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subsemble-package An Ensemble Method for Combining Subset-Specific Algorithm Fits

Description

The Subsemble algorithm is a general subset ensemble prediction method, which can be used for
small, moderate, or large datasets. Subsemble partitions the full dataset into subsets of observa-
tions, fits a specified underlying algorithm on each subset, and uses a unique form of k-fold cross-
validation to output a prediction function that combines the subset-specific fits. An oracle result
provides a theoretical performance guarantee for Subsemble.

Details

Package: subsemble
Type: Package
Version: 0.1.0
Date: 2012-01-22
License: Apache License (== 2.0)

Note

This work was supported in part by the Doris Duke Charitable Foundation Grant No. 2011042.

Author(s)

Authors: Erin LeDell, Stephanie Sapp, Mark van der Laan

Maintainer: Erin LeDell <oss@ledell.org>

References

LeDell, E. (2015) Scalable Ensemble Learning and Computationally Efficient Variance Estimation
(Doctoral Dissertation). University of California, Berkeley, USA.
https://github.com/ledell/phd-thesis/blob/main/ledell-phd-thesis.pdf

Stephanie Sapp, Mark J. van der Laan & John Canny. (2014) Subsemble: An ensemble method
for combining subset-specific algorithm fits. Journal of Applied Statistics, 41(6):1247-1259.
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See Also

SuperLearner

predict.subsemble Predict method for a ’subsemble’ object.

Description

Obtains predictions on a new data set from a subsemble fit. May require the original data, X, if one
of the learner algorithms uses the original data in its predict method.

Usage

## S3 method for class 'subsemble'
predict(object, newx, x = NULL, y = NULL, ...)

Arguments

object An object of class ’subsemble’, which is returned from the subsemble function.

newx The predictor variables for a new (testing) data set. The structure should match
x.

x Original data set used to fit object.

y Original outcome used to fit object.

... Additional arguments passed to the predict.SL.* functions.

Details

If newx is omitted, the predicted values from object are returned. The learner algorithm needs
to have a corresponding prediction function with “predict” prefixed onto the algorithm name (e.g.
predict.SL.glm for SL.glm). This should be taken care of by the SuperLearner package.

Value

pred Predicted values from subsemble fit.

subpred A data.frame with the predicted values from each sublearner algorithm for the
rows in newx. If we have trained M individual models, then there will be M
columns.

Author(s)

Erin LeDell <oss@ledell.org>

https://www.tandfonline.com/doi/abs/10.1080/02664763.2013.864263
https://biostats.bepress.com/ucbbiostat/paper313/
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See Also

subsemble

Examples

# See subsemble() function documentation for an example.

subsemble An Ensemble Method for Combining Subset-Specific Algorithm Fits

Description

The Subsemble algorithm partitions the full dataset into subsets of observations, fits a specified
underlying algorithm on each subset, and uses a unique form of k-fold cross-validation to output a
prediction function that combines the subset-specific fits.

Usage

subsemble(x, y, newx = NULL, family = gaussian(),
learner, metalearner = "SL.glm", subsets = 3, subControl = list(),
cvControl = list(), learnControl = list(), genControl = list(),
id = NULL, obsWeights = NULL, seed = 1, parallel = "seq")

Arguments

x The data.frame or matrix of predictor variables.

y The outcome in the training data set. Must be a numeric vector.

newx The predictor variables in the test data set. The structure should match x. If
missing, uses x for newx.

family A description of the error distribution and link function to be used in the model.
This can be a character string naming a family function, a family function or
the result of a call to a family function. (See ’?family’ for the details of family
functions.) Currently allows gaussian() or binomial().

learner A string or character vector naming the prediction algorithm(s) used to train a
model on each of the subsets of x. This uses the learning algorithm API pro-
vided by the SuperLearner package, so for example, we could use learner
= "SL.randomForest" or learner = c("SL.glm","SL.randomForest"). See
the listWrappers function for a full list of available algorithms. If a single
learner is provided, the same algorithm will be used on each of the subsets. If a
vector of learners is provided, then each algorithm will be applied to each of the
subsets (default behavior specified by the learnControl$multiType="crossprod");
or alternatively, the multiple algorithms can be applied to different subsets with
learnControl$multiType="divisor".
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metalearner A string specifying the prediction algorithm used to learn the optimal weighted
combination of the sublearners (ie. models learned on subsets of the data.) This
uses the API provided by the SuperLearner package, so for example, we could
use metalearner = "SL.glmnet". See the listWrappers function for a full list
of available algorithms.

subsets An integer specifying the number of subsets the data should be partitioned into,
a vector of subset labels equal to the number of rows of x, or a user-specified
list of index vectors equal to the number of subsets. If subsets is an integer,
you can control how the subsets are partitioned (random shuffle, etc) using the
subControl argument.

subControl A list of parameters to control the data partitioning (subsetting) process. The
logical stratifyCV list parameter will stratify the data splits by binary outcome
(family=binomial() only), and defaults to TRUE. The logical shuffle param-
eter defaults to TRUE to ensure that subsets will be created randomly. If the
user explicitly specifies the subsets via the subsets argument, that will override
any parameters in this list. The last parameter, supervised, currently defaults to
NULL and is a place-holder for option to learn the optimal subsets in a supervised
manner. This will be implemented in a future release.

cvControl A list of parameters to control the cross-validation process. The V parameter
is an integer representing the number of cross-validation folds and defaults to
10. Each of the subsets will be divided into V cross-validation folds. The other
parameters are stratifyCV and shuffle, which are both logical and default to
TRUE. See above for descriptions of these parameters.

learnControl A list of parameters to control the learning process. Currently, the only pa-
rameter is multiType, which is only used if there are multiple learners spec-
ified by the learner argument. The two supported values for multiType are
"crossprod" (the default) and "divisor". The "crossprod" type will train
each of the learners on each of the subsets. For the "divisor" type, the length of
the learners vector must be a divisor of the number of subsets. If length(learner)
equals the number of subsets, each learner will be applied to a single subset. If
length(learner) is a divisor of the number of subsets, then the learners will
be repeated as necessary (to equal the number of subsets).

genControl A list of general control parameters. Currently, the only parameter is saveFits,
which defaults to TRUE. If set to FALSE, then the subfits and metafit output
objects will be set to NULL. This can be used if you want to train and test in one
step and do not want to waste disk space storing all the models.

id Optional cluster identification variable. Passed to the learner algorithm.

obsWeights Optional observation weights vector. As with id above, obsWeights is passed
to the prediction and screening algorithms, but many of the built in learner wrap-
pers ignore (or can’t use) the information. If you are using observation weights,
make sure the learner you specify uses the information, or the weights will be
ignored.

seed A random seed to be set (integer); defaults to 1. If NULL, then a random seed
will not be set.

parallel A character string specifying optional parallelization. Use "seq" for sequential
computation (the default). Use "multicore" to perform the k-fold (internal)
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cross-validation step as well as the learning across subsets in parallel over all
available cores. Or parallel can be a snow cluster object. Both parallel options
use the built-in functionality of the core "parallel" package.

Value

subfits A list of predictive models, each of which are fit on a subset of the (rows of)
data, x. For learnControl$multiType="crossprod", the length of this list
is equal to the number of subsets times the number of learners in the learner
argument. For learnControl$multiType="divisor", the length of this list is
equal to the number of subsets.

metafit The predictive model which is learned by regressing y on Z (see description of
Z below). The type of model is specified using the metalearner argument.

subpred A data.frame with the predicted values from each sublearner algorithm for the
rows in newx. If we have L unique learners and there are J subsets of data, then
there will be L x J columns when learnControl$multiType=="crossprod"
(default) and J columns when learnControl$multiType=="divisor".

pred A vector containing the predicted values from the subsemble for the rows in
newX.

Z The Z matrix (the cross-validated predicted values for each sublearner).

cvRisk A numeric vector with the k-fold cross-validated risk estimate for each algorithm
in learning library. Note that this does not contain the CV risk estimate for the
Subsemble, only the individual models in the library. (Not enabled yet, set to
NULL.)

family Returns the family argument from above.

subControl Returns the subControl argument from above.

cvControl Returns the cvControl argument from above.

learnControl Returns the learnControl argument from above.

subsets The list of subsets, which is a list of vectors of row indicies. The length of this
list equals the number of subsets.

subCVsets The list of subsets, further broken down into the cross-validation folds that were
used. Each subset (top level list element) is partitioned into V cross-validation
folds.

ylim Returns range of y.

seed An integer. Returns seed argument from above.

runtime An list of runtimes for various steps of the algorithm. The list contains cv,
metalearning, sublearning and total elements. The cv element is the time
it takes to create the Z matrix (see above). The metalearning element is the
training time for the metalearning step. The sublearning element is a list of
training times for each of the models in the ensemble. The time to run the entire
subsemble function is given in total.

Author(s)

Erin LeDell <oss@ledell.org>
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See Also

listWrappers, SuperLearner

Examples

# Load some example data.

library(subsemble)
library(cvAUC) # >= version 1.0.1
data(admissions)

# Training data.
x <- subset(admissions, select = -c(Y))[1:400,]
y <- admissions$Y[1:400]

# Test data.
newx <- subset(admissions, select = -c(Y))[401:500,]
newy <- admissions$Y[401:500]

# Set up the Subsemble.

learner <- c("SL.randomForest", "SL.glm")
metalearner <- "SL.glm"
subsets <- 2

# Train and test the model.
# With learnControl$multiType="crossprod" (the default),
# we ensemble 4 models (2 subsets x 2 learners).

fit <- subsemble(x = x, y = y, newx = newx, family = binomial(),
learner = learner, metalearner = metalearner,
subsets = subsets)

# Evaulate the model by calculating AUC on the test set.

auc <- AUC(predictions = fit$pred, labels = newy)

https://github.com/ledell/phd-thesis/blob/main/ledell-phd-thesis.pdf
https://www.tandfonline.com/doi/abs/10.1080/02664763.2013.864263
https://biostats.bepress.com/ucbbiostat/paper313/
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print(auc) # Test set AUC is: 0.937

# We can also use the predict method to generate predictions on new data afterwards.

pred <- predict(fit, newx)
auc <- AUC(predictions = pred$pred, labels = newy)
print(auc) # Test set AUC is: 0.937

# Modify the learnControl argument and train/eval a new Subsemble.
# With learnControl$multiType="divisor",
# we ensemble only 2 models (one for each subset).

fit <- subsemble(x = x, y = y, newx = newx, family = binomial(),
learner = learner, metalearner = metalearner,
subsets = subsets,
learnControl = list(multiType = "divisor"))

auc <- AUC(predictions = fit$pred, labels = newy)
print(auc) # Test set AUC is: 0.922

# An example using a single learner.
# In this case there are 3 subsets and 1 learner,
# for a total of 3 models in the ensemble.

learner <- c("SL.randomForest")
metalearner <- "SL.glmnet"
subsets <- 3

fit <- subsemble(x = x, y = y, newx = newx, family = binomial(),
learner = learner, metalearner = metalearner,
subsets = subsets)

auc <- AUC(predictions = fit$pred, labels = newy)
print(auc) # Test set AUC is: 0.925

# An example using the full data (i.e. subsets = 1).
# Here, we have an ensemble of 2 models (one for each of the 2 learners).
# This is equivalent to the Super Learner algorithm.

learner <- c("SL.randomForest", "SL.glm")
metalearner <- "SL.glm"
subsets <- 1

fit <- subsemble(x = x, y = y, newx = newx, family = binomial(),
learner = learner, metalearner = metalearner,
subsets = subsets)

auc <- AUC(predictions = fit$pred, labels = newy)
print(auc) # Test set AUC is: 0.935
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# Multicore subsemble via the "parallel" package.
# To perform the cross-validation and training steps using all available cores,
# use the parallel = "multicore" option.

# More examples and information at: https://github.com/ledell/subsemble
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