sGMRFmix: Sparse Gaussian Markov Random Field Mixtures for Anomaly
Detection
An implementation of sparse Gaussian Markov random field mixtures
presented by Ide et al. (2016) <doi:10.1109/ICDM.2016.0119>.
It provides a novel anomaly detection method for multivariate noisy sensor data.
It can automatically handle multiple operational modes.
And it can also compute variable-wise anomaly scores.
| Version: |
0.3.0 |
| Imports: |
ggplot2, glasso, mvtnorm, stats, tidyr, utils, zoo |
| Suggests: |
dplyr, ModelMetrics, testthat, covr, knitr, rmarkdown |
| Published: |
2018-04-16 |
| DOI: |
10.32614/CRAN.package.sGMRFmix |
| Author: |
Koji Makiyama [cre, aut] |
| Maintainer: |
Koji Makiyama <hoxo.smile at gmail.com> |
| License: |
MIT + file LICENSE |
| NeedsCompilation: |
no |
| Materials: |
NEWS |
| In views: |
AnomalyDetection |
| CRAN checks: |
sGMRFmix results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=sGMRFmix
to link to this page.