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One of the simplest problems that can be formulated in terms of a conic linear optimization problem is finding the
maximum cut of a graph. Let G = [V, E] be a graph with vertices V and edges E. A cut of the graph G is a partition
of the vertices of G into two disjoint subsets G1 = [V1,Eq], G2 = [V, Ey], with V1 NV = &. The size of the cut is
defined to be the number of edges connecting the two subsets. The mazimum cut is defined to be the cut of a graph
G whose size is at least as large as any other cut. For a weighted graph object, we can also define the maximum cut
to be the cut with weight at least as large as any other cut.

Finding the maximum cut is referred to as the Mlax-Cut Problem, and was one of the first problems found to be
NP-complete, and is also one of the 21 algorithms on Karp’s 21 NP-complete problems ([2]). The Max-Cut problem
is also known to be APX hard ([3]), meaning in addition to there being no polynomial time solution, there is also no
polynomial time approximation.

Using the semidefinite programming approximation formulation of [1], the Max-Cut problem can be approximated
to within an approzimation constant. For a weighted adjacency matrix B, the objective function can be stated as

minimize  (C, X)
X

subject to
diag(X) = 1
X e &
where 8™ is the cone of symmetric positive semidefinite matrices of size n, and C = —(diag(B1) — B)/4. Here, we
define diag(a) for an n x 1 vector a to be the diagonal matrix A = [A;;] of size n x n with A;; =a;, ¢=1,...,n. For

a matrix X, diag(X) extracts the diagonal elements from X and places them in a column-vector.

To see that the Max-Cut problem is a conic linear optimization problem it needs to be written in the same form
as the primal objective function. The objective function is already in a form identical to that of the primal objective
function, with minimization occurring over X of its inner product with a constant matrix C = —(diag(B1) — B)/4.
There are n equality constraints of the form zp; = 1, k = 1,...,n, where ) is the k*" diagonal element of X, and
bi = 1 in the primal objective function. To represent this in the form (Aj, X) = xkk, take Ay to be

1, i=j=k
A = iil = ’
e = las) {07 otherwise

Now (A, X) = vec(Ak)Tvec(X) = 1z, as required, and the Max-Cut problem is specified as a conic linear
optimization problem.

To convert this to a form usable by sqlp, we begin by noting that we have one optimization variable, X. Therefore,
with L = 1, and having X constrained to the space of semidefinite matrices of size n, we specify blk as

R> blk <- c("s" = n)
With the objective function in the form (C,X), we define the input C as

R> one <- matrix(1,nrow=n,ncol=1)
R> C <- -(diag(c(B %*% one)) - B)/4



where B is the adjacency matrix for a graph on which we would like to find the maximum cut, such as the one in
Figure 1.
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Figure 1: A graph object and associated adjacency matrixz for which we would like to find the maximum cut.

The matrix At is constructed using the upper triangular portion of the A matrices. To do this in R, the function
svec is made available in sdpt3r.

R> #Construct Ak matrices

R> A <- matrix(1list() ,nrow=1,ncol=n)
R> for(k in 1:n){

R> A[[k]] <- matrix(0,nrow=n,ncol=n)
R> diag(A[[k]])[k] <- 1

R> }

R> #Combine to form At
R> At <- svec(blk[1],A,1)

Having each of the diagonal elements of X constrained to be 1, b is a n x 1 matrix of ones
R> b <- matrix(1,nrow=n,ncol=1)

With all the input variables now defined, we can now call sqlp to solve the Max-Cut problem
R> sqlp(blk, list(At), list(C), b)

The built-in function maxcut takes as input a (weighted) adjacency matrix B and returns the maximum cut of the
graph using sqlp. If we wish to find to the maximum cut of the graph in Figure 1, given the adjacency matrix B we
can compute the solution using sqlp using maxcut

R> out <- maxcut(B)

R> out$pobj



[1] -14.67622
R> out$X

.11 [,21 [,31 [,41 [,51 [,e1 [,71 [,8] [,91 [,10]

V1 1.000 0.987 -0.136 -0.858 0.480 0.857 -0.879 0.136 -0.857 0.597

v2 0.987 1.000 0.026 -0.763 0.616 0.929 -0.791 -0.026 -0.929 0.459

V3 -0.136 0.026 1.000 0.626 0.804 0.394 0.592 -1.000 -0.394 -0.876

V4 -0.858 -0.763 0.626 1.000 0.039 -0.469 0.999 -0.626 0.470 -0.925

V5 0.480 0.616 0.804 0.039 1.000 0.864 -0.004 -0.804 -0.864 -0.417
0 1

V6 0.857 0.929 .394 -0.469 0.864 .000 -0.508 -0.394 -1.000 0.098
v7 -0.879 -0.791 0.592 0.999 -0.004 -0.508 1.000 -0.592 0.508 -0.907
V8 0.136 -0.026 -1.000 -0.626 -0.804 -0.394 -0.592 1.000 0.394 0.876
V9 -0.857 -0.929 -0.394 0.470 -0.864 -1.000 0.508 0.394 1.000 -0.098
Vi0 0.597 0.459 -0.876 -0.925 -0.417 0.098 -0.907 0.876 -0.098 1.000

Note that the value of the primary objective function is negative as we have defined C = —(diag(B1) — B)/4 since
we require the primal formulation to be a minimization problem. The original formulation given in [1] frames the
Max-Cut problem as a maximization problem with C = (diag(B1) — B)/4. Therefore, the approximate value of the
maximum cut for the graph in Figure 1 is 14.68 (recall we are solving a relaxation).

As an interesting aside, we can show that the matrix X is actually a correlation matrix by considering its eigenvalues
- we can see it clearly is symmetric, with unit diagonal and all elements in [-1,1].

R> eigen(X)$values

[1] 5.59e+00 4.41e+00 2.07e-07 1.08e-07 4.92e-08 3.62e-08 3.22e-08
[8] 1.90e-08 1.66e-08 9.38e-09

The fact that X is indeed a correlation matrix comes as no surprise. [1] show that the set of feasible solutions for
the Max-Cut problem is in fact the set of correlation matrices. So while we may not be interested in X as an output
for solving the Max-Cut problem, it is nonetheless interesting to see that it is in fact in the set of feasible solutions.
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