Package ‘rhino’

February 22, 2024

Title A Framework for Enterprise Shiny Applications

Version 1.7.0

Description A framework that supports creating and extending enterprise Shiny applications us-
ing best practices.

URL https://appsilon.github.io/rhino/,
https://github.com/Appsilon/rhino

BugReports https://github.com/Appsilon/rhino/issues
License LGPL-3

Encoding UTF-8

RoxygenNote 7.2.3

Depends R (>=2.10)

Imports box (>= 1.1.3), cli, config, fs, glue, lintr (>= 3.0.0),

logger, purrr, renv, rstudioapi, sass, shiny, styler, testthat
(>=3.0.0), utils, withr, xml2, yaml
Suggests covr, knitr, mockery, rcemdcheck, rex, rlang, rmarkdown,
shiny.react, spelling
LazyData true
Config/testthat/edition 3
Config/testthat/parallel true
Language en-US
NeedsCompilation no
Author Kamil Zyta [aut, cre],
Jakub Nowicki [aut],
Leszek Sieminski [aut],
Marek Rogala [aut],
Recle Vibal [aut],
Tymoteusz Makowski [aut],
Rodrigo Basa [aut],

Eduardo Almeida [ctb],
Appsilon Sp. z 0.0. [cph]

https://appsilon.github.io/rhino/
https://github.com/Appsilon/rhino
https://github.com/Appsilon/rhino/issues

2 app

Maintainer Kamil Zyka <opensource+kamil@appsilon.com>
Repository CRAN
Date/Publication 2024-02-22 16:00:02 UTC

R topics documented:

APP - - o e e e e e e e e e e e e e e e 2
box_func_import_count_linter 3
box_separate_calls_linter 4
box_trailing_commas_linter 5
box_universal_import_lintero 6
build_js e e e 7
build_sass s 8
dependencies 9
diagnostics e e e e e 10
format_r e 10
NIt . . e e e e 11
Lnt_js . . . o e e e 12
It . . e e 13
HNt_SASS . . . o o e e e e e e, 13
log . . o e 14
TEACL_COMPONENL v v v v vt e it e et e e e e e e e e e e 15
rhinos e 16
EST_E2€ . . o i s, 16
173 17
Index 18
app Rhino application
Description

The entrypoint for a Rhino application. Your app.R should contain nothing but a call to rhino: :app().

Usage
app()

Details

This function is a wrapper around shiny: :shinyApp(). It reads rhino.yml and performs some
configuration steps (logger, static files, box modules). You can run a Rhino application in typical
fashion using shiny: : runApp().

Rhino will load the app/main.R file as a box module (box: : use(app/main)). It should export two
functions which take a single id argument - the ui and server of your top-level Shiny module.

box_func_import_count_linter 3

Value

An object representing the app (can be passed to shiny: : runApp()).

Legacy entrypoint

It is possible to specify a different way to load your application using the legacy_entrypoint
option in rhino.yml:
1. app_dir: Rhino will run the app using shiny: : shinyAppDir("app").

2. source: Rhino will source("app/main.R"). This file should define the top-level ui and
server objects to be passed to shinyApp().

3. box_top_level: Rhino will load app/main.R as a box module (as it does by default), but the
exported ui and server objects will be considered as top-level.

The legacy_entrypoint setting is useful when migrating an existing Shiny application to Rhino.
It is recommended to transform your application step by step:

1. With app_dir you should be able to run your application right away (just put the files in the
app directory).

2. With source setting your application structure must be brought closer to Rhino, but you can
still use 1ibrary() and source() functions.

3. With box_top_level you can be confident that the whole app is properly modularized, as box
modules can only load other box modules (library() and source() won’t work).

4. The last step is to remove the legacy_entrypoint setting completely. Compared to box_top_level
you’ll need to make your top-level ui and server into a Shiny module (functions taking a sin-
gle id argument).

Examples

Not run:
Your ‘app.R‘ should contain nothing but this single call:
rhino: :app()

End(Not run)

box_func_import_count_linter
box library function import count linter

Description
Checks that function imports do not exceed the defined max. See the Explanation: Rhino style guide
to learn about the details.

Usage

box_func_import_count_linter(max = 8L)

https://shiny.rstudio.com/articles/modules.html
https://appsilon.github.io/rhino/articles/explanation/rhino-style-guide.html

4 box_separate_calls_linter

Arguments

max Maximum function imports allowed between [and]. Defaults to 8.

Value

A custom linter function for use with r-1ib/lintr.

Examples

will produce lints
lintr::lint(

text = "box::use(package[one, two, three, four, five, six, seven, eight, ninel)"”,
linters = box_func_import_count_linter()

)

lintr::1lint(
text = "box::use(package[one, two, three, fourl)”,
linters = box_func_import_count_linter(3)

)

okay

lintr::1lint(
text = "box::use(package[one, two, three, four, fivel)"”,
linters = box_func_import_count_linter()

)

lintr::lint(
text = "box::use(packagel[one, two, threel)”,
linters = box_func_import_count_linter(3)

box_separate_calls_linter
box library separate packages and module imports linter

Description
Checks that packages and modules are imported in separate box: :use() statements. See the Ex-
planation: Rhino style guide to learn about the details.

Usage

box_separate_calls_linter()

Value

A custom linter function for use with r-1ib/lintr

https://appsilon.github.io/rhino/articles/explanation/rhino-style-guide.html
https://appsilon.github.io/rhino/articles/explanation/rhino-style-guide.html

box_trailing_commas_linter 5

Examples

will produce lints

lintr::1lint(
text = "box::use(package, path/to/file)”,
linters = box_separate_calls_linter()

)

lintr::1lint(
text = "box::use(path/to/file, package)”,
linters = box_separate_calls_linter()

)

okay
lintr::1lint(
text = "box::use(packagel, package2)
box: :use(path/to/filel, path/to/file2)",
linters = box_separate_calls_linter()

)

box_trailing_commas_linter
box library trailing commas linter

Description

Checks that all box: use imports have a trailing comma. This applies to package or module imports
between (and), and, optionally, function imports between [and]. Take note that lintr: :commas_linter()
may come into play. See the Explanation: Rhino style guide to learn about the details.

Usage

box_trailing_commas_linter(check_functions = FALSE)

Arguments

check_functions
Boolean flag to include function imports between [and]. Defaults to FALSE.

Value

A custom linter function for use with r-1ib/lintr

Examples

will produce lints

lintr::lint(
text = "box::use(base, rlang)”,
linters = box_trailing_commas_linter()

https://appsilon.github.io/rhino/articles/explanation/rhino-style-guide.html

6 box_universal_import_linter

)

lintr::lint(
text = "box::use(
dplyr[select, mutate]

n
’

linters = box_trailing_commas_linter()

)
okay
lintr::1lint(
text = "box::use(base, rlang,)",
linters = box_trailing_commas_linter()
)

lintr::lint(
text = "box: :use(
dplyr[select, mutate],

"
)

linters = box_trailing_commas_linter()

box_universal_import_linter
box library universal import linter

Description
Checks that all function imports are explicit. packagel...] is not used. See the Explanation:
Rhino style guide to learn about the details.

Usage

box_universal_import_linter()

Value

A custom linter function for use with r-1ib/lintr

Examples

will produce lints
lintr::lint(
text = "box::use(base[...]1)",
linters = box_universal_import_linter()

)

lintr::1lint(
text = "box::use(path/to/file[...1)",

https://appsilon.github.io/rhino/articles/explanation/rhino-style-guide.html
https://appsilon.github.io/rhino/articles/explanation/rhino-style-guide.html

build_js 7

linters = box_universal_import_linter()

)
okay
lintr::1lint(
text = "box::use(base[print])”,
linters = box_universal_import_linter()
)

lintr::lint(
text = "box::use(path/to/file[do_something])",
linters = box_universal_import_linter()

)

build_js Build JavaScript

Description

Builds the app/js/index. js file into app/static/js/app.min. js. The code is transformed and
bundled using Babel and webpack, so the latest JavaScript features can be used (including EC-
MAScript 2015 aka ES6 and newer standards). Requires Node.js to be available on the system.

Usage
build_js(watch = FALSE)

Arguments

watch Keep the process running and rebuilding JS whenever source files change.

Details

Functions/objects defined in the global scope do not automatically become window properties, so
the following JS code:

function sayHello() { alert('Hello!'); }

won’t work as expected if used in R like this:
tags$button(”Hello!"”, onclick = 'sayHello()');
Instead you should explicitly export functions:

export function sayHello() { alert('Hello!'); }
and access them via the global App object:

tags$button(”Hello!"”, onclick = "App.sayHello()")

https://babeljs.io
https://webpack.js.org

8 build_sass

Value

None. This function is called for side effects.

Examples

if (interactive()) {
Build the ‘app/js/index.js‘ file into ‘app/static/js/app.min.js*.
build_js()

3

build_sass Build Sass

Description

Builds the app/styles/main. scss file into app/static/css/app.min.css.

Usage

build_sass(watch = FALSE)

Arguments
watch Keep the process running and rebuilding Sass whenever source files change.
Only supported for sass: node configuration in rhino.yml.
Details

The build method can be configured using the sass option in rhino.yml:

1. node: Use Dart Sass (requires Node.js to be available on the system).
2. r: Use the {sass} R package.
It is recommended to use Dart Sass which is the primary, actively developed implementation of

Sass. On systems without Node.js you can use the {sass} R package as a fallback. It is not advised
however, as it uses the deprecated LibSass implementation.

Value

None. This function is called for side effects.

Examples

if (interactive()) {
Build the ‘app/styles/main.scss‘ file into ‘app/static/css/app.min.css*.
build_sass()

3

https://sass-lang.com/dart-sass
https://sass-lang.com/blog/libsass-is-deprecated

dependencies 9

dependencies Manage dependencies

Description

Install, remove or update the R package dependencies of your Rhino project.

Usage
pkg_install (packages)

pkg_remove (packages)

Arguments

packages Character vector of package names.

Details

Use pkg_install() to install or update a package to the latest version. Use pkg_remove() to
remove a package.

These functions will install or remove packages from the local {renv} library, and update the
dependencies.R and renv.lock files accordingly, all in one step. The underlying {renv} func-
tions can still be called directly for advanced use cases. See the Explanation: Renv configuration to
learn about the details of the setup used by Rhino.

Value

None. This functions are called for side effects.

Examples

Not run:
Install dplyr
rhino: :pkg_install("dplyr")

Update shiny to the latest version
rhino: :pkg_install("”shiny")

Install a specific version of shiny
rhino: :pkg_install(”shiny@1.6.0")

Install shiny.i18n package from GitHub
rhino: :pkg_install("Appsilon/shiny.i18n")

Install Biobase package from Bioconductor
rhino: :pkg_install("bioc: :Biobase")

Install shiny from local source

https://appsilon.github.io/rhino/articles/explanation/renv-configuration.html

10

rhino: :pkg_install("~/path/to/shiny")

Remove dplyr
rhino: :pkg_remove("dplyr")

End(Not run)

format r

diagnostics Print diagnostics

Description

Prints information which can be useful for diagnosing issues with Rhino.

Usage

diagnostics()

Value

None. This function is called for side effects.

Examples

if (interactive()) {
Print diagnostic information.
diagnostics()

}

format_r Format R

Description

Uses the {styler} package to automatically format R sources.

Usage

format_r(paths)

Arguments

paths Character vector of files and directories to format.

Details

The code is formatted according to the styler::tidyverse_style guide with one adjustment:
spacing around math operators is not modified to avoid conflicts with box: : use() statements.

init 11

Value

None. This function is called for side effects.

Examples

if (interactive()) {
Format a single file.
format_r("app/main.R")

Format all files in a directory.
format_r("app/view")

}

init Create Rhino application

Description

Generates the file structure of a Rhino application. Can be used to start a fresh project or to migrate
an existing Shiny application created without Rhino.

Usage
init(
dir = ".",
github_actions_ci = TRUE,

rhino_version = "rhino",
force = FALSE

Arguments

dir Name of the directory to create application in.
github_actions_ci
Should the GitHub Actions CI be added?

rhino_version When using an existing renv. lock file, Rhino will install itself using renv: : install(rhino_version).
You can provide this argument to use a specific version / source, e.g.”" Appsilon/rhino@ve.4.0".

force Boolean; force initialization? By default, Rhino will refuse to initialize a project
in the home directory.

Details
The recommended steps for migrating an existing Shiny application to Rhino:

1. Put all app files in the app directory, so that it can be run with shiny: : shinyAppDir("app")
(assuming all dependencies are installed).

12 lint_js
2. If you have a list of dependencies in form of 1ibrary () calls, put them in the dependencies.R

file. If this file does not exist, Rhino will generate it based on renv: : dependencies("app”).

3. If your project uses {renv}, put renv.lock and renv directory in the project root. Rhino will
try to only add the necessary dependencies to your lockfile.

4. Run rhino::init() in the project root.

Value

None. This function is called for side effects.

lint_js Lint JavaScript

Description

Runs ESLint on the JavaScript sources in the app/ js directory. Requires Node.js to be available on
the system.

Usage

lint_js(fix = FALSE)

Arguments

fix Automatically fix problems.

Details

If your JS code uses global objects defined by other JS libraries or R packages, you’ll need to let
the linter know or it will complain about undefined objects. For example, the {1eaflet} package
defines a global object L. To access it without raising linter errors, add /* global L */ comment
in your JS code.

You don’t need to define Shiny and $ as these global variables are defined by default.

If you find a particular ESLint error inapplicable to your code, you can disable a specific rule for
the next line of code with a comment like:
// eslint-disable-next-line no-restricted-syntax

See the ESLint documentation for full details.

Value

None. This function is called for side effects.

https://eslint.org
https://eslint.org/docs/user-guide/configuring/rules#using-configuration-comments-1

lint_r 13

Examples

if (interactive()) {
Lint the JavaScript sources in the ‘app/js‘ directory.
lint_js()

3

lint_r Lint R

Description
Uses the {1intr} package to check all R sources in the app and tests/testthat directories for
style errors.

Usage

lint_r(paths = NULL)

Arguments
paths Character vector of directories and files to lint. When NULL (the default), check
app and tests/testthat directories.
Details

The linter rules can be adjusted in the . lintr file.

You can set the maximum number of accepted style errors with the legacy_max_lint_r_errors
option in rhino.yml. This can be useful when inheriting legacy code with multiple styling issues.

Value

None. This function is called for side effects.

lint_sass Lint Sass

Description

Runs Stylelint on the Sass sources in the app/styles directory. Requires Node.js to be available
on the system.

Usage

lint_sass(fix = FALSE)

https://stylelint.io/

14 log

Arguments

fix Automatically fix problems.

Value

None. This function is called for side effects.

Examples

if (interactive()) {
Lint the Sass sources in the ‘app/styles‘ directory.
lint_sass()

}

log Logging functions

Description

Convenient way to log messages at a desired severity level.

Usage
log

Format

An object of class 1ist of length 7.

Details
The log object is a list of logging functions, in order of decreasing severity:

. fatal
. error
warn
. success
info

. debug

. trace

Rhino configures logging based on settings read from the config.yml file in the root of your
project:

1. rhino_log_level: The minimum severity of messages to be logged.

2. rhino_log_file: The file to save logs to. If NA, standard error stream will be used.

react_component 15

The default config.yml file uses !expr Sys.getenv() so that log level and file can also be con-
figured by setting the RHINO_LOG_LEVEL and RHINO_LOG_FILE environment variables.

The functions re-exported by the 1og object are aliases for {logger} functions. You can also import
the package and use it directly to utilize its full capabilities.

Examples

Not run:
box: :use(rhino[log])

Messages can be formatted using glue syntax.
name <- "Rhino”

log$warn("Hello {name}!")

log$info("{1:3} + {1:3} = {2 *x (1:3)}")

End(Not run)

react_component React components

Description

Declare the React components defined in your app.

Usage

react_component (name)

Arguments

name The name of the component.

Details

There are three steps to add a React component to your Rhino application:

1. Define the component using JSX and register it with Rhino.registerReactComponents().
2. Declare the component in R with rhino: :react_component().

3. Use the component in your application.

Please refer to the Tutorial: Use React in Rhino to learn about the details.

Value

A function representing the component.

https://appsilon.github.io/rhino/articles/tutorial/use-react-in-rhino.html

16 test_e2e

Examples

Declare the component.
TextBox <- react_component("”"TextBox")

Use the component.
ui <- TextBox("Hello!", font_size = 20)

rhinos Population of rhinos

Description

A dataset containing population of 5 species of rhinos.

Usage

rhinos

Format

A data frame with 58 rows and 3 variables:

Year year
Population rhinos population

Species rhinos species

Source

https://ourworldindata.org/

test_e2e Run Cypress end-to-end tests

Description
Uses Cypress to run end-to-end tests defined in the tests/cypress directory. Requires Node.js to
be available on the system.

Usage

test_e2e(interactive = FALSE)

Arguments

interactive Should Cypress be run in the interactive mode?

https://ourworldindata.org/
https://www.cypress.io/

test r 17

Details

Check out: Tutorial: Write end-to-end tests with Cypress to learn how to write end-to-end tests for
your Rhino app.

If you want to write end-to-end tests with {shinytest2}, see our How-to: Use shinytest2 guide.

Value

None. This function is called for side effects.

Examples

if (interactive()) {
Run the end-to-end tests in the ‘tests/cypress‘ directory.
test_e2e()

3

test_r Run R unit tests

Description

Uses the {testhat} package to run all unit tests in tests/testthat directory.

Usage

test_r()

Value

None. This function is called for side effects.

Examples

if (interactive()) {
Run all unit tests in the ‘tests/testthat® directory.
test_rQ)

3

https://appsilon.github.io/rhino/articles/tutorial/write-end-to-end-tests-with-cypress.html
https://appsilon.github.io/rhino/articles/how-to/use-shinytest2.html

Index

x datasets
log, 14
rhinos, 16

app, 2

box_func_import_count_linter, 3
box_separate_calls_linter, 4
box_trailing_commas_linter, 5
box_universal_import_linter, 6
build_js, 7

build_sass, 8

dependencies, 9
diagnostics, 10

format_r, 10
init, 11

lint_js, 12
lint_r, 13
lint_sass, 13
log, 14

pkg_install (dependencies), 9
pkg_remove (dependencies), 9

react_component, 15
rhinos, 16

test_e2e, 16
test_r, 17

18

	app
	box_func_import_count_linter
	box_separate_calls_linter
	box_trailing_commas_linter
	box_universal_import_linter
	build_js
	build_sass
	dependencies
	diagnostics
	format_r
	init
	lint_js
	lint_r
	lint_sass
	log
	react_component
	rhinos
	test_e2e
	test_r
	Index

