
Package ‘survML’
March 17, 2024

Title Flexible Estimation of Conditional Survival Functions Using
Machine Learning

Version 1.1.0

Description Tools for flexible estimation of conditional survival
functions using off-the-shelf machine learning tools. Implements both
global and local survival stacking. See Wolock CJ, Gilbert PB,
Simon N, and Carone M (2024) <doi:10.1080/10618600.2024.2304070>.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.2.3

Depends SuperLearner (>= 2.0.28),

Imports Iso (>= 0.0.18.1)

Suggests knitr, rmarkdown, testthat (>= 3.0.0), ggplot2 (>= 3.4.0),
gam (>= 1.22.0)

Config/testthat/edition 3

VignetteBuilder knitr

URL https://github.com/cwolock/survML

BugReports https://github.com/cwolock/survML/issues

NeedsCompilation no

Author Charles Wolock [aut, cre, cph]
(<https://orcid.org/0000-0003-3527-1102>)

Maintainer Charles Wolock <cwolock@gmail.com>

Repository CRAN

Date/Publication 2024-03-17 05:30:02 UTC

R topics documented:
stackG . 2
stackL . 5

Index 9

1

https://doi.org/10.1080/10618600.2024.2304070
https://github.com/cwolock/survML
https://github.com/cwolock/survML/issues
https://orcid.org/0000-0003-3527-1102

2 stackG

stackG Estimate a conditional survival function using global survival stacking

Description

Estimate a conditional survival function using global survival stacking

Usage

stackG(
time,
event = rep(1, length(time)),
entry = NULL,
X,
newX = NULL,
newtimes = NULL,
direction = "prospective",
time_grid_fit = NULL,
bin_size = NULL,
time_basis,
time_grid_approx = sort(unique(time)),
surv_form = "PI",
learner = "SuperLearner",
SL_control = list(SL.library = c("SL.mean"), V = 10, method = "method.NNLS", stratifyCV

= FALSE),
tau = NULL

)

Arguments

time n x 1 numeric vector of observed follow-up times If there is censoring, these are
the minimum of the event and censoring times.

event n x 1 numeric vector of status indicators of whether an event was observed. De-
faults to a vector of 1s, i.e. no censoring.

entry Study entry variable, if applicable. Defaults to NULL, indicating that there is no
truncation.

X n x p data.frame of observed covariate values on which to train the estimator.

newX m x p data.frame of new observed covariate values at which to obtain m predic-
tions for the estimated algorithm. Must have the same names and structure as
X.

newtimes k x 1 numeric vector of times at which to obtain k predicted conditional sur-
vivals.

direction Whether the data come from a prospective or retrospective study. This deter-
mines whether the data are treated as subject to left truncation and right censor-
ing ("prospective") or right truncation alone ("retrospective").

stackG 3

time_grid_fit Named list of numeric vectors of times of times on which to discretize for esti-
mation of cumulative probability functions. This is an alternative to bin_size
and allows for specially tailored time grids rather than simply using a quan-
tile bin size. The list consists of vectors named F_Y_1_grid, F_Y_0_grid,
G_W_1_grid, and G_W_0_grid. These denote, respectively, the grids used to
estimate the conditional CDF of the time variable among uncensored and cen-
sored observations, and the grids used to estimate the conditional distribution of
the entry variable among uncensored and censored observations.

bin_size Size of time bin on which to discretize for estimation of cumulative probability
functions. Can be a number between 0 and 1, indicating the size of quantile
grid (e.g. 0.1 estimates the cumulative probability functions on a grid based on
deciles of observed times). If NULL, creates a grid of all observed times.

time_basis How to treat time for training the binary classifier. Options are "continuous"
and "dummy", meaning an indicator variable is included for each time in the time
grid.

time_grid_approx

Numeric vector of times at which to approximate product integral or cumulative
hazard interval. Defaults to times argument.

surv_form Mapping from hazard estimate to survival estimate. Can be either "PI" (product
integral mapping) or "exp" (exponentiated cumulative hazard estimate).

learner Which binary regression algorithm to use. Currently, only SuperLearner is
supported, but more learners will be added. See below for algorithm-specific
arguments.

SL_control Named list of parameters controlling the Super Learner fitting process. These
parameters are passed directly to the SuperLearner function. Parameters in-
clude SL.library (library of algorithms to include in the binary classification
Super Learner), V (Number of cross validation folds on which to train the Su-
per Learner classifier, defaults to 10), method (Method for estimating coeffi-
cients for the Super Learner, defaults to "method.NNLS"), stratifyCV (logical
indicating whether to stratify by outcome in SuperLearner’s cross-validation
scheme), and obsWeights (observation weights, passed directly to prediction
algorithms by SuperLearner).

tau The maximum time of interest in a study, used for retrospective conditional
survival estimation. Rather than dealing with right truncation separately than left
truncation, it is simpler to estimate the survival function of tau - time. Defaults
to NULL, in which case the maximum study entry time is chosen as the reference
point.

Value

A named list of class stackG, with the following components:

S_T_preds An m x k matrix of estimated event time survival probabilities at the m covariate
vector values and k times provided by the user in newX and newtimes, respec-
tively.

S_C_preds An m x k matrix of estimated censoring time survival probabilities at the m co-
variate vector values and k times provided by the user in newX and newtimes,
respectively.

4 stackG

time_grid_approx

The approximation grid for the product integral or cumulative hazard integral,
(user-specified).

direction Whether the data come from a prospective or retrospective study (user-specified).

tau The maximum time of interest in a study, used for retrospective conditional
survival estimation (user-specified).

surv_form Exponential or product-integral form (user-specified).

time_basis Whether time is included in the regression as continuous or dummy (user-specified).

SL_control Named list of parameters controlling the Super Learner fitting process (user-
specified).

fits A named list of fitted regression objects corresponding to the constituent re-
gressions needed for global survival stacking. Includes P_Delta (probability of
event given covariates), F_Y_1 (conditional cdf of follow-up times given covari-
ates among uncensored), F_Y_0 (conditional cdf of follow-up times given co-
variates among censored), G_W_1 (conditional distribution of entry times given
covariates and follow-up time among uncensored), G_W_0 (conditional distri-
bution of entry times given covariates and follow-up time among uncensored).
Each of these objects includes estimated coefficients from the SuperLearner
fit, as well as the time grid used to create the stacked dataset (where applicable).

References

Wolock C.J., Gilbert P.B., Simon N., and Carone, M. (2022). "A framework for leveraging machine
learning tools to estimate personalized survival curves."

Examples

This is a small simulation example
set.seed(123)
n <- 500
X <- data.frame(X1 = rnorm(n), X2 = rbinom(n, size = 1, prob = 0.5))

S0 <- function(t, x){
pexp(t, rate = exp(-2 + x[,1] - x[,2] + .5 * x[,1] * x[,2]), lower.tail = FALSE)

}
T <- rexp(n, rate = exp(-2 + X[,1] - X[,2] + .5 * X[,1] * X[,2]))

G0 <- function(t, x) {
as.numeric(t < 15) *.9*pexp(t,

rate = exp(-2 -.5*x[,1]-.25*x[,2]+.5*x[,1]*x[,2]),
lower.tail=FALSE)

}
C <- rexp(n, exp(-2 -.5 * X[,1] - .25 * X[,2] + .5 * X[,1] * X[,2]))
C[C > 15] <- 15

entry <- runif(n, 0, 15)

time <- pmin(T, C)

stackL 5

event <- as.numeric(T <= C)

sampled <- which(time >= entry)
X <- X[sampled,]
time <- time[sampled]
event <- event[sampled]
entry <- entry[sampled]

Note that this a very small Super Learner library, for computational purposes.
SL.library <- c("SL.mean", "SL.glm")

fit <- stackG(time = time,
event = event,
entry = entry,
X = X,
newX = X,
newtimes = seq(0, 15, .1),
direction = "prospective",
bin_size = 0.1,
time_basis = "continuous",
time_grid_approx = sort(unique(time)),
surv_form = "exp",
learner = "SuperLearner",
SL_control = list(SL.library = SL.library,

V = 5))

plot(fit$S_T_preds[1,], S0(t = seq(0, 15, .1), X[1,]))
abline(0,1,col='red')

stackL Estimate a conditional survival function via local survival stacking

Description

Estimate a conditional survival function via local survival stacking

Usage

stackL(
time,
event = rep(1, length(time)),
entry = NULL,
X,
newX,
newtimes,
direction = "prospective",
bin_size = NULL,
time_basis = "continuous",

6 stackL

learner = "SuperLearner",
SL_control = list(SL.library = c("SL.mean"), V = 10, method = "method.NNLS", stratifyCV

= FALSE),
tau = NULL

)

Arguments

time n x 1 numeric vector of observed follow-up times If there is censoring, these are
the minimum of the event and censoring times.

event n x 1 numeric vector of status indicators of whether an event was observed. De-
faults to a vector of 1s, i.e. no censoring.

entry Study entry variable, if applicable. Defaults to NULL, indicating that there is no
truncation.

X n x p data.frame of observed covariate values on which to train the estimator.
newX m x p data.frame of new observed covariate values at which to obtain m predic-

tions for the estimated algorithm. Must have the same names and structure as
X.

newtimes k x 1 numeric vector of times at which to obtain k predicted conditional sur-
vivals.

direction Whether the data come from a prospective or retrospective study. This deter-
mines whether the data are treated as subject to left truncation and right censor-
ing ("prospective") or right truncation alone ("retrospective").

bin_size Size of bins for the discretization of time. A value between 0 and 1 indicating the
size of observed event time quantiles on which to grid times (e.g. 0.02 creates
a grid of 50 times evenly spaced on the quantile scaled). If NULL, defaults to
every observed event time.

time_basis How to treat time for training the binary classifier. Options are "continuous"
and "dummy", meaning an indicator variable is included for each time in the time
grid.

learner Which binary regression algorithm to use. Currently, only SuperLearner is
supported, but more learners will be added. See below for algorithm-specific
arguments.

SL_control Named list of parameters controlling the Super Learner fitting process. These
parameters are passed directly to the SuperLearner function. Parameters in-
clude SL.library (library of algorithms to include in the binary classification
Super Learner), V (Number of cross validation folds on which to train the Su-
per Learner classifier, defaults to 10), method (Method for estimating coeffi-
cients for the Super Learner, defaults to "method.NNLS"), stratifyCV (logical
indicating whether to stratify by outcome in SuperLearner’s cross-validation
scheme), and obsWeights (observation weights, passed directly to prediction
algorithms by SuperLearner).

tau The maximum time of interest in a study, used for retrospective conditional
survival estimation. Rather than dealing with right truncation separately than left
truncation, it is simpler to estimate the survival function of tau - time. Defaults
to NULL, in which case the maximum study entry time is chosen as the reference
point.

stackL 7

Value

A named list of class stackL.

S_T_preds An m x k matrix of estimated event time survival probabilities at the m covariate
vector values and k times provided by the user in newX and newtimes, respec-
tively.

fit The Super Learner fit for binary classification on the stacked dataset.

References

Polley E.C. and van der Laan M.J. (2011). "Super Learning for Right-Censored Data" in Targeted
Learning.

Craig E., Zhong C., and Tibshirani R. (2021). "Survival stacking: casting survival analysis as a
classification problem."

Examples

This is a small simulation example
set.seed(123)
n <- 500
X <- data.frame(X1 = rnorm(n), X2 = rbinom(n, size = 1, prob = 0.5))

S0 <- function(t, x){
pexp(t, rate = exp(-2 + x[,1] - x[,2] + .5 * x[,1] * x[,2]), lower.tail = FALSE)

}
T <- rexp(n, rate = exp(-2 + X[,1] - X[,2] + .5 * X[,1] * X[,2]))

G0 <- function(t, x) {
as.numeric(t < 15) *.9*pexp(t,

rate = exp(-2 -.5*x[,1]-.25*x[,2]+.5*x[,1]*x[,2]),
lower.tail=FALSE)

}
C <- rexp(n, exp(-2 -.5 * X[,1] - .25 * X[,2] + .5 * X[,1] * X[,2]))
C[C > 15] <- 15

entry <- runif(n, 0, 15)

time <- pmin(T, C)
event <- as.numeric(T <= C)

sampled <- which(time >= entry)
X <- X[sampled,]
time <- time[sampled]
event <- event[sampled]
entry <- entry[sampled]

Note that this a very small Super Learner library, for computational purposes.
SL.library <- c("SL.mean", "SL.glm")

fit <- stackL(time = time,

8 stackL

event = event,
entry = entry,
X = X,
newX = X,
newtimes = seq(0, 15, .1),
direction = "prospective",
bin_size = 0.1,
time_basis = "continuous",
SL_control = list(SL.library = SL.library,

V = 5))

plot(fit$S_T_preds[1,], S0(t = seq(0, 15, .1), X[1,]))
abline(0,1,col='red')

Index

stackG, 2
stackL, 5

9

	stackG
	stackL
	Index

