| Title: | A Light Wrapper Around the 'BM25' 'Rust' Crate for Okapi BM25 Text Search |
| Version: | 0.0.4 |
| Description: | BM25 is a ranking function used by search engines to rank matching documents according to their relevance to a user's search query. This package provides a light wrapper around the 'BM25' 'rust' crate for Okapi BM25 text search. For more information, see Robertson et al. (1994) https://trec.nist.gov/pubs/trec3/t3_proceedings.html. |
| Encoding: | UTF-8 |
| URL: | https://davzim.github.io/rbm25/, https://github.com/DavZim/rbm25/ |
| BugReports: | https://github.com/DavZim/rbm25/issues |
| SystemRequirements: | Cargo (Rust's package manager), rustc >= 1.71.1 |
| Imports: | R6 |
| Suggests: | testthat (≥ 3.0.0) |
| License: | MIT + file LICENSE |
| RoxygenNote: | 7.3.2 |
| Config/rextendr/version: | 0.3.1.9001 |
| Config/testthat/edition: | 3 |
| Config/rbm25/MSRV: | 1.71.1 |
| Depends: | R (≥ 4.2) |
| NeedsCompilation: | yes |
| Packaged: | 2025-04-14 20:23:31 UTC; david |
| Author: | David Zimmermann-Kollenda [aut, cre], Michael Barlow [aut] (bm25 Rust library), Authors of the dependency Rust crates [aut] (see AUTHORS file) |
| Maintainer: | David Zimmermann-Kollenda <david_j_zimmermann@hotmail.com> |
| Repository: | CRAN |
| Date/Publication: | 2025-04-14 22:40:02 UTC |
BM25 Object
Description
Class to construct the BM25 search object
Methods
Public methods
Method new()
Creates a new instance of a BM25 class
Usage
BM25$new(data = NULL, lang = "detect", k1 = 1.2, b = 0.75, metadata = NULL)
Arguments
datatext data, a vector of strings. Note any preprocessing steps (tolower, removing stopwords etc) need to have taken place before this!
langlanguage of the data, see self$available_languages(), can also be "detect" to automatically detect the language, default is "detect"
k1k1 parameter of BM25, default is 1.2
bb parameter of BM25, default is 0.75
metadataa data.frame with metadata for each document, default is NULL must be a data.frame with the same number of rows containing arbitrary metadata for each document, e.g. a file path or a URL
Returns
BM25 object
Examples
corpus <- c(
"The rabbit munched the orange carrot.",
"The snake hugged the green lizard.",
"The hedgehog impaled the orange orange.",
"The squirrel buried the brown nut."
)
bm25 <- BM25$new(data = corpus, lang = "en",
metadata = data.frame(src = paste("file", 1:4)))
bm25
bm25$get_data()
bm25$query("orange", max_n = 2)
bm25$query("orange", max_n = 3)
bm25$query("orange") # return all, same as max_n = Inf or NULL
Method available_languages()
Returns the available languages
Usage
BM25$available_languages()
Returns
a named character vector with language codes and their full names
Examples
BM25$new()$available_languages()
Method get_data()
Returns the data
Usage
BM25$get_data(add_metadata = TRUE)
Arguments
add_metadatawhether to add metadata to the data, default is TRUE
Returns
a data.frame with the data and metadata if available and selected
Examples
BM25$new(data = letters, metadata = LETTERS)$get_data()
Method get_lang()
Returns the language used
Usage
BM25$get_lang()
Returns
a character string with the language code
Examples
BM25$new()$get_lang() BM25$new(lang = "en")$get_lang() BM25$new(lang = "detect")$get_lang()
Method print()
Prints a BM25 object
Usage
BM25$print(n = 5, nchar = 20)
Arguments
nnumber of data to print, default is 5
ncharnumber of characters to print for each text, default is 20
Returns
the object invisible
Examples
BM25$new(data = letters, metadata = LETTERS)
Method add_data()
Adds data to the BM25 object
This can be useful to add more data later on, note this will rebuild the engine.
Usage
BM25$add_data(data, metadata = NULL)
Arguments
dataa vector of strings
metadataa data.frame with metadata for each document, default is NULL
Returns
NULL
Examples
bm25 <- BM25$new() bm25$add_data(letters, metadata = LETTERS) bm25
Method query()
Query the BM25 object for the N best matches
Usage
BM25$query(query, max_n = NULL, return_text = TRUE, return_metadata = TRUE)
Arguments
querythe term to search for, note all preprocessing that was applied to the text corpus initially needs to be already performed on the term, e.g., tolower, removing stopwords etc
max_nthe maximum number of results to return, default is all
return_textwhether to return the text, default is TRUE
return_metadatawhether to return metadata, default is TRUE
Returns
a data.frame with the results
Examples
corpus <- c(
"The rabbit munched the orange carrot.",
"The snake hugged the green lizard.",
"The hedgehog impaled the orange orange.",
"The squirrel buried the brown nut."
)
bm25 <- BM25$new(data = corpus, lang = "en",
metadata = data.frame(src = paste("file", 1:4)))
bm25$query("orange", max_n = 2)
bm25$query("orange", max_n = 3)
bm25$query("orange", return_text = FALSE, return_metadata = FALSE)
bm25$query("orange", max_n = 3)
Method clone()
The objects of this class are cloneable with this method.
Usage
BM25$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Examples
corpus <- c(
"The rabbit munched the orange carrot.",
"The snake hugged the green lizard.",
"The hedgehog impaled the orange orange.",
"The squirrel buried the brown nut."
)
bm25 <- BM25$new(data = corpus, lang = "en",
metadata = data.frame(src = paste("file", 1:4)))
bm25$query("orange", max_n = 2)
bm25$query("orange")
## ------------------------------------------------
## Method `BM25$new`
## ------------------------------------------------
corpus <- c(
"The rabbit munched the orange carrot.",
"The snake hugged the green lizard.",
"The hedgehog impaled the orange orange.",
"The squirrel buried the brown nut."
)
bm25 <- BM25$new(data = corpus, lang = "en",
metadata = data.frame(src = paste("file", 1:4)))
bm25
bm25$get_data()
bm25$query("orange", max_n = 2)
bm25$query("orange", max_n = 3)
bm25$query("orange") # return all, same as max_n = Inf or NULL
## ------------------------------------------------
## Method `BM25$available_languages`
## ------------------------------------------------
BM25$new()$available_languages()
## ------------------------------------------------
## Method `BM25$get_data`
## ------------------------------------------------
BM25$new(data = letters, metadata = LETTERS)$get_data()
## ------------------------------------------------
## Method `BM25$get_lang`
## ------------------------------------------------
BM25$new()$get_lang()
BM25$new(lang = "en")$get_lang()
BM25$new(lang = "detect")$get_lang()
## ------------------------------------------------
## Method `BM25$print`
## ------------------------------------------------
BM25$new(data = letters, metadata = LETTERS)
## ------------------------------------------------
## Method `BM25$add_data`
## ------------------------------------------------
bm25 <- BM25$new()
bm25$add_data(letters, metadata = LETTERS)
bm25
## ------------------------------------------------
## Method `BM25$query`
## ------------------------------------------------
corpus <- c(
"The rabbit munched the orange carrot.",
"The snake hugged the green lizard.",
"The hedgehog impaled the orange orange.",
"The squirrel buried the brown nut."
)
bm25 <- BM25$new(data = corpus, lang = "en",
metadata = data.frame(src = paste("file", 1:4)))
bm25$query("orange", max_n = 2)
bm25$query("orange", max_n = 3)
bm25$query("orange", return_text = FALSE, return_metadata = FALSE)
bm25$query("orange", max_n = 3)
Score a text corpus based on the Okapi BM25 algorithm
Description
A simple wrapper around the BM25 class.
Usage
bm25_score(data, query, lang = NULL, k1 = 1.2, b = 0.75)
Arguments
data |
text data, a vector of strings. Note any preprocessing steps (tolower, removing stopwords etc) need to have taken place before this! |
query |
the term to search for, note all preprocessing that was applied to the text corpus initially needs to be already performed on the term, e.g., tolower, removing stopwords etc |
lang |
language of the data, see self$available_languages(), can also be "detect" to automatically detect the language, default is "detect" |
k1 |
k1 parameter of BM25, default is 1.2 |
b |
b parameter of BM25, default is 0.75 |
Value
a numeric vector of the BM25 scores, note higher values are showing a higher relevance of the text to the query
See Also
Examples
corpus <- c(
"The rabbit munched the orange carrot.",
"The snake hugged the green lizard.",
"The hedgehog impaled the orange orange.",
"The squirrel buried the brown nut."
)
scores <- bm25_score(data = corpus, query = "orange")
data.frame(text = corpus, scores_orange = scores)