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Abstract

This is an adapted version of a paper submitted to the Journal of Statistical Software
(Schoonees, le Roux, and Coetzer 2016).

The R package vdg provides a flexible interface for producing various graphical sum-
maries of the prediction variance associated with specific linear model specifications and
experimental designs. These methods include variance dispersion graphs, fraction of de-
sign space plots and quantile plots which can assist in choosing between a catalogue of
candidate experimental designs. Instead of restrictive optimization methods used in tra-
ditional software to explore design regions, vdg utilizes sampling methods to introduce
more flexibility. The package takes advantage of R’s modern graphical abilities via gg-
plot2 (Wickham 2009), adds facilities for using a variety of distance methods, allows for
more flexible model specifications and incorporates quantile regressions to help with model
comparison.

Keywords: experimental design, fraction of design space plot, variance dispersion graph, scaled
prediction variance.

1. Introduction
A challenging problem in experimental design is that of choosing the most appropriate design
from a catalogue of possibilities, given a specific model form. The designs available will most
likely originate from either traditional design theory, such as well-known (fractional) factorial
or Box-Behnken designs, or as algorithmically constructed designs according to optimal design
theory. Optimal designs have a more tailor-made character and are constructed by choosing
the design points so that the selected design criterion is optimized. Such optimality criteria are
usually referred to by a letter of the alphabet, such as in D- or I-optimality for “determinant”
and “integrated variance” optimality respectively (see Atkinson, Donev, and Tobias 2007, for
further details).
Whereas traditional experimental design theory depends mostly on qualitative aspects of
designs to choose the most suitable design, comparisons based on the value of the optimality
criterion are comparatively simple and convenient. This is often justifiable because many
standard designs are also optimal for specific models and design criteria, but in nonstandard
design settings this method can be dangerous. Since an optimality criterion is a single number
summary of a multidimensional concept, it supplies limited information. For example, the D-
criterion minimizes the generalized variance of the parameter estimates for a linear regression
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model but conveys nothing about the estimation accuracy of the individual parameters.
Consequently, graphical procedures for design assessment have been developed to enable
researchers to study designs more thoroughly. The main types of procedures are the variance
dispersion graph (VDG) (Giovannitti-Jensen and Myers 1989), the related quantile plot (QP)
(Khuri, Kim, and Um 1996) and the more recent fraction of design space (FDS) plot (Zahran,
Anderson-Cook, and Myers 2003). These graphs provide a less contrived summary of the
prediction variance properties of an experimental design for a given model. The prediction
variance is especially important where models are used for process optimization, such as in
response surface methodology (RSM) (Myers, Montgomery, and Anderson-Cook 2009).
There are currently two similar packages available for R on CRAN, namely Vdgraph (Lawson
2013) and VdgRsm (Srisuradetchai and Borkowski 2014). Vdgraph provides a front-end for the
original Fortran program of Vining (1993a,b) for constructing VDGs, rewritten and simplified
to a subroutine. This package allows only full second-order models to be investigated over
hyperspherical design regions, using an optimization strategy which combines a Nelder-Mead
simplex search with a grid search. In contrast, VdgRsm employs random sampling to explore
design regions. VdgRsm also includes FDS plots. However, VdgRsm allows only for full
second-order models, and the user has limited control over graphical output.
In this paper we present and discuss the new R (R Core Team 2016) package vdg (Schoonees
2022), of which version 1.2.2 is available on the Comprehensive R Archive Network (CRAN).
The aims of this package are threefold. First, we aim to offer an implementation of VDGs
and FDS plots which harness the modern graphical capabilities of R by utilizing the popular
ggplot2 plotting system (Wickham 2009). Furthermore, vdg offers generalizations of VDGs
by borrowing ideas from QPs (Khuri et al. 1996) and increased flexibility by harnessing the
well-known R modelling infrastructure. The latter use of formulae and model matrices greatly
increase the scope of models that can be explored. Finally, vdg uses random sampling as a
design philosophy for exploring design regions, in contrast to optimization methods employed
in traditional VDG software. This allows novel enhancements of VDGs such as allowing for
flexible design regions, while also alleviating convergence problems and lack of flexibility often
characteristic of traditional software tools in this area.
In the subsequent section the theory of these graphical procedures is briefly reviewed, and in
particular some extensions are offered. This is followed by a succinct overview of sampling
algorithms available in our package. Finally, the vdg package is introduced together with a
discussion of its main features, and several examples are considered.

2. Graphical design assessment techniques and extensions
Let ξn denote an n-run exact experimental design, and suppose m design variables are being
considered. The design runs are gathered in the n×m matrix X. Consider a regression model
linear in p parameters that requires the expansion of each design run xi : m × 1 into a model
vector f(xi) : p × 1, and define F : n × p as the design matrix with these vectors as rows. For
example, when m = 2 and p = 4, consider the model

ŷ = β0 + β1x1 + β2x2 + β12x1x2.

This model requires the expansion of x = (x1, x2)⊤ into f(x) = (1, x1, x2, x1x2)⊤ where x⊤

denotes the transpose of the column vector x . The Fisher information matrix M(ξn) is given
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Figure 1: An example of a variance dispersion graph.

by
M (ξn) = n−1F⊤F. (1)

Letting σ2 denote the unknown error variance of the regression model, the variance of the
estimated response at some x in the design space X under ordinary least squares estimation
(OLS) is

VAR(ŷ(x)) = σ2 f(x)⊤
(
F⊤F

)−1
f(x). (2)

Furthermore, define the scaled prediction variance (SPV) of the design ξn for a given model
as

d(x, ξn) = σ−2 · n(VAR(ŷ(x))) = f(x)⊤M−1(ξn)f(x). (3)

Note that in Equations 1 – 3 only regression models that are linear in the parameters are
considered. Models non-linear in the parameters have the property that the Fisher information
matrix, introduced below, is a function of the unknown parameters. In such models the
design properties also depend on these unknown parameters, and designs for these models
are consequently often called “locally optimal” in the optimal design context. In such cases
a Bayesian approach to optimal design construction, as surveyed in Chaloner and Verdinelli
(1995), is more natural. This falls outside the scope of vdg.

2.1. Variance dispersion graphs

The VDG of Giovannitti-Jensen and Myers (1989) displays a summary of the SPV of the
design ξn over the design region X . In the original formulation, the summary is achieved
by concentric hyperspheres spanning X and usually centred at the origin. The VDG then
summarizes the SPV distribution by plotting the estimated minimum, average and maximum
SPV on the surface of each hypersphere against the radius of the hypersphere. In this way
the high-dimensional SPV profile can always be summarized in a two-dimensional plot of the
SPV values against the radius. An example is given in Figure 1, where X is spherical with
maximum radius

√
3. Here the solid line represents the mean SPV, and the long and short

dashed lines the maximum and minimum SPV respectively. The mean of the SPV distribution
over the surface of a hypersphere is also known as the spherical SPV.
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Due to the uncertainty regarding where in the design space a prediction will be required,
a stable SPV profile is desirable. A stable SPV is associated with a relatively flat VDG
and cases where the maximum and minimum SPV curves do not deviate markedly from the
average SPV. This is not the case for the design in Figure 1, where the SPV increases greatly
towards the boundary of X . The minimum and maximum SPV allow the analyst to judge the
dispersion of the SPV about its average. Note that for rotatable designs the spherical SPV is
constant for any given radius r, in which case the minimum and maximum SPV curves coincide
with the average SPV curve. Quite clearly, the design in Figure 1 is not rotatable for the
specified model. Rotatability can be advantageous as it is often the case that large deviations
between minimum and maximum SPV occur near the perimeter of the experimental region.
This is also the case in our example. Another obvious advantage of rotatability is that in such
cases only the spherical SPV has to be computed. For non-rotatable designs the minimum
and maximum SPV curves must be estimated by point-wise numerical optimization schemes,
a task whose computational intensiveness can be aggravated by the presence of local optima.
The choice of concentric hyperspheres (i.e., radius) to summarize the SPV is related to the
choice of Euclidean distance as a metric for summarizing the remoteness of hypersphere from
the origin (as in Figure 1). In practice any appropriate metric can be used. For hypercuboidal
design regions using concentric hypercubes are indeed more natural. This relates to the choice
of the L∞-norm as metric (also known as supremum distance). We will see in Section 5 how
vdg relies on the proxy package (Meyer and Buchta 2014) to incorporate a variety of metrics
into the construction of VDGs.
Subsequently, the traditional VDG theory is discussed, assuming a hyperspherical design
region.

VDG theory for hyperspherical design regions

Denote by Ur = {x ∈ X : x⊤x = r2} the surface of the hypersphere of radius r centred at
the origin of the spherical design space X . Giovannitti-Jensen and Myers (1989) define the
spherical SPV at r, i.e., the mean SPV over Ur, as:

V r = nΘ
σ2

∫
Ur

VAR(ŷ(x)) dx

= nΘtr{(F⊤F)−1
∫

Ur

f(x)f(x)⊤ dx}

= ntr{(F⊤F)−1S}. (4)

Here Θ−1 =
∫

Ur
dx is the surface area of Ur and S : p × p is the matrix of spherical region

moments for Ur. Specifically, the elements of S have the form (Giovannitti-Jensen and Myers
1989):

σ(δ) = Θ
∫

Ur

xδ1
1 xδ2

2 . . . xδm
m dx, (5)

where δ = (δ1, . . . , δm)⊤.
Due to the symmetry of the surface Ur, σ(δ) is zero whenever any of the {δi} are odd.
Depending on the model, this property often leads to S being quite sparse. Often only a few
elements of δ are nonzero, and since the symmetry implies that it does not matter which
elements these are, it is notationally more convenient to characterize the spherical region



Pieter Schoonees, Niël le Roux, Roelof Coetzer 5

moments in Equation 5 in terms of the values of the nonzero elements. As an example, the
two-variable first-order model y = β0 + β1x1 + β2x2 + ε has a spherical region moment matrix
of the form (Giovannitti-Jensen and Myers 1989): 1 0 0

0 σ2 0
0 0 σ2

 (6)

where
σ2 = r2

m
. (7)

For the model linear in the parameters, explicit equations for the spherical SPV function (as
well as for the minimum and maximum SPV curves) exist (see Giovannitti-Jensen and Myers
1989). Note also that the second-order model in addition requires the following spherical
region moments:

σ4 = 3r4

m(m + 2) (8)

σ22 = r4

m(m + 2) . (9)

In this case the form of S is more involved (for further details, see Giovannitti-Jensen and
Myers 1989).

Generalizing to more flexible models

However, to consider more general models, or models containing only specific terms, more
general spherical region moments are required. For this purpose the VDG theory can be
extended as follows. The formula for a general spherical region moment with all elements of
δ even is:

σ (δ) =
r1⊤δΓ

(
m
2

) m∏
i=1

Γ
(

δi+1
2

)
π

m
2 Γ

(
1⊤δ+m

2

) . (10)

This formula can be derived from the evaluation of Equation 5 after using a transformation
to polar coordinates (see for example Muirhead 1982, pp. 55-56) together with the properties
of beta integrals. Considering the result in Equation 10, it is apparent that the spherical
moments are functions of the radius r and the number of design variables m only. The
higher-order moments dominate the average SPV at large radii since the factor r1⊤δ in the
formula is monotonically increasing. Equation 10 has been implemented in vdg to calculate
the mean spherical SPV for any model formula (albeit subject to some restrictions – see
?meanspv for details).

Advantages of the random sampling approach to VDGs

Note that although Equation 10 facilitates the analytical calculation of the average spherical
SPV curve, the minimum and maximum SPV must still be found by pointwise numerical
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optimization techniques (except for first-order models – see Giovannitti-Jensen and Myers
1989). This can be a tedious exercise as typically optimization needs to be done over a grid
of radii spanning the design region X , and local optima may be problematic. The Fortran
program of Vining (1993a,b) uses a combination of grid search and the Nelder-Mead simplex
method, which can have erratic behaviour.
Although R provides a wide variety of other optimization possibilities – see for example the
Optimization Task View on CRAN (Theussl 2014) – using the random sampling approach
to explore X with the computational power available holds many advantages. In fact we
argue that there is no need to use the exact minimum or maximum to assess the spread of
the SPV. Instead of using pointwise optimization, vdg can use quantile regression through
many randomly sampled points to give the user an impression of how e.g., the 5th and 95th
percentiles evolve for different radii. For this we use the excellent quantreg package (Koenker
2013). At the same time the spread of the SPV at the randomly sampled points still gives an
indication of the minimum or maximum SPV.
The form of the design region X is another important aspect to consider in the calculation of
VDGs. If X is non-spherical, for example cuboidal, Equation 10 does not hold for larger radii
r for which only part of the hypersphere is contained in X . In such a case only the part of
the concentric hyperspheres contained in X should contribute to the minimum, average and
maximum SPV curves, and truncation will be necessary. The ease with which the sampling
approach can allow for these and other nonstandard design regions is an important advantage
over the optimization approach.
Furthermore, it is important to note that the maximum and minimum SPV values plotted on
the VDG only give an indication of the range of the spherical SPV. It is quite possible that two
designs could have similar VDGs but quite different SPV distributions over the hyperspheres.
In such a case, additional knowledge of the spherical SPV distribution is required, which is
readily available when using the random sampling approach. A traditional approach of this
flavour is the QPs described in the next Section.

2.2. Quantile plots

Related to the VDG is the QP of Khuri et al. (1996). QPs are based on the same principle as
VDGs, but present more information about the distribution of the SPV over the hyperspheres.
These plots use the quantiles of the SPV over the hyperspheres to display more information
and can therefore be used to distinguish between designs with similar VDGs but with different
SPV distributions.

Warning: Using ‘size‘ aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use ‘linewidth‘ instead.
This warning is displayed once every 8 hours.
Call ‘lifecycle::last_lifecycle_warnings()‘ to see where this warning
was generated.

In its original formulation, the basic idea of the QP is to graph the empirical cumulative
distribution functions (or ecdfs) of the SPV over each hypersphere for a number of concentric
hyperspheres with radii spanning the design region. These are estimated by randomly sam-
pling a large number of points, say n∗, on the surface of each hypersphere. At each sampled
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Figure 2: An example of a quantile plot, corresponding to the example in Figure 1.

point i the SPV dr
i is calculated and the ecdf of {dr

i } is computed. The QP then consists of
all the ecdf’s. If the sampled points adequately cover the experimental region, the resulting
graphs give detailed information about the distribution of the SPV over the experimental
region. An example of such a QP is shown in Figure 2, where the quantiles of the SPV is
plotted on the vertical axis. The lines in the plot represent the ecdf’s for five concentric
hyperspheres, which is a more refined way of representing the information in Figure 1.
An alternative version of the QP displays boxplots side by side to summarize the SPV distri-
bution at different radii. This leads to a display similar to the corresponding VDG. In vdg
we typically combine the information on display in a VDG and QP in a single graph (or a
series of related graphs).

2.3. Fraction of design space plots

The FDS plot, introduced by Zahran et al. (2003), is based on the argument that accurate
prediction over the entire X must take into account the fraction of the volume of X that
is associated with the various values of the SPV. In contrast, the VDG and QP give equal
weight to the SPV for all radii r, although the fraction of the volume of the design region
represented by the hypersphere of each radius differs substantially. This means that a small
SPV at a radius close to the origin does not give as much assurance of good prediction as a
similar SPV value at a larger radius.
The FDS plot is a way of correcting for this weighting problem which can make the use of
the VDG and/or QP in isolation problematic. For example, it might occur that one design is
far superior (in terms of the SPV) compared to another for a small to moderate r, but only
somewhat inferior at large r. From the VDG it will be tempting to choose the first design
since it is superior for most radii, but for higher dimensional design problems the design
performance at the boundaries of the design region becomes exponentially more important.
Therefore the second design may be preferable.

FDS theory

For a fixed value ν of the SPV d(x, ξn), the FDS criterion is defined as

FDS (ν; ξn) = Φ−1
∫

A
dx, (11)

where A = {x ∈ X : d (x, ξn) < ν} and Φ is the volume of X . The criterion therefore expresses
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Figure 3: An example of and FDS plot, corresponding to Figures 1 and 2.

the volume of the set A containing all points in X with SPV lower than ν as a proportion of
the total design space volume.
For each specified SPV value ν, the FDS plot graphs ν against FDS(ν). This in essence
amounts to calculating the cumulative distribution function (cdf) for the SPV values and
representing it graphically, albeit with a reversal of the usual horizontal and vertical axes
(Goldfarb, Anderson-Cook, Borror, and Montgomery 2004). The latter reversal is motivated
by the need to make the FDS plots directly comparable to VDGs.
Since calculating the FDS criterion analytically becomes cumbersome in higher dimensions,
an ecdf is used in practice to estimate the cdf described above. This is done through Monte
Carlo simulation. First, a large number of points, say n∗, throughout X is generated. For
each of these points the SPV is computed and finally the ecdf is calculated. A design where
the SPV values are relatively small and does not vary much over the design region is desirable.
Figure 3 is an example of an FDS plot for the running example in Figures 1 and 2. We see
that for this design and model, the SPV is below 5 for 60% of the design region. The SPV
exceeds 7.5 for roughly 12.5% of X , with less that 5% of X having an SPV value in excess of
10.

Variants of FDS plots

Several variations of FDS plots exist. One variation is to use the so-called unscaled prediction
variance (or UPV) instead of the SPV of Equation 3. The UPV d∗(x, ξn) is defined as

d∗(x, ξn) = n · d(x, ξn) = σ−2 VAR(ŷ(x)). (12)

The UPV is appropriate when the size and the related cost of two or more designs are not
considered to be important. This can occur when the cost of individual runs are insignificant.
Another version of FDS plots is the scaled FDS plot which focuses on the stability of the
prediction variance over the design region X (Zahran 2002). Here the normal FDS plot is
adjusted by using the scaled SPV, which can be expressed as

d(x, ξn)
minx∈X d(x, ξn) . (13)



Pieter Schoonees, Niël le Roux, Roelof Coetzer 9

A design with a steeper scaled SPV curve compared to another has a SPV which is less stable
over the design region. This version of the FDS plot also allows the analyst to read off the
ratio of the maximum to the minimum SPV.
One further variant is the variance ratio FDS plot (or VRFDS, Rodriguez, Jones, Borror,
and Montgomery 2010). This plot is especially useful when a number of candidate designs
are being compared to a reference design. To construct such a plot, the SPV is calculated for
a number of different designs at the same randomly simulated points over the design region
X . The VRFDS plot is then constructed by replacing the SPV with the natural logarithm
of the ratio of the SPV of each design to the SPV of the reference design. Supposing that
two designs, ξ1

n1 and ξ2
n2 are of interest, the VRFDS plot is constructed by calculating the log

variance ratio

log V R
(
x∗, ξ1

n1 ; ξ2
n2

)
= log

d
(
x∗, ξ1

n1

)
d

(
x∗, ξ2

n2

) (14)

for each simulated point x∗.
In Equation 14, ξ2

n2 is the reference design and is represented by a constant log variance ratio
of zero in the plot. If the log variance ratio for a design is negative, it has a lower SPV than
the reference design and is therefore the preferred design. Similarly, when the log variance
ratio is positive it has a larger SPV than the reference design and is therefore not preferred.
A design which leads to better predictions over much of the experimental region will have a
curve largely below the horizontal line representing the reference design. These VRFDS plots
can be useful for eliminating designs which are not admissible in the sense that they perform
worse compared to any other candidate design over most of the experimental region.

3. Simulation algorithms and guidelines
In this section the sampling algorithms used in the vdg package are introduced for exploring
the design space X . In addition, recommendations are provided regarding the number of
samples required.

3.1. Simulation algorithms

It is important to note that random sampling of X has advantages compared to using a grid of
points covering the design region. Borkowski (2003) shows that using a grid of points places
too much emphasis on the boundary regions of X , which leads to inaccurate SPV estimates
since the SPV is likely to be large at the perimeter of X . Although similar accuracy can be
achieved for a fine grid of points, the relative efficiency remains lower.
In the design literature generally cuboidal or spherical design regions are commonly employed.
Therefore these two cases will receive special attention here. Note however that using random
sampling to explore the design space implies that any type of design region can be considered
as long as it is possible to sample uniformly over it.

Sampling in hypercubes

A trivial way to generate uniform samples in an m-dimensional hypercube is to generate
each of the m coordinates independently as uniform random numbers. For X = [−a, a]m,
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Figure 4: An example of an LHS of 10 points in a two-dimensional design space.

the m-dimensional hypercube with sides of length 2a, each coordinate is simply generated
independently as uniform variates on [−a, a].
Space-filling designs originate from the literature on computer experiments and provide an
alternative to this method (Fang, Li, and Sudjianto 2006). Simulation studies for FDS graphs
have shown that Latin hypercube sampling (LHS) can be more efficient for large design
problems (Schoonees 2011). LHS was first introduced by McKay, Beckman, and Conover
(1979). A Latin hypercube design is a design where each column of the n × m matrix V is
a random permutation of the column levels 1, 2, . . . , n. This matrix is then transformed into
the n×m design matrix X, by adding a random uniform value to each column. LHS amounts
to first dividing X into a grid of equal sized hypercuboidal blocks. Then exactly one block
is selected from every dimension. Finally, a random uniform value is added to each selected
block. An example of a LHS is given in Figure 4 and can be constructed as follows:

R> library("vdg")
R> set.seed(8745)
R> samp <- LHS(n = 10, m = 2, lim = c(-1, 1))
R> plot(samp, main = "", pty = "s", pch = 16, ylim = c(-1, 1),
+ asp = 1, xlab = expression(X[1]), ylab = expression(X[2]))
R> abline(h = seq(-1, 1, length.out = 10),
+ v = seq(-1, 1, length.out = 10), lty = 3, col = "grey")

Latin hypercube sampling thus provides an alternative to the grid procedure and the simple
uniform random sampling outlined previously. It can be seen as an extension to stratified
sampling as it ensures that every portion of the range of each design factor is represented.
Fang et al. (2006) show that LHS produces samples with a smaller variance of the sample
mean than simple random sampling. The interested reader should consult their book for a
detailed discussion of the subject.
Algorithm 1 provides an overview of the method. Four different variants are implemented in
vdg – see ?LHS and the examples for more details. It is also possible to interface to other
space-filling design implementations, such as those available in for example lhs (Carnell 2012)
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and DiceDesign (Franco, Dupuy, Roustant, Damblin, and Iooss 2014). An example is given
in ?sampler.

Algorithm 1 Latin hypercube sampling algorithm on [−a, a]m (after Fang et al. 2006)

• Calculate b = [−a + i
n ], i = 1, 2, . . . , n.

• For j = 1 → m:

– Permute the elements of b to give vj .
– Sample a vector of random numbers uj .
– Calculate xj as vj − 2a

n · uj .

• Form the matrix of samples as X =
(
x1 x2 · · · xm

)
.

Sampling in hyperspheres

The obvious method for obtaining a uniform random sample inside a hypersphere is the
rejection method – sample uniformly from the smallest hypercube containing the hypersphere
and reject all samples falling outside the hypersphere. For higher dimensions and large samples
this method is however inefficient. It is easy to show that the proportion of the volume of
a hypercube, contained in the largest hypersphere, rapidly approaches zero as the number
of dimensions m increases. It is therefore of interest to use alternative methods to generate
uniform random samples within hyperspheres.
This can conveniently be achieved in two independent steps. The first requires a uniform sam-
ple on the surface of the hypersphere with unit radius, after which each point is shrunken or
extendend to the interior of the hypersphere by sampling radii from a particular distribution.
The theory of spherical distributions, which includes the (multivariate) normal distribution,
can be used to show that a point on the surface of the unit hypersphere can be found by sam-
pling from a spherical distribution and rescaling the resulting vector to unit length (Schoonees
2011; Muirhead 1982). This is readily achieved by concatenating m univariate samples from
e.g., the normal distribution (rnorm() in R) and rescaling.
Furthermore, it can be shown that in order to ensure uniformity over the hypersphere, the
cdf of the radius r on [0, R] is given by:

F (r) = Γ(m/2 + 1)
mπm/2Rm

2(m−1)(m−2)/2+1rm
m−2∏
i=1

B(m − i

2 ,
m − i

2 ) (15)

where B(·, ·) denotes the Beta function. The inverse cdf method is used in vdg to sample the
required radii.

3.2. Simulation size

Ozol-Godfrey (2004) recommends using at least 10,000 randomly sampled points for an FDS
graph of up to eight factors. In practice, it is not harmful in terms of computation time to use
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more. It should be clear from the plots produced by vdg whether or not a sufficient number
of samples had been used.

4. The vdg package

The design of vdg revolves around the spv() function, which creates objects of S3 classes
spv, spvlist, spvforlist and spvlistforlist. These classes differ with respect to the
number of designs and model formulae passed to them. For example, an object of class
spvlistforlist results from a call where both arguments design and formula are lists of
designs and formulae repectively.
Objects of these classes contain the SPV (or unscaled prediction variance if unscaled =
TRUE) evaluated for all designs and formulae at a set of n points sampled throughout X . The
SPV is calculated by a simple Fortran subroutine, and parallelization over multiple designs or
formulae are facilitated by the built-in parallel package.
The sample can be passed explicitly by the user via the sample argument, but usually is
constructed automatically by the sampler() function. The latter is a simple wrapper for
the sampling algorithms built into the package (see Section 3), and automatically handles
spherical and cuboidal design regions (via argument type). The user can request sampling
on the surface of concentric hyperspheres or hypercubes by setting at = TRUE in a call to
spv(). In such cases accurate FDS plots cannot be constructed however and hence will not be
produced. Rejection sampling for nonstandard design regions can be achieved by passing an
appropriate function as the keepfun argument to spv(). In such cases sampling will continue
until a sample of at least the requested size is obtained.
Besides simple print() methods, the power of vdg lies in its plot() methods, which produce a
variety of graphs returned as a list of ggplot2 objects. Use is made of facets to produce different
panels for different designs and/or formulae. These graphical objects can subsequently be
manipulated further, notably by using the theme functions in ggplot2. Which plots are
produced depend on the input class as well as a variety of arguments (including which =
1:5). Only the most important can be mentioned here.
The alpha parameter determines the transparency of the plotted points, which helps to build
a picture of the density of the prediction variance. It is often worth fine tuning this parameter,
although a default is provided. The vector tau of values between zero and one determines
which quantile regressions are included in the VDGs. A nonnull value for the radii argument
implies that the mean spherical prediction variance will be added to the VDGs according to
Equation 10. It is advisable to read the help page of meanspv() when using this facility –
there are limits to what types of formulas can be handled safely.
Finally, the optional method argument is passed to proxy::dist() and determines how the
distance between a sampled point and the origin of X is determined. Several metrics are avail-
able, as described in summary(pr_DB) in proxy. If unset, the type argument will determine
an appropriate value, namely Euclidean and supremum distance for spherical and cuboidal
design regions respectively.
A starting point for exploring the package is ?’vdg-package’. The call
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Figure 5: A VDG for Roquemore’s hybrid designs D416B and D416C for a full quadratic
model.

R> vignette(topic = "vdg", package = "vdg")

will display a version of this paper which also serves as package vignette.

5. Examples

5.1. Comparing four-factor hybrid designs

As a first example, we compare Roquemore’s (Roquemore 1976) near-saturated 16-run hybrid
designs D416B and D416C for a full second-order model in four factors. These designs are
available in vdg (and was taken from Vdgraph) as

R> data("D416B")
R> data("D416C")

We can construct a VDG for these designs with vdg simply by

R> quad4 <- formula( ~ (x1 + x2 + x3 + x4)^2 + I(x1^2) + I(x2^2) +
+ I(x3^2) + I(x4^2))
R> set.seed(1234)
R> spv1 <- spv(n = 5000, design = list(D416B = D416B,
+ D416C = D416C), formula = quad4)
R> plot(spv1, which = "vdgboth")

Of course quad4 could also have been specified more compactly as
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Figure 6: A standard and variance ratio FDS plot for Roquemore’s hybrid designs D416B
and D416C for a full quadratic model.

R> quad4 <- formula( ~ .^2 + I(x1^2) + I(x2^2) + I(x3^2) + I(x4^2))

Figure 5 shows the resulting VDG for these two designs, where the 5th and 95th percentiles
are shown as quantile regression fits, together with the mean spherical SPV. The individual
sampled points are overplotted, which gives an indication of the distribution of the SPV over
the design region. It is evident that the SPV profiles for the hyperspherical design region X
are very similar for both designs. D416B has a slightly higher SPV in proximity of the origin,
but performs better near the perimeter of the design space. Hence it can be expected that
D416B is preferable to D416C for this model and design space. This is confirmed by the FDS
plots constructed by

R> plot(spv1, which = "fds")
R> plot(spv1, which = "fds", VRFDS = TRUE, np = 100)

as shown in Figure 6. The right panel shows that D416B is slightly superior over the majority
of the design region.
Additional options to the which argument are outlined in ?plot.spv. Multiple plots can be
produced in a single call by passing a vector to which. Note that the plots are by default
returned as a list of ggplot2 graphical objects (see e.g., Murrell 2011). The plots are rendered
when they are print()ed, which implies that on some graphics devices only the last plot
will be visible. This can be dealt with by either storing the resulting list of graphical objects
and rendering them one by one, or by specifying arrange = TRUE in the plot() call. The
latter will arrange all plots in a single device by using grid.arrange() from the gridExtra
package (Auguie 2012). Yet another option is to set par(ask = TRUE) before creating the
plots, which will prompt the user before advancing to the next plot.
An advantage of storing the plots as graphical objects is that we can make post-hoc changes
before rendering the plot. For example, we might not like the default ggplot2 theme used for
Figure 5. We can easily change the theme to something more traditional with
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Figure 7: A second version of Figure 5.

R> p <- plot(spv1, which = "vdgboth")
R> p$vdgboth + theme_bw() + theme(panel.grid = element_blank())

The result is shown in Figure 7. Much more refined approaches are also possible; see for
example ?ggplot2::theme and Wickham (2009).

5.2. Central composite, D- and A-optimal designs

In this example we consider optimal design alternatives to central composite designs (CCDs)
for three design factors. A hyperspherical design region is assumed, and the axial distance
for the CCD is assumed to be α =

√
3. This spherical CCD is based on a full factorial design,

augmented with four center runs and the usual six axial runs. The CCD hence contains 22
runs, and we can construct it using rsm (Lenth 2009) as

R> library("rsm")
R> ccd3 <- as.data.frame(ccd(basis = 3, n0 = 4,
+ alpha = "spherical", oneblock = TRUE))[, 3:5]

We also construct a D- and A-optimal design with optFederov() from AlgDesign (Wheeler
2014). For this purpose a candidate list of 10 000 randomly sampled points is constructed
within the sphere of radius α, with runif_sphere() in vdg:

R> set.seed(8619)
R> cand <- runif_sphere(n = 10000, m = 3)
R> colnames(cand) <- colnames(ccd3)

The algorithm then attempts to select the 22 runs from these candidates which optimize
the requested criterion. D-optimality seeks to maximize the determinant of the information
matrix in Equation 1, which implies minimizing the volume of the confidence ellipsoid of the
regression parameters. A-optimality seeks to minimize the trace of the inverse information
matrix, which minimizes the average variance of the regression parameters (for more details,
see for example Myers et al. 2009). The D- and A-optimal designs can be found by executing
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Figure 8: A FDS plot and VDG for the CCD, D- and A-optimal designs, for a full quadratic
model in three factors on a spherical design region.

R> quad3 <- formula( ~ (x1 + x2 + x3)^2 + I(x1^2) + I(x2^2) + I(x3^2))
R> library("AlgDesign")
R> set.seed(3476)
R> desD <- optFederov(quad3, data = cand, nTrials = 22, criterion = "D")
R> desA <- optFederov(quad3, data = cand, nTrials = 22, criterion = "A")

All the information needed for the plots is obtained by calling spv() as

R> spv2 <- spv(n = 10000, formula = quad3,
+ design = list(CCD = ccd3, D = desD$design, A = desA$design))
R> plot(spv2, which = 2:3)

The VDG and FDS plots are shown in Figure 8. From the VDG it is apparent that the CCD
and A-optimal designs have similar SPV profiles over X , where the SPV is very low near
the origin but becomes increasingly worse towards the perimeter. The D-optimal design does
worse in the interior but at the same time have better SPV near the perimeter of X .
The FDS plot shows that the D-optimal design has the most stable SPV. Although the CCD
and A-optimal designs achieve lower SPV values near the origin, this comes at the cost of a
significantly higher SPV near the perimeter of X . The FDS plot places more emphasis on the
perimeter since this is where the majority of the volume of X is located. Hence the D-optimal
design provides an alternative to the CCD which features better prediction over the majority
of the design region.

5.3. Cubic model with restricted design region

Chapter 5 of Goos and Jones (2011) describes an experimental problem in two variables,
namely time (seconds) and temperature (degrees Kelvin), for a chemical reaction in an in-
dustrial setting. The aim was to refine the current operating conditions to optimize the yield
of the chemical process. However, based on prior knowledge the experimental region X has a
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Figure 9: The design region and D-optimal design of Goos and Jones (2011). Some runs are
replicated.

restricted shape, as shown in Figure 9. Outside this region the combination of design factors
was deemed not worth exploring by researchers with intimate knowledge of the process.
Furthermore, a full cubic model was decided on since a quadratic model was deemed inad-
equate to capture the nonlinearity of the response process. A 15-run design was feasible –
the D-optimal design employed by Goos and Jones (2011, Table 5.4) and shown in Figure 9
is included in vdg as GJ54 (not all design points lie strictly within X ). In order to construct
a VDG and FDS plot for this design, we need to be able to sample from X . Translating to
standardized coordinates on [−1, 1] in both time and termperature (using e.g., stdrange()
in vdg), the equations of the linear restrictions on X are:

y = −1.08x + 0.28
y = −0.36x − 0.76.

We can use this to construct a function keepfun() which takes a data matrix x and returns
a logical vector indicating which of the samples in the rows of x lie within X :

R> keepfun <- function(x) apply(x >= -1 & x <= 1, 1, all) &
+ (x[, 2] <= -1.08 * x[, 1] + 0.28) & (x[, 2] >= -0.36 * x[, 1] - 0.76)

We compare the SPV for the full cubic model, for which the design was constructed, to
this model without the cubic term for Time and the interaction between Temperature and
the quadratic term in Time. This latter model was the final model after removing the two
insignificant effects – see Goos and Jones (2011). The formula for this model is obtained as

R> cube2 <- formula( ~ (Time + Temperature)^2 + I(Time^2) +
+ I(Temperature^2) + I(Time^3) + I(Temperature^3) +
+ Time:I(Temperature^2) + I(Time^2):Temperature)
R> GJmod <- update(cube2, ~ . - I(Time^3) - I(Time^2):Temperature)
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Figure 10: VDG for the D-optimal design of Goos and Jones (2011), for the two models.

To sample uniformly over X , we can use keepfun() to construct an spv object for the stan-
dardized design. The algorithm will automatically keep sampling until at least the specified
number of samples have been obtained. We now pass a list of model formulae to spv(), and
use Latin hypercube sampling for illustration:

R> spv3 <- spv(n = 10000, design = stdrange(GJ54), type = "lhs",
+ formula = list(Cubic = cube2, GoosJones = GJmod),
+ keepfun = keepfun)
Retained samples: 5013 -- Adding some more...
Final sample of size 10004

R> plot(spv3, which = 1, points.size = 2)

Of course the SPV surface for the second model is much favoured to the full cubic model,
but the unimportance of the dropped terms is difficult if not impossible to establish before
constructing a design. Note in Figure 10 that supremum distance is automatically selected
to summarize the SPV since the argument type = "cuboidal" was specified. This can
be changed to e.g., Manhattan distance by passing method = "Manhattan" to the call to
plot(). Users are encouraged to experiment with the option hexbin = TRUE which uses
ggplot2’s hexagonal binning feature as an alternative to overplotting.
Since this example has only two variables, the SPV surface can also be inspected by contour
plots, or in three dimensions by e.g., rgl (plot not shown; Adler, Murdoch, and others 2014):

R> library("rgl")
R> with(spv3$Cubic, plot3d(x = sample[, "Time"],
+ y = sample[, "Temperature"], z = spv))

6. Conclusions
The vdg package provides a modern and flexible R interface to important graphical procedures
in experimental design, producing VDGs, FDS and related plots using random sampling.
Multiple designs and/or multiple model formulae are seamlessly allowed for, while using R’s
formula interface allows for flexibility in model specification. Plots are produced with the
ggplot2 package, which allows for post hoc manipulation of graphical elements.
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The flexibility of vdg empowers users to investigate irregular design regions; to use different
sampling schemes; to consider complicated model specifications; to construct different variants
of the standard plots, such as the VRFDS plot, as well as to enhance plots with novelties like
quantile regressions. In addition to its capabilities illustrated in the examples given above,
the plot method of vdg includes features like specifying specific distance measures from the
proxy package via the method argument and using hexagonal binning via hexbin = TRUE
instead of overplotting. Thus, vdg not only plays a complimentary role to the collection of
existing R packages available to the practitioner in the field of experimental designs, but adds
worthwhile capabilities for use in this field.
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