrence rates with two (or
more) timescales as explanatory terms. Hence the
naming of the machinery after Wilhelm Lexis.

0.3.2 Modeling of rates

In 1980 John Whitehead published a paper: “Fitting Cox’s regression model to survival
data using GLIM”, [5] in which he devised the likelihood of a model for many small time
bands with constant intensity in each, and demonstrated that Cox’s partial likelihood
could be seen as a Poisson likelihood. This is what underlies the time-splitting and

subsequent modeling of transition rates in this vignette.

...s0 there is very little (if anything) new in this note.



Chapter 1

Representation of follow-up data in Epi

In the Epi-package, follow-up data is represented by adding some extra variables and a few
attributes to a data frame. Such a data frame is called a Lexis object. The tools for
handling follow-up data then use the structure of this for special plots, tabulations and
modeling.

Specifically, follow-up data requires a choice of time scale, a time of entry, a time of exit
and an indication of the status at exit (normally either “alive” or “dead”) for each person.
Implicitly is also assumed a status during the follow-up (usually “alive”).

4 3
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Follow-up 1 5 3
Two H | O
i L I I J
Age-scale 35 10 15 50

Figure 1.1: Follow-up of two persons on the age-scale

1.1 Time scales

A time scale is a variable that varies deterministically within each person during follow-up,
e.g..

Age

Calendar time

Time since start of treatment
Time since relapse

All time scales advance at the same pace, so the time followed is the same on all time scales.
Therefore, it will suffice to use only the entry point on each of the time scales, for example:

Age at entry

Date of entry

Time at treatment (at treatment, time since treatment is 0)
Time at relapse (at relapse, time since relapse is 0)
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In the Epi package, follow-up in a cohort is represented in a Lexis object. A Lexis object
is a data frame with some extra structure to represent the follow-up. For the DMlate
dataset of follow-up of diabetes patients in Denmark with recorded date of birth, date of
diabetes, date of first insulin use, date of first oral drug use, date of exit and date of death
— we can construct a Lexis object by first including follow-up from entry at date of
diabetes (dodm) to exit (dox). The dates should not be in Date format; some data
manipulations in Lexis will crash if they are.

> data(DMlate)
> head(DMlate)

sex dobth dodm dodth dooad doins dox
50185 F 1940.256 1998.917 NA NA NA 2009.997
307563 M 1939.218 2003.309 NA 2007.446 NA 2009.997
294104 F 1918.301 2004.552 NA NA NA 2009.997
336439 F 1965.225 2009.261 NA NA NA 2009.997
245651 M 1932.877 2008.653 NA NA NA 2009.997
216824 F 1927.870 2007.886 2009.923 NA NA 2009.923
> dmL <- Lexis(entry = list(per = dodm,
+ age = dodm-dobth,
+ tfD = 0),
+ exit = list(per = dox),
+ exit.status = factor(!is.na(dodth),
+ labels = c("DM", "Dead")),
+ data = DMlate)

NOTE: entry.status has been set to "DM" for all.
NOTE: Dropping 4 rows with duration of follow up < tol

> timeScales(dmL)
[1] llperll llagell llthll

The 4 excluded persons are persons with date of diabetes equal to date of death.

The entry argument is a named list with the entry points on each of the time scales we
want to use. The names of the list defines the names of the time scales. The exit
argument gives the exit time on one of the time scales, so the name of the element in this
list must match one of the names of the entry list. This is sufficient, because the follow-up
time on all time scales is the same, in this case dox — dodm.

The exit.status will normally be a categorical variable (a factor) that indicates the
exit status — in this case whether the person (still) is in state DM or exits to Dead at the
end of follow-up. We could also specify an entry.status; the default is to assume that all
persons enter in the first level of the factor exit.states — in this case DM (because
FALSE < TRUE)

Now take a look at the result:

> str(dmL)

Classes 'Lexis' and 'data.frame': 9996 obs. of 14 variables:
$ per : num 1999 2003 2005 2009 2009 ...
$ age : num 58.7 64.1 86.3 44 75.8 ...
$ tfD :num 0 0O0000O0O0O0O0 ...
$ lex.dur: num 11.08 6.689 5.446 0.736 1.344 ...
$ lex.Cst: Factor w/ 2 levels "DM","Dead": 1 111111111 ...
$ lex.Xst: Factor w/ 2 levels "DM","Dead": 1 111121121 ...
$ lex.id : int 1 23456789 10 ...
$ sex : Factor w/ 2 levels "M","F": 2122121121 ...
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dobth : num 1940 1939 1918 1965 1933 ...

dodm : num 1999 2003 2005 2009 2009 ...

dodth : num NA NA NA NA NA ...

dooad : num NA 2007 NA NA NA ...

doins : num NA NA NA NA NA NA NA NA NA NA ...

dox : num 2010 2010 2010 2010 2010 ...

attr(*, "time.scales")= chr [1:3] "per" "age" "tfD"
- attr(*, "time.since")= chr [1:3] "n mn nn

attr(*, "breaks")=List of 3

| R R P P P P

..$ per: NULL
..$ age: NULL
..$ tfD: NULL
> head(dmL)[, 1:11]
lex.id per age tfD lex.dur lex.Cst lex.Xst sex  dobth dodm  dodth
1 1998.92 58.66 0 11.08 DM DM F 1940.26 1998.92 NA
2 2003.31 64.09 O 6.69 DM DM M 1939.22 2003.31 NA
3 2004.55 86.25 O 5.45 DM DM F 1918.30 2004.55 NA
4 2009.26 44.04 O 0.74 DM DM F 1965.23 2009.26 NA
5 2008.65 75.78 0 1.34 DM DM M 1932.88 2008.65 NA
6 2007.89 80.02 O 2.04 DM Dead F 1927.87 2007.89 2009.92

The Lexis object dmL has a variable for each time scale, the value of which is the entry
time for each person on this time scale. The length of the follow-up time is in the variable
lex.dur (duration). Note that the exit status is in the variable lex.Xst (eXit state). The
variable lex.Cst indicates the state where follow-up takes place (Current state), in this
case DM (alive with diabetes) for all persons. This implies that observations censored in
state A, say, are characterized by having lex.Cst = lex.Xst = A.

There is a summary function for Lexis objects that lists the number of transitions and
records as well as the total amount of follow-up time; it also (optionally) prints information
about the names of the variables that constitute the time scales:

> summary(dmL, timeScales = TRUE)

Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 7497 2499 9996 2499 54273.27 9996
Timescales:
per age tfD

It is possible to get a visualization of the follow-up along the time scales chosen by using
the plot method for Lexis objects. dmL is an object of class Lexis, so using the function
plot () on it means that R will look for the function plot.Lexis and use this function.

> plot(dmL)

The function allows quite a bit of control over the output, and a points.Lexis function
allows plotting of the endpoints of follow-up:

> par(mar = ¢(3, 3, 1, 1), mgp = c(3, 1, 0) / 1.6)

> plot(dmL, 1:2, 1wd = 1, col = c("blue", "red")[dmL$sex],
+ grid = TRUE, lty.grid = 1, col.grid = gray(0.7),

+ xlim = 1960 + c(0, 60), xaxs = "i",
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Figure 1.2: Lexis diagram of the DMlate dataset; left panel is the default version, right panel
s with some bells and whistles. The red lines are for women, blue for men, crosses indicate
deaths.

+ ylim = 40 + c¢(0, 60), yaxs = "i", las = 1)
> points(dmL, 1:2, pch = c(NA, 3)[dmL$lex.Xst],
+ col = "lightgray", 1lwd = 3, cex = 0.3)

> points(dmL, 1:2, pch = c(NA, 3)[duL$lex.Xst],
+ col = c("blue", "red")[dmL$sex], lwd = 1, cex = 0.3)
> box(bty = 'o')

In the above code you will note that the values of the arguments col and pch are indexed
by factors, using the convention in R that the index is taken as number of the level of the
supplied factor. Thus c("blue", "red") [dmL$sex] is "blue" when sex is M (the first
level of sex) and. "red" when sex is F (the second level of sex).

The results of these two plotting commands are in figure 1.2, p. 6.

1.2 Splitting the follow-up time along a time scale

In next chapter we shall conduct statistical analysis of mortality rates, and a prerequisite
for parametric analysis of rates is that follow-up time is subdivided in smaller intervals,
where we can reasonably assume that rates are constant.

The follow-up time in a cohort can be subdivided (“split”) along a time scale, for example
current age. This is achieved by the splitLexis (note that it is not called split.Lexis).
This requires that the time scale and the breakpoints on this time scale are supplied. Try:
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> dmS1 <- splitlexis(dmL, "age'", breaks = seq(0, 100, 5))
> summary (dmL)

Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 7497 2499 9996 2499 54273.27 9996
> summary (dmS1)
Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 18328 2499 20827 2499 54273.27 9996

We see that the number of persons and events and the amount of follow-up is the same in
the two data sets; only the number of records differ — the extra records all have lex.Cst

— DM and lex.Xst — DM.

To see how records are split for each individual, it is useful to list the results for a few

individuals (whom we selected with a view to the illustrative usefulness):

> wh.id <- c¢(9, 27, 52, 484)
> subset(dmL , lex.id %inJ wh.id)[, 1:10]

lex.id per age tfD lex.dur lex.Cst lex.Xst sex  dobth dodm
9 1998.96 61.87 O 9.51 DM Dead F 1937.08 1998.96
27 2000.04 52.71 O 9.95 DM DM M 1947.33 2000.04
52 1998.25 61.86 0 11.75 DM DM F 1936.39 1998.25
484 1998.26 62.38 0 10.93 DM Dead F 1935.88 1998.26
> subset(dmS1, lex.id J}inj wh.id)[, 1:10]
lex.id per age tfD lex.dur lex.Cst lex.Xst sex dobth dodm
9 1998.96 61.87 0.00 3.13 DM DM F 1937.08 1998.96
9 2002.08 65.00 3.13 5.00 DM DM F 1937.08 1998.96
9 2007.08 70.00 8.13 1.38 DM Dead F 1937.08 1998.96
27 2000.04 52.71 0.00 2.29 DM DM M 1947.33 2000.04
27 2002.33 55.00 2.29 5.00 DM DM M 1947.33 2000.04
27 2007.33 60.00 7.29 2.67 DM DM M 1947.33 2000.04
52 1998.25 61.86 0.00 3.14 DM DM F 1936.39 1998.25
52 2001.39 65.00 3.14 5.00 DM DM F 1936.39 1998.25
52 2006.39 70.00 8.14 3.60 DM DM F 1936.39 1998.25
484 1998.26 62.38 0.00 2.62 DM DM F 1935.88 1998.26
484 2000.88 65.00 2.62 5.00 DM DM F 1935.88 1998.26
484 2005.88 70.00 7.62 3.31 DM Dead F 1935.88 1998.26

The resulting object, dmS1, is again a Lexis object. Note that the values of the timescales

(per, age, tfD) are updated for each of the the resulting intervals. The follow-up in dmS1
may be split further along another time scale, for example diabetes duration, t£D.

Subsequently we list the results for the chosen individuals:

> dmS2 <- splitlexis(dmS1, "tfD", breaks = c(0, 1, 2, 5, 10, 20, 30, 40))

> subset(dmS2, lex.id Jin), wh.id)[, 1:10]

lex.id per age tfD lex.dur lex.Cst lex.Xst sex dobth
9 1998.96 61.87 0.00 1.00 DM DM F 1937.08
9 1999.96 62.87 1.00 1.00 DM DM F 1937.08
9 2000.96 63.87 2.00 1.13 DM DM F 1937.08
9 2002.08 65.00 3.13 1.87 DM DM F 1937.08
9 2003.96 66.87 5.00 3.13 DM DM F 1937.08
9 2007.08 70.00 8.13 1.38 DM Dead F 1937.08

d

1998.
1998.
1998.
1998.
1998.
1998.

odm
96
96
96
96
96
96
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27
27
27
27
27
27
52
52
52
52
52
52
52
484
484
484
484
484
484
484

2000.
2001.
2002.
2002.
2005.
2007.
1998.
1999.
2000.
2001.
2003.
2006.
2008.
1998.
1999.
2000.
2000.
2003.
2005.
2008.

04
04
04
33
04
33
25
25
25
39
25
39
25
26
26
26
88
26
88
26

A more

52. 0
53. 1
54. 2
55. 2
57. 5
60. 7
61. 0
62. 1
63. 2
65. 3
.86 5.
8
0
0
1
2
2
5
7
0

66

70.
71.
62.
63.
64.
65.
67.
70.
72.

71
71
71
00
71
00
86
86
86
00

00
86 1
38
38
38
00
38
00

.00 1.00
.00 1.00
.00 0.29
.29 2.71
.00 2.29
.29 2.67
.00 1.00
.00 1.00
.00 1.14
.14 1.86
00 3.14
.14 1.86
.00 1.75
.00 1.00
.00 1.00
.00 0.62
.62 2.38
.00 2.62
.62 2.38
00 0.93

DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM

splitMulti function from the popEpi package:

> dmM <- splitMulti(dmL,

+
+
+
> summary (dmS2)
Transitions:
To

From DM Dead

DM 40897 2499

> summary (dmM)

Transitions:
To
From DM Dead
DM 40897 2499

age
tfD
drop

Records:

43396

Records:

43396

= seq(0, 100, 5),
c(0, 1, 2, 5, 10, 20, 30, 40),

FALSE)

Events:
2499

Events:
2499

Risk time:
54273.27

Risk time:
b4273.27

DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
Dead

Pers

Pers

e I e T B B T N R S B R T T e

ons:
9996

ons:
9996

1947.
1947.
1947.
1947.
1947 .
1947 .
1936.
1936.
1936.
1936.
1936.
1936.
1936.
1935.
1935.
1935.
1935.
1935.
1935.
1935.

33
33
33
33
33
33
39
39
39
39
39
39
39
88
88
88
88
88
88
88

2000.
2000.
2000.
2000.
2000.
2000.
1998.
1998.
1998.
1998.
1998.
1998.
1998.
1998.
1998.
1998.
1998.
1998.
1998.
1998.

04
04
04
04
04
04
25
25
25
25
25
25
25
26
26
26
26
26
26
26

efficient (and more intuitive) way of making this double split is to use the

Note we used the argument drop = FALSE which will retain follow-up also outside the
window defined by the range of the breaks. Otherwise, the default for splitMulti would
be to drop follow-up outside age [0, 100] and t£D [0, 40]. This clipping behaviour is not
available in splitLexis, nevertheless this may be exactly what we want in some situations.
The recommended way of splitting follow-up time is by splitMulti, because it is faster.
But you should be aware that the result is a data.table object unless you set the option
"popEpi.datatable" = FALSE. In some circumstances data.tables behaves slightly
differently from data.frames. See the manual for data.table.

1.3 Cutting follow up time at dates of intermediate
events

If we have a recording of the date of a specific event as for example recovery or relapse, we
may classify follow-up time as being before or after this intermediate event, but it requires
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that follow-up records that straddle the event be cut in two and placed in separate records,
one representing follow-up before the intermediate event, and another representing
follow-up after the intermediate event. This is achieved with the function cutLexis, which
takes three arguments: the time point of the intermediate event, the time scale that this
point refers to, and the value of the (new) state following the date. Optionally, we may also
define a new time scale with the argument new.scale = .

We are interested in the time before and after inception of insulin use, which occurs at
the date doins:

> subset(dmL, lex.id /inJ) wh.id)[, 1:11]

lex.id per age tfD lex.dur lex.Cst lex.Xst sex  dobth dodm  dodth
9 1998.96 61.87 O 9.51 DM Dead F 1937.08 1998.96 2008.46

27 2000.04 52.71 0 9.95 DM DM M 1947.33 2000.04 NA

52 1998.25 61.86 0 11.75 DM DM F 1936.39 1998.25 NA

484 1998.26 62.38 0 10.93 DM Dead F 1935.88 1998.26 2009.19

> dmC <- cutLexis(data = dmL,
+ cut = dmL$doins,
+ timescale = "per",
+ new.state = "Ins",
+ new.scale = "tfI")
> subset(dmC, lex.id Jinj wh.id)[, 1:11]
lex.id per age tfD tfI lex.dur lex.Cst lex.Xst sex dobth dodm
9 1998.96 61.87 0.00 NA 9.51 DM Dead F 1937.08 1998.96
27 2000.04 52.71 0.00 NA 9.95 DM DM M 1947.33 2000.04
52 1998.25 61.86 0.00 NA 6.55 DM Ins F 1936.39 1998.25
52 2004.80 68.41 6.55 0 5.19 Ins Ins F 1936.39 1998.25
484 1998.26 62.38 0.00 NA 5.70 DM Ins F 1935.88 1998.26
484 2003.96 68.08 5.70 0 5.23 Ins Dead F 1935.88 1998.26

Note that the process of cutting time is simplified by having all types of events referred to
the calendar time scale. This is a generally applicable advice in handling follow-up data:
Get all event times as dates, location of events and follow-up on other time scales can then
easily be derived from this.

Note that individual 52 has had his follow-up cut at 6.55 years from diabetes diagnosis
and individual 484 at 5.70 years from diabetes diagnosis. This dataset could then be split
along the time scales as we did before with dmL.

The result of this can also be achieved by cutting the split dataset dmS2 instead of dmL.:

> dmS2C <- cutlexis(data = dmS2,

+ cut = dmS2$doins,

+ timescale = '"per",

+ new.state = "Ins",

+ new.scale = "tfI")

> subset (dmS2C, lex.id Jinj, wh.id)[, 1:11]

lex.id per age tfD tfI lex.dur lex.Cst lex.Xst sex  dobth dodm
9 1998.96 61.87 0.00 NA 1.00 DM DM F 1937.08 1998.96
9 1999.96 62.87 1.00 NA 1.00 DM DM F 1937.08 1998.96
9 2000.96 63.87 2.00 NA 1.13 DM DM F 1937.08 1998.96
9 2002.08 65.00 3.13 NA 1.87 DM DM F 1937.08 1998.96
9 2003.96 66.87 5.00 NA 3.13 DM DM F 1937.08 1998.96
9 2007.08 70.00 8.13 NA 1.38 DM Dead F 1937.08 1998.96
27 2000.04 52.71 0.00 NA 1.00 DM DM M 1947.33 2000.04
27 2001.04 53.71 1.00 NA 1.00 DM DM M 1947.33 2000.04
27 2002.04 54.71 2.00 NA 0.29 DM DM M 1947.33 2000.04
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27 2002.33 55.00 2.29 NA 2.71 DM DM M 1947.33 2000.04
27 2005.04 57.71 5.00 NA 2.29 DM DM M 1947.33 2000.04
27 2007.33 60.00 7.29 NA 2.67 DM DM M 1947.33 2000.04
52 1998.25 61.86 0.00 NA 1.00 DM DM F 1936.39 1998.25
52 1999.25 62.86 1.00 NA 1.00 DM DM F 1936.39 1998.25
52 2000.25 63.86 2.00 NA 1.14 DM DM F 1936.39 1998.25
52 2001.39 65.00 3.14 NA 1.86 DM DM F 1936.39 1998.25
52 2003.25 66.86 5.00 NA 1.55 DM Ins F 1936.39 1998.25
52 2004.80 68.41 6.55 0.00 1.59 Ins Ins F 1936.39 1998.25
52 2006.39 70.00 8.14 1.59 1.86 Ins Ins F 1936.39 1998.25
52 2008.25 71.86 10.00 3.45 1.75 Ins Ins F 1936.39 1998.25
484 1998.26 62.38 0.00 NA 1.00 DM DM F 1935.88 1998.26
484 1999.26 63.38 1.00 NA 1.00 DM DM F 1935.88 1998.26
484 2000.26 64.38 2.00 NA 0.62 DM DM F 1935.88 1998.26
484 2000.88 65.00 2.62 NA 2.38 DM DM F 1935.88 1998.26
484 2003.26 67.38 5.00 NA 0.70 DM Ins F 1935.88 1998.26
484 2003.96 68.08 5.70 0.00 1.92 Ins Ins F 1935.88 1998.26
484 2005.88 70.00 7.62 1.92 2.38 Ins Ins F 1935.88 1998.26
484 2008.26 72.38 10.00 4.30 0.93 Ins Dead F 1935.88 1998.26

Thus it does not matter in which order we use splitLexis and cutLexis. Mathematicians
would say that splitLexis and cutLexis are commutative.

Note that for lex.id = 484, the follow-up subsequent to the event is classified as being
in state Ins, but that the final transition to state Dead is preserved.

Note that we defined a new time scale, t£I, using the argument new.scale = "tfI".
This has a special status relative to the other three time scales: it is defined as time since
entry into a state, namely Ins, this is noted in the time scale part of the summary of
Lexis object — the information sits in the attribute time.since of the Lexis object,
which can be accessed by the function timeSince() or through the summary():

> summary (dmS2C, timeScales = TRUE)

Transitions:
To
From DM 1Ins Dead Records: Events: Risk time: Persons:
DM 35135 1694 2048 38877 3742 45885.49 9899
Ins 0 5762 451 6213 451 8387.77 1791
Sum 35135 7456 2499 45090 4193 b4273.27 9996
Timescales:
per age tfD tfl

nn nn nn llInSll

Finally we can get a quick overview of the states and transitions by using boxes —
scale.R scales transition rates to rates per 1000 PY:

> boxes(dmC, boxpos = TRUE, scale.R = 1000, show.BE = TRUE)
> legendbox (70, 95)

The explanatory box in the upper right corner was generated by legendbox.



Representation of follow-up at&LinttHpg follow up time at dates of intermediate events

11

State .
Person—time Transitions
no. begin no. end (Rate)
DM
45,885.5
9,899 6,157 1.694
(36.9)
2,048
(44.6) Ins
8,387.8
97 1,340
451
v (53.8)
Dead
0 2,499

Figure 1.3: States, person years, transitions and rates in the cut dataset. The numbers in
the bozes are person-years and the number of persons Beginning, resp. Ending their follow-up
in each state (triggered by show.BE = TRUE). The numbers at the arrows are the number of

transitions and transition rates per 1000 (triggered by scale.R = 1000).

./aaflup-box1



Chapter 2

Modeling rates from Lexis objects

2.1 Covariates

In the Lexis dataset dmS2C there are three types of covariates that can be used to describe
mortality rates:

1. time-dependent covariates
2. time scales
3. fixed covariates

There is only one time-dependent covariate, namely lex.Cst, the current state of the
person’s follow up; it takes the values DM and Ins according to whether the person has ever
purchased insulin at the beginning of a given follow-up interval.

The time-scales are obvious candidates for explanatory variables for the rates, notably
age and time from diagnosis (duration of diabetes) and insulin.

2.1.1 Time scales as covariates

If we want to model the effect of the time scale variables on occurrence rates, we will for
each interval use either the value of the left endpoint in each interval or the middle. There
is a function timeBand which returns either of these:

> timeBand(dmS2C, "age', "middle")[1:10]
[1] 57.5 57.5 62.5 62.5 62.5 67.5 67.5 62.5 67.5 67.5

> # For nice printing and column labelling we use the data.frame() function:
> data.frame(dmS2C[, c("per", "age", "tfD", "lex.dur")],
+ mid.age = timeBand(dmS2C, "age', "middle"),
+ mid.t = timeBand(dmS2C, "tfD", "middle"),
+ left.t = timeBand(dmS2C, "tfD", "left" ),
+ right.t = timeBand(dmS2C, "tfD", "right" ),
+ fact.t = timeBand(dmS2C, "tfD", "factor'"))[1:15, ]

per age tfD lex.dur mid.age mid.t left.t right.t fact.t
1 1998.917 58.66119 0.0000000 1.00000000 57.5 0.5 0 1 (0,1]
2 1999.917 59.66119 1.0000000 0.33880903 57.5 1.5 1 2 (1,2]
3 2000.256 60.00000 1.3388090 0.66119097 62.5 1.5 1 2 (1,2]
4 2000.917 60.66119 2.0000000 3.00000000 62.5 3.5 2 5 (2,5]
5 2003.917 63.66119 5.0000000 1.33880903 62.5 7.5 5 10 (5,10]
6 2005.256 65.00000 6.3388090 3.66119097 67.5 7.5 5 10 (5,10]
7 2008.917 68.66119 10.0000000 1.08008214 67.5 15.0 10 20 (10,20]

12
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8 2003.309 64.09035 0.0000000 0.90965092 62.5 0.5 0 1 (0,1]
9 2004.218 65.00000 0.9096509 0.09034908 67.5 0.5 0 1 (0,1]
10 2004.309 65.09035 1.0000000 1.00000000 67.5 1.5 1 2 (1,2]
11 2005.309 66.09035 2.0000000 3.00000000 67.5 3.5 2 5 (2,5]
12 2008.309 69.09035 5.0000000 0.90965092 67.5 7.5 5 10 (5,10]
13 2009.218 70.00000 5.9096509 0.77891855 72.5 7.5 5 10 (5,10]
14 2004.552 86.25051 0.0000000 1.00000000 87.5 0.5 0 1 (0,1]
15 2005.552 87.25051 1.0000000 1.00000000 87.5 1.5 1 2 (1,2]

Note that the values of these functions are characteristics of the intervals defined by
breaks = , not the midpoints nor left or right endpoints of the actual follow-up intervals
(which would be tfD and tfD+lex.dur, respectively).

These functions are intended for modeling time scale variables as factors (categorical
variables) in which case the coding must be independent of the censoring and mortality
pattern — it should only depend on the chosen grouping of the time scale. Modeling time
scales as quantitative should not be based on these codings but directly on the values of the
time-scale variables, i.e. the left endpoints of the intervals.

2.1.2 Differences between time scales

Apparently, the only fixed variable is sex, but the dates of birth (dobth), diagnosis (dodm)
and first insulin purchase (doins) are available as fixed covariates too. These can be
constructed as differences between time scales. These would then be age at birth (hardly
relevant since it is the same for all persons), age at diabetes diagnosis and age at insulin
treatment.

2.1.3 Keeping the relation between time scales

The midpoint (as well as the right interval endpoint) should be used with caution if the
variable age at diagnosis, dodm-dobth, is modeled too; the age at diabetes is logically equal
to the difference between current age (age) and time since diabetes diagnosis (t£D):

> summary ((dmS2$age - dmS2$tfD) - (dmS2$dodm - dmS2$dobth))

Min. 1st Qu. Median Mean 3rd Qu. Max.
0 0 0 0 0 0

This calculation refers to the value of the timescales at the beginning of each interval —
which are in the timescale variables in the Lexis object. But when using the middle of the
intervals, this relationship is not preserved:

> summary (timeBand(dmS2, "age', "middle") -

+ timeBand (dmS2, "tfD", "middle") -
+ (dmS2$dodm - dmS2$dobth))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-7.4870 -2.0862 -0.3765 Inf 1.3641 Inf

If all three variables are to be included in a model, we must make sure that the substantial
relationship between the variables be maintained. One way is to recompute age at diabetes
diagnosis from the two midpoint variables, but more straightforward would be to use the
left endpoint of the intervals, that is the time scale variables in the Lexis object.



14 2.2 Modeling of rates Lexis FU

If we dissolve the relationship between the variables age, tfD and age at diagnosis by
grouping we may obtain identifiability of the three separate effects, but it will be at the
expense of an arbitrary allocation of a linear trend between the three effects..

For the sake of clarity, consider current age, a, age at diagnosis e and duration of disease,
d, where

current age = age at diagnosis + disease duration, i.e. a=e+d & e+d—a=0

If we model the effect of the quantitative variables a, e and d on the log-rates by three
functions f, g and h: log(\) = f(a) + g(d) + h(e) then for any x:

log(A) = f(a) + g(d)

In practical modeling this will turn up as a singular model matrix with one parameter
aliased, corresponding to some arbitrarily chosen value of x (depending on software
conventions for singular models). This phenomenon is well known from age-period-cohort
models [4].

Thus we see that we can move any slope around between the three terms, so if we
achieve identifiability by using grouping of one of the variables we will in reality have
settled for a particular value of x, without knowing how and why we chose just that. There
is no way to separate the three effects. The only resorts are either to stick to predictions
which are independent of the particular parametrization or to choose a parametrization
with explicitly defined constraints clearly stated.

2.2 Modeling of rates

As mentioned, the purpose of subdividing follow-up data in smaller intervals is to be able
to model effects of time scale variables as parametric functions. When we split along a time
scale we can get intervals that are as small as we want; if they are sufficiently small, an
assumption of constant rates in each interval becomes reasonable.

In a model that assumes a constant occurrence rate in each of the intervals, the
likelihood contribution from each interval is the same as the likelihood contribution from a
Poisson variate D, say, with mean A\ where X is the rate and ¢ is the interval length, and
where the value of the variate D is 1 or 0 according to whether an event has occurred or
not. Moreover, the likelihood contributions from all follow-up intervals from a single person
are conditionally independent (conditional on having survived till the start of the interval
in question). This implies that the total contribution to the likelihood from a single person
is a product of terms, and hence the same as the likelihood of a number of independent
Poisson terms, one from each interval.

Note that the observations are neither Poisson distributed (e.g. they can only ever
assume values 0 or 1) nor independent — it is only the likelihood for the follow-up data
that happens to be the same as the likelihood from independent Poisson variates because it
is a product of terms. Different models can have the same likelihood; a model cannot be
inferred from its likelihood.
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Parametric modeling of the rates is obtained by using the values of the time scales for
each interval as quantitative explanatory variables, using for example splines. And of
course also the values of the fixed covariates and the time-dependent variables for each
interval. Thus the model will be one where the rate is assumed constant in each (small)
interval, but where a parametric form of the size of the rate in each interval is imposed by
the model, using the time scale as a quantitative covariate.

2.2.1 Interval length

In the first chapter we illustrated cutting and splitting by listing the results for a few
individuals across a number of intervals. For illustrational purposes we used 5-year age
bands to avoid excessive listings, but since the doubling time for mortality on the age scale
is only slightly larger than 5 years, the assumption about constant rates in each interval
would be pretty far fetched if we were to use 5 year intervals.

Thus, for modeling purposes we split the follow-up in 3 month intervals. When we use
intervals of 3 months length it is superfluous to split along multiple time scales — the
precise location of tightly spaced splits will be irrelevant from any practical point of view.
splitLexis and splitMulti will allocate the actual split times for all of the time scale
variables, so these can be used directly in modeling.

So we split the cut dataset in 3 months intervals along the age scale:

> dmCs <- splitLexis(dmC, time.scale = "age", breaks = seq(0, 110, 1/4))
> summary(dmCs, t = T)

Transitions:
To
From DM Ins Dead Records: Events: Risk time: Persons:
DM 189669 1694 2048 193411 3742 45885.49 9899
Ins 0 34886 451 35337 451 8387.77 1791
Sum 189669 36580 2499 228748 4193 54273.27 9996
Timescales:
per age tfD tflI

nn nn nn llInsll

We see that we now have 228,748 records and 9996 persons, so about 23 records per
person. The total risk time is 54,275 years, a bit less than 3 months on average per record
as expected.

2.2.2 Practicalities for splines

In this study we want to look at how mortality depend on age (age) and time since start of
insulin use (t£fI). If we want to use splines in the description we must allocate knots for
anchoring the splines at each of the time scales, either by some ad hoc method or by using
some sort of penalized splines as for example by gam; the latter will not be treated here; it
belongs in the realm of the mgcv package.

Here we shall use the former approach and allocate 5 knots on each of the time-scales.
We allocate knots so that we have the events evenly distributed between the knots. Since
the insulin state starts at 0 for all individuals we include 0 as the first knot, such that any
set of natural splines with these knots will have the value 0 at 0 on the time scale.
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> (a.kn <- with(subset(dmCs, lex.Xst == '"Dead'"),
+ quantile(age+lex.dur, seq(5, 95, , 5) /100)))
5% 27 .5Y% 50% 72.5Y% 95%

56.02519 70.26407 77.72758 83.42574 92.27406
> (i.kn <- ¢(0,

+ with(subset(dmCs, lex.Xst == "Dead" & lex.Cst == "Ins"),
+ quantile(tfI+lex.dur, seq(20, 95, , 4) / 100))))
20% 45% 70% 95%

0.0000000 0.3093771 1.4907598 3.5619439 8.2327173

In the Epi package there is a convenience wrapper, Ns, for the natural spline generator ns,
that takes the smallest and the largest of a set of supplied knots to be the boundary knots,
so the explicit definition of the boundary knots becomes superfluous.

Note that it is a feature of the Ns (via the features of ns) that any generated spline
function is 0 at the leftmost knot (the smaller of the boundary knots).

2.2.3 Poisson models

A model that describes mortality rates as a function of only age (ignoring the insulin
status) would then be:

> ma <- gilm((lex.Xst == "Dead") ~ Ns(age, knots = a.kn),

+ family = poisson,

+ offset = log(lex.dur),

+ data = dmCs)

> summary (ma)

Call:

glm(formula = (lex.Xst == "Dead") ~ Ns(age, knots = a.kn), family = poisson,

data = dmCs, offset = log(lex.dur))

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.12453 0.04572 -90.21 <2e-16
Ns(age, knots = a.kn)1 1.62294 0.08534 19.02 <2e-16
Ns(age, knots = a.kn)2 1.81446 0.07192 25.23 <2e-16
Ns(age, knots = a.kn)3 3.25264 0.09849 33.02 <2e-16
Ns(age, knots = a.kn)4 2.36613 0.06816 34.72 <2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 27719 on 228747 degrees of freedom
Residual deviance: 25424 on 228743 degrees of freedom
ATC: 30432

Number of Fisher Scoring iterations: 8

The offset, log(lex.dur) comes from the fact that the likelihood for the follow-up data
during ¢ time is the same as that for independent Poisson variates with mean A/, and that
the default link function for the Poisson family is the log, so that we are using a linear
model for the log-mean, log(\) + log(¢). But when we want a model for the log-rate
(log(X)), the term log(¢) must still be included as a covariate, but with regression
coefficient fixed to 1; a so-called offset. This is however a technicality; it just exploits that
the likelihood of a particular Poisson model and that of the rates model is the same.
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In the Epi package is a glm family, poisreg, that has a more intuitive interface to the
likelihood of rates, namely where the response is a 2-column matrix of events and
person-time, respectively. This is in concert with the fact that the outcome variable in
follow-up studies is bivariate: (event, risk time).

> Ma <- glm(cbind(lex.Xst == "Dead", lex.dur) ~ Ns(age, knots = a.kn),

+ family = poisreg,

+ data = dmCs)

> summary (Ma)

Call:

glm(formula = cbind(lex.Xst == "Dead", lex.dur) ~ Ns(age, knots = a.kn),

family = poisreg, data = dmCs)

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.12453 .04573 -90.20 <2e-16
Ns(age, knots = a.kn)1 1.62294 .08534 19.02 <2e-16
Ns(age, knots = a.kn)2 1.81446 .07192  25.23 <2e-16
Ns(age, knots = a.kn)3 3.25264 .09851  33.02 <2e-16
Ns(age, knots = a.kn)4 2.36613 .06816  34.72 <2e-16

[oNeoNeoNeNe]

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 27719 on 228747 degrees of freedom
Residual deviance: 25424 on 228743 degrees of freedom
ATC: 30432

Number of Fisher Scoring iterations: 7

There is a convenience wrapper for glm with the poisreg family, exploiting the multistate
structure in the Lexis object. It just requires specification of the transitions in terms of
the arguments from and to:

> Xa <- glmLexis(dmCs, formula = ~ Ns(age, knots = a.kn),
+ from = "DM", to = "Dead",)

stats::glm Poisson analysis of Lexis object dmCs with log link:
Rates for the transition:
DM->Dead

The result is a glm object but with an extra attribute, Lexis with the name of the data,
transition(s) modeled and model formula

> attr(Xa, "Lexis")

$data
[1] "dmCs"

$trans
[1] "DM->Dead"

$formula
“Ns(age, knots = a.kn)
<environment: 0x000001eb3435b080>

$scale
[1] 1
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There are similar wrappers for gam and coxph models, gamLexis and coxphLexis, but
these will not be elaborated in detail here.

The from= argument can be omitted, in which case all possible transitions into any of
the “to” states is modeled. Similarly to= can be omitted, it defaults to the set of absorbing
states. There are a couple of functions that show the absorbing and transient states:

> transient (dmCs)

[1] n"pM" "Tng"

> absorbing(dmCs)

[1] "Dead"

> preceding (dmCs, absorbing(dmCs))
[1] "pM" "Tps"

So the default will be to model transitions from DM and Ins to Dead:

> xa <- glmLexis(dmCs, formula = ~ Ns(age, knots = a.kn))

stats::glm Poisson analysis of Lexis object dmCs with log link:
Rates for transitions:

DM->Dead

Ins->Dead

We can check if the four models fitted are the same:

> c(ma = deviance(ma),
+ Ma = deviance(Ma),
+ Xa = deviance(Xa),
+ xa = deviance(xa))
ma Ma Xa xa

25423.81 25423.81 20903.17 25423.81

Oops! the model Xa is apparently not the same as the other three? This is because the
explicit specification from = "DM", to = "Dead", omits modeling contributions from the
Ins — Dead transition — the output actually said so — see also figure 1.3 on p. 11. The
other three models all use both transitions — and assume that the two transition rates are
the same, i.e. that start of insulin has no effect on mortality. We shall relax this
assumption later.

The parameters from the model do not have any direct interpretation per se, but we can
compute the estimated mortality rates for a range of ages using ci.pred with a suitably
defined prediction data frame.

Note that if we use the poisson family of models, we must specify all covariates in the
model, including the variable in the offset, lex.dur (remember that this was a covariate
with coefficient fixed at 1). We set the latter to 1000, because we want the mortality rates
per 1000 person-years. Using the poisreg family, the prediction will ignore any value of
lex.dur specified in the prediction data frame, the returned rates will be per unit in which
lex.dur is recorded when fitting the model.

> nd <- data.frame(age = 40:85, lex.dur = 1000)

> pr.0 <- ci.pred(ma, newdata = nd) # mortality per 1000 PY
> pr.a <- ci.pred(Ma, newdata = nd)*1000 # mortality per 1000 PY
> summary(pr.0 / pr.a)
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Estimate 2.5% 97.5%
Min. 01 Min. 01 Min. 01
1st Qu.:1 1st Qu.:1 1st Qu.:1
Median :1 Median :1 Median :1
Mean 01 Mean 01 Mean 01
3rd Qu.:1 3rd Qu.:1 3rd Qu.:1
Max. 01 Max. 1 Max. 01
> matshade (nd$age, pr.a, plot = TRUE,
+ type = "1", 1ty = 1,
+ log = "y", xlab = "Age (years)",
+ ylab = "DM mortality per 1000 PY")
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Figure 2.1: Mortality among Danish diabetes patients by age with 95% CI as shaded area. We
see that the rates increase linearly on the log-scale, that 1s, exponentially by age../aaflup-pr-a

2.3 Time dependent covariates

One approach to modeling mortality rates by insulin status would be to assume that the
mortality rate-ratio between patients on insulin and not on insulin is a fixed quantity,
independent of time since start of insulin and independent of age. This is commonly
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termed a proportional hazards assumption, because the rates (hazards) in the two groups
are proportional along the age (baseline time) scale.

> pm <- glm(cbind(lex.Xst == "Dead", lex.dur) ~ Ns(age, knots = a.kn)
+ + lex.Cst + sex,
+ family = poisreg,
+ data = dmCs)
> round(ci.exp(pm), 3)
exp(Est.) 2.5% 97.5%
(Intercept) 0.016 0.015 0.018
Ns(age, knots = a.kn)1l 5.619 4.752 6.643
Ns(age, knots = a.kn)2 7.061 6.127 8.137
Ns(age, knots = a.kn)3 32.415 26.669 39.398
Ns(age, knots = a.kn)4 12.538 10.951 14.354
lex.CstlIns 1.986 1.792 2.201
sexF 0.668 0.617 0.724

Again we can simplify the code using glmLexis:

> pm <- glmLexis(dmCs, ~ Ns(age, knots = a.kn) + lex.Cst + sex)
stats::glm Poisson analysis of Lexis object dmCs with log link:
Rates for transitions:

DM->Dead

Ins->Dead

> round(ci.exp(pm), 3)

exp(Est.) 2.5% 97.5%
(Intercept) 0.016 0.015 0.018
Ns(age, knots = a.kn)1l 5.619 4.752 6.643
Ns(age, knots = a.kn)2 7.061 6.127 8.137
Ns(age, knots = a.kn)3 32.415 26.669 39.398
Ns(age, knots = a.kn)4 12.538 10.951 14.354
lex.CstlIns 1.986 1.792 2.201
sexF 0.668 0.617 0.724

So we see that persons on insulin have about twice the mortality of persons not on insulin
and that women have 2/3 the mortality of men.
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Multiple time scales

3.1 Time since insulin start

If we want to assess how the excess mortality depends on the time since start of insulin
treatment, we can add a spline term in tfI, time from Insulin start. But since tfI is a
time scale defined as time since entry into a new state (Ins), the variable t£I is missing for
those in the DM state, so before modeling we must set the NAs to 0, which we do with
tsNA20 (acronym for timescale NAs to zero):

> pm <- glm(cbind(lex.Xst == "Dead", lex.dur) ~ Ns(age, knots = a.kn)
+ + Ns(tfI, knots = i.kn)
+ + lex.Cst + sex,

+ family = poisreg,

+ data = tsNA20(dmCs))

As noted before we could do this simpler with glmLexis, even without the from= and to=
arguments, because we are modeling all transitions into the absorbing state (Dead):

> Pm <- glmLexis(tsNA20(dmCs),

+ form = ~ Ns(age, knots = a.kn)
+ + Ns(tfI, knots = i.kn)
+ + lex.Cst + sex)

stats::glm Poisson analysis of Lexis object tsNA20(dmCs) with log link:
Rates for transitions:

DM->Dead

Ins->Dead

> c(deviance(Pm), deviance(pm))

[1] 25096.8 25096.8

> identical (model.matrix(Pm), model.matrix(pm))
(11 TRUE

The coding of the effect of t£I is so that the value is 0 at 0, so the meaning of the estimate
of the effect of 1lex.Cst is the RR between persons with and without insulin, immediately
after start of insulin:

> round(ci.exp(Pm, subset = "ex"), 3)
exp(Est.) 2.5% 97.5%

lex.CstlIns 5.526 4.384 6.964

sexF 0.674 0.622 0.730

21
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We see that the effect of sex is pretty much the same as before, but the effect of lex.Cst is
much larger; it now refers to a different quantity, namely the RR between persons just
started on insulin (i.e. at time t£I = 0) and persons not on insulin. In the model pm
above, the effect of 1lex.Cst was the average effect of insulin exposure, assuming that it
was constant over time since start of insulin.

If we want to see the effect of time since insulin, it is best viewed jointly with the effect
of age, so we construct a prediction data frame — a data frame with the explanatory
variables from the model and values of these for which we want to see the predicted
occurrence rates:

> ndI <- data.frame(expand.grid(tfI = c(NA, seq(0, 15, 0.1)),
+ ai = seq(40, 80, 10)),

+ lex.Cst = "Ins",

+ sex = IIMII)

> ndI <- transform(ndI, age = ai + tfI)

> head(ndI)

tfl ai lex.Cst sex age

1 NA 40 Ins M NA

2 0.0 40 Ins M 40.0

3 0.1 40 Ins M 40.1

4 0.2 40 Ins M 40.2

5 0.3 40 Ins M 40.3

6 0.4 40 Ins M 40.4

> ndA <- data.frame(age = seq(40, 100, 0.1),

+ tfI = 0,

+ lex.Cst = "DM",

+ sex = IIMII)

> pri <- ci.pred(Pm, ndI) * 100

> pra <- ci.pred(Pm, ndA) * 100

> matshade(ndI$age, pri, plot = TRUE,

+ xlab = "Attained age (years)'", ylab = "DM mortality per 100 PY",
+ las = 1, log = "y", 1ty = 1, col = "blue")
> matshade(ndA$age, pra)

CODE EXPLAINED: expand.grid yields a data frame with all combinations of tfI and
ai, the latter is age at insulin start; we want predictions for different values of this. But it
is (current) age that is in the model, so we must construct this. The NAs are inserted in
order to produce separate curve for each value of ai.

The prediction data frame for persons not on insulin is simpler, but must still include
the t£I variable, but now uniformly set to 0.

ci.pred will give predicted rates from the Pm model, per 1 person-year (because
lex.dur is in years), so we multiply by 100 to get rates per 100 PY (% / year).

matshade produces curves with shaded confidence bands.

In figure 3.1, p. 23, we see that mortality is high just after insulin start, but falls by
almost a factor 3 during the first year. Also we see that there is a tendency that mortality
in a given age is smallest for those with the longest duration of insulin use. Or among
those who started insulin first — the two effects cannot be separated.
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Figure 3.1: Mortality rates of persons on insulin, starting insulin at ages 40, 50, ..., 80
(blue), compared with persons not on insulin (black curve). Shaded areas are 95% CIL.
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3.2 The Cox model

In the implementation of the Cox-model with age as baseline time scale, age appears as
response variable, slightly counter-intuitive since it really is a covariate. Hence the age part
of the linear predictors is not in the specification of the covariates:

> cm <- coxph(Surv(age, age + lex.dur, lex.Xst == "Dead") ~
+ Ns(tfI, knots = i.kn) + lex.(Cst + sex,
+ data = tsNA20(dmCs))

There is also a multistate wrapper for Cox models, requiring a L.h.s. side for the formula =
argument:

> Cm <- coxphLexis(tsNA20(dmCs),

+ formula = age ~ Ns(tfI, knots = i.kn) + lex.Cst + sex)
survival::coxph analysis of Lexis object tsNA20(dmCs):

Rates for transitions:

DM->Dead

Ins->Dead

Baseline timescale: age
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> round(cbind(ci.exp(cm), ci.exp(Cm)), 4)
exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%

Ns(tfI, knots = i.kn)1 0.2757 0.1853 0.4103 0.2757 0.1853 0.4103
Ns(tfI, knots = i.kn)2 0.4380 0.3068 0.6253 0.4380 0.3068 0.6253
Ns(tfI, knots = i.kn)3 0.1121 0.0580 0.2166 0.1121 0.0580 0.2166
Ns(tfI, knots = i.kn)4 0.4216 0.3170 0.5607 0.4216 0.3170 0.5607
lex.CstlIns 5.5596 4.4022 7.0214 5.5596 4.4022 7.0214
lex.CstDead 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
sexF 0.6753 0.6231 0.7318 0.6753 0.6231 0.7318

Note that this is really a model with two time scales: the baseline time scale age and the
time since insulin, tfi. The effects of age and time since insulin are modeled differently,
age non-parametrically and t£fI with a smooth parametric spline. And only the spline
effects is shown in the parameters.

We can compare the estimates of the insulin effect from the Cox model with those from
the Poisson model — we must add NAs to the Cox-parameters for the comparison because
the Cox-model does not give any parameters for the baseline time scale (age), but also
remove one of the parameters, because coxph parametrizes factors (in this case lex.Cst)
by all defined levels and not only by the levels present in the dataset at hand (note the line
of 1.0000s in the print above):

> round(cbind(ci.exp(Pm),

+ rbind(matrix(NA, 5, 3),
+ ci.exp(cm)[-6, 1)), 3)

exp(Est.) 2.5% 97.5% exp(Est.) 2.5} 97.5%
(Intercept) 0.016 0.015 0.018 NA NA NA
Ns(age, knots = a.kn)1l 5.538 4.684 6.549 NA NA NA
Ns(age, knots = a.kn)2 7.052 6.120 8.127 NA NA NA
Ns(age, knots = a.kn)3 31.619 26.010 38.438 NA NA NA
Ns(age, knots = a.kn)4 12.336 10.776 14.120 NA NA NA
Ne(tfI, knots = i.kn)1 0.274 0.184 0.407 0.276 0.185 0.410
Ne(tfI, knots = i.kn)2 0.438 0.307 0.625 0.438 0.307 0.625
Ns(tfI, knots = i.kn)3 0.114 0.059 0.219 0.112 0.058 0.217
Ns(tfI, knots = i.kn)4 0.419 0.315 0.557 0.422 0.317 0.561
lex.CstlIns 5.526 4.384 6.964 5.560 4.402 7.021
sexF 0.674 0.622 0.730 0.675 0.623 0.732

Thus we see that the Poisson and Cox gives pretty much the same results with regards to
the regression parameters, but only the Poisson gives a parametrization of the baseline
hazard. You may argue that Cox requires a smaller dataset, because there is no need to
subdivide data in small intervals before insulin use. But certainly the time after insulin
inception needs to be subdivided in smaller intervals (as the Lexis data frame is) if the
effect of this time should be modeled.

The drawback of the Cox-modeling is that it is not possible to show the absolute rates as
we did in figure 3.1 on page 23.

3.3 Marginal effect of time since insulin
When we plot the marginal effect of tfI from the two models we get pretty much the same;

here we plot the RR relative to tfI = 2 years. Note that we are deriving the RR as the
ratio of two sets of predictions, from the data frames nd and nr—variables assumed to have
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the same values in the two data frames need not be included in the prediction frames, but
numerical variables omitted must be indicated in the xvars= argument. For further details,
consult the help page for ci.lin, specifically the use of a list as the ctr.mat argument:

nd <- data.frame(tfI = seq(0, 15, , 151), lex.Cst = "Ins", sex = "M")
nr <- data.frame(tfI = 2 , lex.Cst = "Ins", sex = "M")
# We need to use xvars='"age" in ci.exp because age is in the model
# but not in the prediction frames nd and nr
ppr <- ci.exp(pm, list(nd, nr), xzvars = "age")
cpr <- ci.exp(cm, list(nd, nr))
par(mar = c(3, 3, 1, 1), mgp = ¢c(3, 1, 0)/1.6, las = 1, bty = "n")
matshade (nd$tfI, cbind(ppr, cpr), plot = T,

Ity = c(1, 2), 1wd = 3, log = "y",

xlab = "Time since insulin (years)',

ylab = "Mortality rate ratio")
abline(h = 1, 1ty = 3)
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Figure 3.2: The naked duration effects on mortality relative to 2 years of duration. Black
from Poisson model, red from Cox model. The two sets of estimates are identical, and so
are the standard errors, so the two shaded areas overlap almost perfectly. ./aaflup-Teff

In figure 3.2, p. 25, we see that the duration effect is exactly the same from the two
modeling approaches (Cox and Poisson).
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We will also want the RR relative to the non-insulin users — recall these are coded 0 on
the t£I variable:

1ty = c(1, 2), log = "y", plot = TRUE)
abline(h = 1, 1ty = 3)

> nd <- data.frame(tfI = seq(0, 15, , 151), lex.Cst = "Ins", sex = "M")
> nr <- data.frame(tfI = 0 , lex.Cst = "DM" , sex = "M")
> ppr <- ci.exp(pm, list(nd, nr), xvars = "age")

> cpr <- ci.exp(cm, list(nd, nr))

> par(mar = c(3, 3, 1, 1), mgp = c(3, 1, 0)/1.6, las = 1, bty = "n")

> matshade (nd$tfI, cbind(ppr, cpr), lwd = 3,

+ xlab = "Time since insulin (years)',

+ ylab = "Rate ratio relative to non-Insulin",

+

>

Rate ratio relative to non—Insulin

0.5—-

[ I I |
0 5 10 15

Time since insulin (years)

Figure 3.3: Insulin duration effect (state Ins) relative to no insulin (state DM), black from
Poisson model, red from Cox model. The shape is the same as the previous figure, but the
RR s now relative to non-insulin, instead of relative to insulin users at 2 years duration.
The estimates from the Cox model and the Poisson model are virtually identical, and so are
the standard errors, so the two shaded areas overlap almost perfectly. ./aaflup-TIeffR

In figure 3.3, p. 26, we see the effect of increasing duration of insulin use for a fized age
which is a bit artificial, so we would like to see the joint effects of age and insulin duration.
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What we cannot see is how the duration affects mortality as a function of current age (at
the age attained at the same time as the attained t£I).

Another way of interpreting this curve is as the rate ratio for a person on insulin relative
to a person of the same age not on insulin, so we see that the RR (or hazard ratio, HR as
some call it) is over 5 at the start of insulin (the lex.Cst estimate), and decreases to about
1.5 in the long term.

Figure 3.1, 3.2 and 3.3 all indicate a declining RR by insulin duration, but only from
figure 3.1 it is visible that mortality actually is increasing by age after some 2 years after
insulin start. This point would not be available if we had only fitted a Cox model where we
do not have access to the baseline hazard as a function of age; the Cox model only gives
the rate ratio of the blue to the black curve in 3.1.

3.4 Agexduration interaction

The model we fitted assumes that the HR (or RR) is the same regardless of the age at start
of insulin — the hazards are multiplicative. Sometimes this is termed the proportional
hazards assumption: For any fixed age the HR is the same as a function of time since
insulin, and vice versa.

A more correct term would be “main effects model” — there is no interaction between
age (the baseline time scale) and other covariates. So there is really no need for the term
“proportional hazards”; a well defined and precise statistical term for it has existed for eons.

3.4.1 Age at insulin start

In order to check the consistency of the multiplicative assumption across the spectrum of
age at insulin inception, we can fit an interaction model. One approach to this — which is
not a completely general interaction — would be using a non-linear effect of age at insulin
inception (for convenience we use the same knots as for age). Note that the prediction data
frames would be the same as we used above, because we do not compute age at insulin for
use as a separate variable, but rather enter it in the model as the difference between
current age (age) and insulin duration (t£I).

At first glance we might think of doing:

> ii <- glmLexis(tsNA20(dmCs),

+ formula = ~ Ns(age , knots = a.kn)
+ + Ns( tfI, knots = i.kn)
+ + Ns(age - tfI, knots = a.kn)
+ + lex.Cst + sex)

stats::glm Poisson analysis of Lexis object tsNA20(dmCs) with log link:
Rates for transitions:

DM->Dead

Ins->Dead

But this fits a model where the rate-ratio between persons with and without insulin at
start of insulin (where t£I = 0) will be the same at any age, which is a bit too restrictive
for the interaction we want.

We want the age-tfI term to be specific for the insulin exposed so will use:
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> im <- glmLexis(tsNA20(dmCs),

+ formula = ~ Ns(age , knots = a.kn)
+ + Ns( tfI, knots = i.kn)
+ + lex.Cst : Ns(age - tfI, knots = a.kn)
+ + lex.Cst + sex)

stats::glm Poisson analysis of Lexis object tsNA20(dmCs) with log link:
Rates for transitions:

DM->Dead

Ins->Dead

> ci.exp(im)

exp(Est.) 2.5% 97.5%
(Intercept) 0.01575547 0.01406283 0.01765183
Ns(age, knots = a.kn)1l 1.45049888 0.48566502 4.33209499
Ns(age, knots = a.kn)2 3.28896656 0.99268621 10.89699940
Ns(age, knots = a.kn)3 7.19032712 1.37318335 37.65032829
Ns(age, knots = a.kn)4 6.86441321 4.44171333 10.60855693
Ns(tfI, knots = i.kn)1 0.28315225 0.18991869 0.42215536
Ns(tfI, knots = i.kn)2 0.45717845 0.31581166 0.66182527
Ns(tfI, knots = i.kn)3 0.12758408 0.06448360 0.25243159
Ns(tfI, knots = i.kn)4 0.50717175 0.34616186 0.74307201
lex.CstlIns 7.47382611 5.49732897 10.16094853
sexF 0.67473718 0.62265409 0.73117686
lex.CstDM:Ns(age - tfI, knots = a.kn)l 4.14327757 1.36502972 12.57609909
lex.CstIns:Ns(age - tfI, knots = a.kn)l 2.43113475 0.87371669 6.76468273
lex.CstDM:Ns(age - tfI, knots = a.kn)2 2.29280493 0.68485816 7.67597542
lex.CstIns:Ns(age - tfI, knots = a.kn)2 1.18245222 0.40542803 3.44868427
lex.CstDM:Ns(age - tfI, knots = a.kn)3 4.49803441 0.84378653 23.97800004
lex.CstIns:Ns(age - tfI, knots = a.kn)3 2.87323644 0.72496293 11.38746176
lex.CstDM:Ns(age - tfI, knots = a.kn)4 1.96407795 1.24155728 3.10706745
lex.CstIns:Ns(age - tfI, knots = a.kn)4 1.00000000 1.00000000 1.00000000

The model (im) allows age-effects that differ non-linearly between persons with and
without insulin, because the interaction term lex.Cst:Ns(age-tfI... for persons not on
insulin is merely an age term (since t£I is coded 0 for all follow-up not on insulin).

We can compare the two models fitted:

> anova(ii, im, test = 'Chisq')
Analysis of Deviance Table

Model 1: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in’ trnam, Lx$lex.dur) ~ Ns(age,
knots = a.kn) + Ns(tfI, knots = i.kn) + Ns(age - tfI, knots = a.kn) +
lex.Cst + sex

Model 2: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in) trnam, Lx$lex.dur) ~ Ns(age,
knots = a.kn) + Ns(tfI, knots = i.kn) + lex.Cst:Ns(age -
tfI, knots = a.kn) + lex.Cst + sex

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 228734 25097

2 228730 25082 4 14.695 0.005377

so we see that the second model (im, the interaction model) provides a substantial further
improvement, by allowing non-linear HR along the age-scale.
We can illustrate the estimated rates from the im model in figure 3.4, p. 29:
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> pii <- ci.pred(im, ndI)
> pia <- ci.pred(im, ndA)

\

par (mar =

v

c(3, 3, 1, 1), mgp = c(3, 1, 0) / 1.6, las = 1, bty = "n")

matshade (ndI$age, pii * 1000, plot = T, log = "y",

+ xlab = "Age", ylab = "Mortality per 1000 PY",
+ Ity = 1, 1wd = 2, col = c("blue", "forestgreen", '"red"), alpha = 0.1)
> matshade(ndA$age, pia * 1000)
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We can also plot the RRs from the interaction model (figure 3.5, p. 30); for this we need
the reference frames, and the machinery from ci.exp allowing a list of two data frames:

> ndR <- transform(ndI, tfI = 0, lex.Cst = "DM'")

A\

cbind(head(ndI), head(ndR))

tfl ai lex.Cst sex age tfl ai lex.Cst sex age

NA 40
40
40
40
40
40

OO WN
O O O OO
B W NN O

Ins M NA O 40 DM M NA
Ins M 40.0 0 40 DM M 40.0
Ins M 40.1 0 40 DM M 40.1
Ins M 40.2 0 40 DM M 40.2
Ins M 40.3 0 40 DM M 40.3
Ins M 40.4 0 40 DM M 40.4
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Rii <- ci.exp(im , list(ndI, ndR))
par(mar = c(3, 3, 1, 1), mgp = ¢(3, 1, 0)/1.6, las = 1, bty = "n")
matshade (ndI$age, Rii, plot = T, log = "y",
xlab = "Age (years)", ylab = "Rate ratio vs, non-Insulin",
Ity = 1, 1Iwd = 2, col = c("blue", "forestgreen", '"red"), alpha = 0.1)
abline(h = 1)
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Figure 3.5: RRs from the interaction model. ./aaflup-dur-int-RR

3.5 Separate models

In the above we insisted on making a joint model for the DM—Dead and the Ins—Dead
transitions, but it would actually have been more sensible to model the two transitions
separately:
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> dmd <- glmLexis(dmCs,

+ from = "DM", to = '"Dead",
+ formula = ~ Ns(age, knots = a.kn)
+ + sex)

stats::glm Poisson analysis of Lexis object dmCs with log link:
Rates for the tramsition:

DM->Dead

> ind <- glmLexis(dmCs,

+ from = "Ins'", to = "Dead",

+ formula = ~ Ns(age , knots = a.kn)
+ + Ns( tfI, knots = i.kn)
+ + Ns(age - tfI, knots = a.kn)
+ + sex)

stats::glm Poisson analysis of Lexis object dmCs with log link:
Rates for the transition:
Ins->Dead

> ini <- ci.pred(ind, ndI)
> dmi <- ci.pred(dmd, ndI)
> dma <- ci.pred(dmd, ndA)

The estimated mortality rates are shown in figure ??, p. 77, using:

> par(mar = c(3, 3, 1, 1), mgp = c(3, 1, 0)/1.6, las = 1, bty = "n")
> matshade(ndI$age, ini * 100, plot = TRUE, log = "y",

+ xlab = "Age (years)", ylab = "Mortality rates per 100 PY",
+ Ilwd = 2, col = "red")

> matshade (ndA$age, dmax*100,

+ lwd = 2, col = "black")

The estimated RRs can now be computed exploiting the fact that the estimates from the

two models are uncorrelated, and hence qualify for ci.ratio:

> par(mar = c(3, 3, 1, 1), mgp = ¢(3, 1, 0)/1.6, las = 1, bty = "n")
> matshade(ndI$age, ci.ratio(ini, dmi), plot = TRUE, log = "y",

+ xlab = "Age (years)", ylab = "RR insulin vs. no insulin",
+ Iwd = 2, col = "red")

> abline(h = 1)

The only difference between the interaction model and the two separate models is that the
latter allows different sex-effects between mortality rates from DM and Ins. There actually

is a difference between the estimates but hardly visible.
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Figure 3.6: Left panel: Mortality rates from separate models for the two mortality transitions;
the DM—Dead transition modeled by age alone; Ins—Dead transition modeled with spline
effects of current age, time since insulin and and age at insulin.

Right panel: Mortality HR of insulin vs. no insulin.



Chapter 4

More states

4.1 Subdividing states

It may be of interest to subdivide the state Dead according to whether the event has
occurred or not. This will enable us to estimate the number of patients that ever go on
insulin.

This is done with cutLexis by using the argument split.states = TRUE.

> dmCs <- cutLexis(data = dmS2,

+ cut = dmS2$doins,

+ timescale = '"per",

+ new.state = "Ins",

+ new.scale = "tfI",

+ split.states = TRUE)

> summary (dmCs)

Transitions:

To

From DM 1Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 35135 1694 2048 0 38877 3742 45885.49 9899
Ins 0 5762 0 451 6213 451 8387.77 1791
Sum 35135 7456 2048 451 45090 4193 54273.27 9996

We can illustrate the numbers and the transitions (figure 4.1, p. 34)

> boxes(dmCs, boxpos = list(x = c(15, 15, 85, 85),
+ y = c(85, 15, 85, 15)),
+ scale.R = 1000, show.BE = TRUE)

> legendbox (70, 50)

Note that it is only the mortality rates that we have been modeling, namely the
transitions DM—Dead and Ins—Dead(Ins). If we were to model the cumulative risk of
using insulin or currently being on insulin we would also need a model for the DM—Ins
transition. Subsequent to that we would then compute the probability of being in each
state conditional on suitable starting conditions (including time of start). With models
where transition rates depend on several time scales this is not a trivial task. This is
treated in more detail in the vignette on simLexis.

33
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Figure 4.1: Transitions between 4 states: the numbers in the bozxes are person-years (middle),
and below the number of persons who start, respectively end their follow-up in each of the
states. ./aaflup-box4

4.2 Multiple intermediate events

We may be interested in initiation of either insulin or OAD (oral anti-diabetic drugs), thus
giving rise to more states and more time scales. This can be accomplished by the
mcutLexis function, that generalizes cutLexis:

> dmM <- mcutLexis(dmL,

timescale "per",

wh = c('"doins", '"dooad"),

new.states = c("Ins', "OAD"),
new.scales = c("tfI'", "tf0"),

+ ties.resolve = TRUE)
NOTE: Precursor states set to DM
NOTE: 15 records with tied events times resolved (adding 0.01 random uniform),

so results are only reproducible if the random number seed was set.

+ + + 4+

The Lexis machinery does not know what a reasonable order of states is, so that will have
to be fixed by hand using Relevel:

> levels(dmM)
[1] "DM" "Dead" "OAD" "Ins" "0AD-Ins" "Ins-0AD"

> dumM <- Relevel(dmM, c("DM", "QAD", "Ins", "OAD-Ins'", "Ins-0AD", "Dead"))
> summary(dmM, t = T)

Transitions:
To
From DM OAD Ins OAD-Ins Ins-0AD Dead Records: Events: Risk time: Persons:
DM 2830 2957 689 0 0 1056 7532 4702 22920.30 7532
0AD 0 3327 0 1005 0 992 5324 1997 22965.28 5324
Ins 0 0 462 0 172 1562 786 324 3883.11 786

0AD-Ins 0 0 0 739 0 266 1005 266 3770.51 1005
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Ins-0AD 0 0 0 0 139 33 172 33 734.06 172
Sum 2830 6284 1151 1744 311 2499 14819 7322 54273.27 9996
Timescales:
per age tfD tfI  tf0
ni ni ni llInSll IIDADII

We see that we now have two time scales defined as time since entry into states.

> wh <- c(subset(dmM, lex.Cst == "Ins-0AD")$lex.id[1:2],

+ subset (dmM, lex.Cst == "0OAD-Ins'")$lex.id[1:2])

> print(subset(dmM, lex.id }inj, wh), nd = 2)

lex.1id per age tfD tfI +tf0 lex.dur lex.Cst lex.Xst sex dobth dodm dodth
18 1996.75 61.72 0.00 NA NA 1.17 DM OAD M 1935.02 1996.75 NA
18 1997.92 62.89 1.17 NA 0.00 8.08 OAD OAD-Ins M 1935.02 1996.75 NA
18 2005.99 70.97 9.25 0.00 8.08 4.00 0OAD-Ins 0AD-Ins M 1935.02 1996.75 NA
25 2003.69 60.34 0.00 NA NA 1.88 DM 0OAD F 1943.35 2003.69 NA
25 2005.57 62.22 1.88 NA 0.00 3.07 0AD OAD-Ins F 1943.35 2003.69 NA
25 2008.64 65.29 4.95 0.00 3.07 1.36 0AD-Ins 0AD-Ins F 1943.35 2003.69 NA
20 2009.25 53.22 0.00 NA NA 0.04 DM Ins F 1956.03 2009.25 NA
20 2009.29 53.26 0.04 0.00 NA 0.01 Ins Ins-0AD F 1956.03 2009.25 NA
20 2009.29 53.26 0.05 0.01 0.00 0.71 Ins-0AD Ins-0AD F 1956.03 2009.256 NA
38 2008.37 63.93 0.00 NA NA 0.09 DM Ins M 1944.43 2008.37 2010
38 2008.46 64.02 0.09 0.00 NA 0.21 Ins Ins-0AD M 1944.43 2008.37 2010
38 2008.67 64.24 0.31 0.21 0.00 1.33 Ins-04AD Dead M 1944.43 2008.37 2010

dooad doins dox
1997.92 2005.99 2010
1997.92 2005.99 2010
1997.92 2005.99 2010
2005.57 2008.64 2010
2005.57 2008.64 2010
2005.57 2008.64 2010
2009.29 2009.29 2010
2009.29 2009.29 2010
2009.29 2009.29 2010
2008.67 2008.46 2010
2008.67 2008.46 2010
2008.67 2008.46 2010

CODE EXPLAINED: We use subset to locate all records with 1ex.Cst equal to Ins-0AD,
resp. 0AD-Ins, and extract the ids (lex.id) from these. We the select the two first of
each, and print all records for these persons.

We can also illustrate the transitions to the different states, as in figure 4.2 — the
specification of the boxpos argument is facilitated by the logical ordering of the states

> boxes(dmM, boxpos = list(x = c(15, 40, 40, 85, 85, 80),
+ y = ¢(50, 90, 10, 90, 10, 50)),
+ scale.R = 1000, show.BE = TRUE)

> legendbox (6, 95)

We may not be interested in whether persons were prescribed insulin before OAD or vice
versa, in which case we would combine the levels with both insulin and OAD to one,
regardless of order (figure 4.3):

> summary (dmMr <- Relevel(dmM, list(1, 2, 3, 'OAD+Ins' = 4:5, 6)))
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Figure 4.2: Bozes for the dmM object. The numbers in the boxes are person-years (middle),
and below the number of persons who start, respectively end their follow-up in each of the

states. ./aaflup-mbox
Transitions:
To

From DM OAD Ins 0OAD+Ins Dead Records: Events: Risk time: Persons:

DM 2830 2957 689 0 1056 7532 4702 22920.30 7532

0AD 0 3327 0 1005 992 5324 1997 22965.28 5324

Ins 0 0 462 172 152 786 324 3883.11 786

0AD+Ins 0 0 0 878 299 1177 299 4504 .58 1177

Sum 2830 6284 1151 2055 2499 14819 7322 54273.27 9996

> boxes(dmMr, boxpos = list(x = c(15, 15, 85, 85, 50),
y c(85, 15, 85, 15, 50)),
+ scale.R = 1000, show.BE = TRUE)

+

Diagrams as those in figures 4.2 and 4.3 gives an overview of the possible transitions,
which states it might be relevant to collapse, and which transitions to model and how.

4.2.1 Modeling rates

The modeling of the transition rates is straightforward; split the data along some timescale
and then use glmLexis or gamLexis, where it is possible to select the transitions modeled.
This is also possible with the coxphLexis function, but it requires that a single time scale
be selected as the baseline time scale, and the effect of this will not be accessible.

Here is a brief sketch of models that might be considered:
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DM ?32,3(? 1) Ins
22,920.3 - | 3,883.1
7,532 2,830 97 462
1,056
(46.1)
152
(39.1)
2,957 172
(129.0) Dead (44.3)
0 2,499
992
(43.2)
299
' (66.4) '
OAD (14205 OAD+Ins
22,965.3 - | 4,504.6
2,367 3,327 0 878

Figure 4.3: Bozes for the dmMr object with collapsed states. The numbers in the bozres are
person-years (middle), and below the number of persons who start, respectively end their

follow-up in each of the states.

> dmMs <- splitMulti(dmMr, age

> summary (dmMs)

Transitions:
To

From DM OAD 1Ins OAD+Ins
DM 25682 2957 689 0
OAD 0 26226 0 1005
Ins 0 0 4353 172
QAD+Ins 0 0 0 5357
Sum 25682 29183 5042 6534

> levels(dmMs)

[1] IIDMH IIOADII llInSH

> ratelns <- gamLexis (dmMr,

mgcv::gam Poisson analysis of

Rates for transitions:
DM->Ins
OAD->0AD+Ins

> rate0AD <- gamLexis(dmMr,

mgcv::gam Poisson analysis of

Rates for transitions:
DM->0AD
Ins->0AD+Ins

> rateDth <- gamLexis(dmMr,

0:100)

Dead
1055
990
152
298
2495

s(age) + lex.Cst, from

s(age) + lex.Cst, from

Records: Events: Ri
30383 4701
28221 1995
4677 324
5655 298
68936 7318
"OAD+Ins" "Dead"
=1:2

c(1,3)

s(age) + lex.Cst)

./aaflup-mboxr

Lexis object dmMr with log link:

sk time: Persons:
22920.28 7532
22959.15 5323
3883.11 786
4503.60 1177
54266.14 9995
, to = 3:4)

, to = c(2, 4))

Lexis object dmMr with log link:
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mgcv: :gam Poisson analysis of Lexis object dmMr with log link:
Rates for transitioms:

DM->Dead

0AD->Dead

Ins->Dead

0AD+Ins->Dead

> ci.exp(ratelns, subset = "lex")

exp(Est.) 2.5%  97.5Y%
lex.CstOAD 1.863413 1.67927 2.06775

> ci.exp(rate0AD, subset = "lex")
exp(Est.) 2.5% 97.5%
lex.CstIns 0.4997096 0.4266435 0.5852888
> ci.exp(rateDth, subset = "lex")
exp(Est.) 2.5% 97.5%
lex.CstOAD 0.9461362 0.8675592 1.031830
lex.CstIns 2.6395461 2.2220761 3.135448

lex.Cst0AD+Ins 1.6368801 1.4394809 1.861349



Chapter 5

Lexis functions

The Lexis machinery has evolved over time since it was first introduced in a workable
version in Epi_1.0.5 in August 2008.

Over the years there have been additions of tools for handling multistate data. Here is a
list of the current functions relating to Lexis objects with a very brief description; it does
not replace the documentation, so read that before use. Unless otherwise stated, functions

named something.Lexis (with a “.”) are S3 methods for Lexis objects, so you can skip
the “.Lexis” in daily use.

Define

cal.yr transforms Date variables (measured in days) to cal.yr format (measured in
years)
Lexis defines a Lexis object

Cut and split

cutLexis cut follow-up at intermediate event

mcutLexis cut follow-up at multiple intermediate events, keeping track of history

rcutlexis cut follow-up at intermediate, possibly recurring, events, only recording
the current state

countLexis cut follow-up at intermediate event time and count the no. events so far

splitLexis split follow up along a time scale

splitMulti split follow up along several time scales — from the popEpi package,
faster and has simpler syntax than splitLexis

addCov.Lexis add clinical measurements at a given date to a Lexis object

addDrug.Lexis add drug exposures to a Lexis object

coarse.Lexis combine successive records in a Lexis object

Boxes and plots

boxes.Lexis draw a diagram of states and transitions

legendbox draw a box explaining the numbers output by boxes.Lexis
plot.Lexis draw a standard Lexis diagram

points.Lexis add points to a Lexis diagram

lines.Lexis add lines to a Lexis diagram

PY.ann.Lexis annotate life lines in a Lexis diagram
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Summarize and query

summary.Lexis overview of transitions, risk time etc.

levels.Lexis what are the states in the Lexis object

paths.Lexis what are the paths through states iin a Lexis object

nid.Lexis number of persons in the Lexis object — how many unique values of
lex.id are present

entry entry time

exit exit time

status status at entry or exit

timeBand factor of time bands

timeScales what time scales are in the Lexis object

timeSince what time scales are defined as time since a given state

breaks what breaks are currently defined

absorbing what are the absorbing states

transient what are the transient states

preceding, before which states precede this

succeeding, after which states can follow this

tmat.Lexis transition matrix for the Lexis object

Manipulate

subset.Lexis, [ subset of a Lexis object

merge.Lexis merges a Lexis objects with a data.frame

cbind.Lexis bind a data.frame to a Lexis object

rbind.Lexis put two Lexis objects head-to-foot

transform.Lexis transform and add variables

tsNA20 turn NAs to Os for time scales

factorize.Lexis turn lex.Cst and lex.Xst into factors with levels equal to the
actually occurring values in both

Relevel.Lexis reorder and/or combine states

rm.tr remove transitions from a Lexis object

bootLexis bootstrap sample of persons (lex.id) from a Lexis object

unLexis remove Lexis attributes from a Lexis object

Simulate

simLexis simulate a Lexis object from specified transition rate models
nState, pState count state occupancy from a simulated Lexis object
plot.pState, lines.pState plot state occupancy from a pState object

Stack

stack.Lexis make a stacked object for simultaneous analysis of transitions —
returns a stacked.Lexis object

subset.stacked.Lexis subsets of a stacked.Lexis object

transform.stacked.Lexis transform a stacked.Lexis object
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Interface to other packages

msdata.Lexis interface to mstate package
etm.Lexis interface to etm package
crr.Lexis interface to cmprsk package

Statistical models

AaJ.Lexis compute the Aalen-Johansen estimator for a Lexis object — wrapper for
survfit from survival

ci.Crisk compute cumulative risks with CIs from model objects for competing rates

glmLexis fit a glm model using the poisreg family to (hopefully) time split data

gamLexis fit a gam model (from the mgcv package) using the poisreg family to
(hopefully) time split data

coxphLexis fit a Cox model to follow-up in a Lexis object

In versions of Epi up to 2.56 the three modeling functions were called glm.Lexis,

gam.Lexis and coxph.Lexis — but they are not S3 methods so the naming was
illogical. The versions with the old names still exist in Epi for backward

compatibility.

Start time: 2025-01-13, 09:20:40
End time: 2025-01-13, 09:21:16
Elapsed time: 0.61 minutes
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