
The Max-Cut Problem

Adam Rahman

February 8, 2019

One of the simplest problems that can be formulated in terms of a conic linear optimization problem is �nding the
maximum cut of a graph. Let G = [V,E] be a graph with vertices V and edges E. A cut of the graph G is a partition
of the vertices of G into two disjoint subsets G1 = [V1,E1], G2 = [V2,E2], with V1 ∩V2 = ∅. The size of the cut is
de�ned to be the number of edges connecting the two subsets. The maximum cut is de�ned to be the cut of a graph
G whose size is at least as large as any other cut. For a weighted graph object, we can also de�ne the maximum cut
to be the cut with weight at least as large as any other cut.

Finding the maximum cut is referred to as the Max-Cut Problem, and was one of the �rst problems found to be
NP-complete, and is also one of the 21 algorithms on Karp's 21 NP-complete problems ([2]). The Max-Cut problem
is also known to be APX hard ([3]), meaning in addition to there being no polynomial time solution, there is also no
polynomial time approximation.

Using the semide�nite programming approximation formulation of [1], the Max-Cut problem can be approximated
to within an approximation constant. For a weighted adjacency matrix B, the objective function can be stated as

minimize
X

〈C,X〉
subject to

diag(X) = 1
X ∈ Sn

where Sn is the cone of symmetric positive semide�nite matrices of size n, and C = −(diag(B1) − B)/4. Here, we
de�ne diag(a) for an n× 1 vector a to be the diagonal matrix A = [Aij] of size n×n with Aii = ai, i = 1, . . . , n. For
a matrix X, diag(X) extracts the diagonal elements from X and places them in a column-vector.

To see that the Max-Cut problem is a conic linear optimization problem it needs to be written in the same form
as the primal objective function. The objective function is already in a form identical to that of the primal objective
function, with minimization occurring over X of its inner product with a constant matrix C = −(diag(B1) − B)/4.
There are n equality constraints of the form xkk = 1, k = 1, ..., n, where xkk is the kth diagonal element of X, and
bk = 1 in the primal objective function. To represent this in the form 〈Ak, X〉 = xkk, take Ak to be

Ak = [aij] =

{
1, i = j = k

0, otherwise

Now 〈Ak, X〉 = vec(Ak)
T
vec(X) = xkk as required, and the Max-Cut problem is speci�ed as a conic linear

optimization problem.
To convert this to a form usable by sqlp, we begin by noting that we have one optimization variable, X. Therefore,

with L = 1, and having X constrained to the space of semide�nite matrices of size n, we specify blk as

R> blk <- c("s" = n)

With the objective function in the form 〈C,X〉, we de�ne the input C as

R> one <- matrix(1,nrow=n,ncol=1)

R> C <- -(diag(c(B %*% one)) - B)/4

1

where B is the adjacency matrix for a graph on which we would like to �nd the maximum cut, such as the one in
Figure 1.

B =



0 0 0 1 0 0 1 1 0 0
0 0 0 1 0 0 1 0 1 1
0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 0
1 1 0 0 1 0 0 1 1 1
1 0 1 1 1 0 1 0 0 0
0 1 0 0 1 1 1 0 0 1
0 1 0 1 1 0 1 0 1 0



Figure 1: A graph object and associated adjacency matrix for which we would like to �nd the maximum cut.

The matrix At is constructed using the upper triangular portion of the Ak matrices. To do this in R, the function
svec is made available in sdpt3r.

R> #Construct Ak matrices

R> A <- matrix(list(),nrow=1,ncol=n)

R> for(k in 1:n){

R> A[[k]] <- matrix(0,nrow=n,ncol=n)

R> diag(A[[k]])[k] <- 1

R> }

R> #Combine to form At

R> At <- svec(blk[1],A,1)

Having each of the diagonal elements of X constrained to be 1, b is a n× 1 matrix of ones

R> b <- matrix(1,nrow=n,ncol=1)

With all the input variables now de�ned, we can now call sqlp to solve the Max-Cut problem

R> sqlp(blk, list(At), list(C), b)

The built-in function maxcut takes as input a (weighted) adjacency matrix B and returns the maximum cut of the
graph using sqlp. If we wish to �nd to the maximum cut of the graph in Figure 1, given the adjacency matrix B we
can compute the solution using sqlp using maxcut

R> out <- maxcut(B)

R> out$pobj

2

[1] -14.67622

R> out$X

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

V1 1.000 0.987 -0.136 -0.858 0.480 0.857 -0.879 0.136 -0.857 0.597

V2 0.987 1.000 0.026 -0.763 0.616 0.929 -0.791 -0.026 -0.929 0.459

V3 -0.136 0.026 1.000 0.626 0.804 0.394 0.592 -1.000 -0.394 -0.876

V4 -0.858 -0.763 0.626 1.000 0.039 -0.469 0.999 -0.626 0.470 -0.925

V5 0.480 0.616 0.804 0.039 1.000 0.864 -0.004 -0.804 -0.864 -0.417

V6 0.857 0.929 0.394 -0.469 0.864 1.000 -0.508 -0.394 -1.000 0.098

V7 -0.879 -0.791 0.592 0.999 -0.004 -0.508 1.000 -0.592 0.508 -0.907

V8 0.136 -0.026 -1.000 -0.626 -0.804 -0.394 -0.592 1.000 0.394 0.876

V9 -0.857 -0.929 -0.394 0.470 -0.864 -1.000 0.508 0.394 1.000 -0.098

V10 0.597 0.459 -0.876 -0.925 -0.417 0.098 -0.907 0.876 -0.098 1.000

Note that the value of the primary objective function is negative as we have de�ned C = −(diag(B1)−B)/4 since
we require the primal formulation to be a minimization problem. The original formulation given in [1] frames the
Max-Cut problem as a maximization problem with C = (diag(B1) −B)/4. Therefore, the approximate value of the
maximum cut for the graph in Figure 1 is 14.68 (recall we are solving a relaxation).

As an interesting aside, we can show that the matrixX is actually a correlation matrix by considering its eigenvalues
- we can see it clearly is symmetric, with unit diagonal and all elements in [-1,1].

R> eigen(X)$values

[1] 5.59e+00 4.41e+00 2.07e-07 1.08e-07 4.92e-08 3.62e-08 3.22e-08

[8] 1.90e-08 1.66e-08 9.38e-09

The fact that X is indeed a correlation matrix comes as no surprise. [1] show that the set of feasible solutions for
the Max-Cut problem is in fact the set of correlation matrices. So while we may not be interested in X as an output
for solving the Max-Cut problem, it is nonetheless interesting to see that it is in fact in the set of feasible solutions.

References

[1] Michel X Goemans and David P Williamson. Improved approximation algorithms for maximum cut and satis�a-
bility problems using semide�nite programming. Journal of the ACM (JACM), 42(6):1115�1145, 1995.

[2] Richard M Karp. Reducibility among combinatorial problems. In Complexity of Computer Computations, pages
85�103. Springer-Verlag, 1972.

[3] Christos H Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and complexity classes. Journal
of computer and system sciences, 43(3):425�440, 1991.

3

