The goal of rando is to provide easier generating of random numbers in a manner that is context aware, and reproducible.
You can install the released version of rando from CRAN with:
install.packages("rando")
You can install the development version of rando from Github with:
install.packages("remotes")
remotes::install_github("MyKo101/rando")
Once installed, to load rando, use
library(rando)
With rando, generating random numbers becomes incredibly easy, as we
do not need to define how many random numbers we need.
rando will figure out how many you need based on where the
number generator is being used.
This works for tibble() declarations
df <- tibble(id = 1:10,
x = r_norm())
df
#> # A tibble: 10 x 2
#> id x
#> <int> <dbl>
#> 1 1 -0.365
#> 2 2 0.173
#> 3 3 -0.294
#> 4 4 0.576
#> 5 5 0.875
#> 6 6 0.359
#> 7 7 -0.527
#> 8 8 -0.819
#> 9 9 -0.990
#> 10 10 0.518and inside of dplyr verbs
mutate(df, y = r_unif())
#> # A tibble: 10 x 3
#> id x y
#> <int> <dbl> <dbl>
#> 1 1 -0.365 0.210
#> 2 2 0.173 0.354
#> 3 3 -0.294 0.317
#> 4 4 0.576 0.0695
#> 5 5 0.875 0.125
#> 6 6 0.359 0.169
#> 7 7 -0.527 0.305
#> 8 8 -0.819 0.601
#> 9 9 -0.990 0.483
#> 10 10 0.518 0.300Parameters can also be used to define the number of values to return.
If parameters are longer than 1, rando will try to return
the same number of random values, unless there is a clash between two of
the parameters
r_norm(mean = 1:10)
#> [1] 0.4088105 2.2987041 2.2807546 3.9659070 4.5111552 5.4712253 6.5461452
#> [8] 6.3708207 7.7550056 8.7627581
r_norm(mean=1:10,sd=1:2)
#> Error: Inconsistent parameter lengths supplied to r_norm()If you want to manually define the number of random numbers to be
generated, there are two ways to do it. The old fashioned way: providing
the n argument (this must be named)
r_unif(n=20)
#> [1] 0.75427791 0.97153547 0.06031924 0.43098427 0.45223070 0.54105261
#> [7] 0.13882213 0.86252549 0.31421104 0.97247948 0.29288323 0.03809931
#> [13] 0.55187415 0.51237188 0.45841500 0.12699633 0.15236584 0.08755528
#> [19] 0.78088410 0.83223010Or, if we are generating many random numbers, we can set a default
n value to be used globally
set_n(15)
r_norm(mean=3)
#> [1] 4.001347 2.561471 3.474956 2.312623 2.508933 5.044508 2.586922 3.051763
#> [9] 1.205965 3.220328 3.575350 4.599801 2.599194 4.300862 2.722302
r_binom(size=3)
#> [1] 1 2 0 1 3 0 1 2 1 1 3 0 2 2 0The rando functions also check if parameters being
supplied are viable and throws an informative error if not. This is
different to the default stats random number generating
functions, which may return a lot of NaN values with only a
vague warning.
rnorm(n=10,sd=-1)
#> Warning in rnorm(n = 10, sd = -1): NAs produced
#> [1] NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
r_norm(sd=-1)
#> Error: sd provided to r_norm() must be strictly positiveAll rando functions can also take a .seed
argument which does one of two things:
rando will set this as
the random seed before generating the valuesrando will randomly
generate a numeric value to be used.If .seed is not NULL (the default), then
this seed value (supplied or generated) will be attached to
the output, and can be extracted with pull_seed()
This allows for greater replicability in results.
r_norm(.seed = 42)
#> [1] 1.37095845 -0.56469817 0.36312841 0.63286260 0.40426832 -0.10612452
#> [7] 1.51152200 -0.09465904 2.01842371 -0.06271410 1.30486965 2.28664539
#> [13] -1.38886070 -0.27878877 -0.13332134
#> attr(,"seed")
#> [1] 42
r_norm(.seed = 42)
#> [1] 1.37095845 -0.56469817 0.36312841 0.63286260 0.40426832 -0.10612452
#> [7] 1.51152200 -0.09465904 2.01842371 -0.06271410 1.30486965 2.28664539
#> [13] -1.38886070 -0.27878877 -0.13332134
#> attr(,"seed")
#> [1] 42
x <- r_norm(.seed=TRUE)
x
#> [1] -1.0515017 2.8143380 1.1880200 -1.2010801 -1.1589546 -0.1876997
#> [7] -0.1515049 0.7168907 -0.2086623 -1.0248107 0.7394365 -0.5944315
#> [13] -1.9588881 0.5869532 0.6124257
#> attr(,"seed")
#> [1] 1020465408
r_norm(.seed=pull_seed(x))
#> [1] -1.0515017 2.8143380 1.1880200 -1.2010801 -1.1589546 -0.1876997
#> [7] -0.1515049 0.7168907 -0.2086623 -1.0248107 0.7394365 -0.5944315
#> [13] -1.9588881 0.5869532 0.6124257
#> attr(,"seed")
#> [1] 1020465408In order to make simulations easier, rando provides the
blueprint() function. This function creates a plan for a
simulated dataset using rando functions.
make_tbl <- blueprint(
x = r_norm(),
y = r_norm()
)
make_tbl(n=2)
#> # A tibble: 2 x 2
#> x y
#> <dbl> <dbl>
#> 1 -1.89 1.34
#> 2 -2.28 0.913
make_tbl(n=5)
#> # A tibble: 5 x 2
#> x y
#> <dbl> <dbl>
#> 1 0.316 -0.154
#> 2 1.86 1.46
#> 3 -0.396 -1.42
#> 4 -1.08 0.481
#> 5 1.75 0.323These blueprints can accept additional arguments and will be generated based on these arguments
make_tbl2 <- blueprint(
x = r_norm(mean=x_mu),
y = r_unif(min=y_min,max=y_max)
)
set_n(10000)
make_tbl2(x_mu = 10, y_min = -10, y_max=-5) %>%
summarise(n = n(), mean_x = mean(x), min_y = min(y), max_y = max(y))
#> # A tibble: 1 x 4
#> n mean_x min_y max_y
#> <int> <dbl> <dbl> <dbl>
#> 1 10000 10.0 -10.0 -5.00This then allows for quick generation of simulation data using
pmap() and analysis using map()
make_sim <- blueprint(
x = r_norm(mean = x_mu),
y = r_norm(mean = 2*x+10, sd = 2)
)
tibble(x_mu = r_unif(n = 5, -10, 10)) %>%
pmap(make_sim, n = 100) %>%
map(lm, formula = y ~ x) %>%
map_dfr(broom::tidy)
#> # A tibble: 10 x 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 9.29 1.35 6.89 5.45e-10
#> 2 x 1.92 0.202 9.48 1.60e-15
#> 3 (Intercept) 8.69 0.723 12.0 5.58e-21
#> 4 x 2.38 0.193 12.3 1.32e-21
#> 5 (Intercept) 10.6 0.726 14.6 2.91e-26
#> 6 x 1.82 0.252 7.20 1.22e-10
#> 7 (Intercept) 10.1 0.770 13.1 3.20e-23
#> 8 x 2.06 0.202 10.2 4.72e-17
#> 9 (Intercept) 9.78 0.426 22.9 3.54e-41
#> 10 x 1.68 0.218 7.72 1.02e-11The majority of random number generating functions from the
stats package have been translated into rando
functions. Be sure to look into the documentation for the
rando functions you use, as some have re-parametrised.
Functions names for transitioning from stats to
rando generally follow the same naming convention, that is
r*() becomes r_*(), e.g. r_norm()
replaces rnorm(). The only exceptions are
r_tdist() and r_fdist() to take over the roles
of rt() and rf(), respectively.
rando also includes several new distributions such as
r_bern() and r_letters().
The r_cdf() function is a dynamic random number
generator. It can take any cdf as an argument and produce random numbers
with the associated distribution.
my_fun <- function(x,beta=1){
if_else(x < 0, 0, 1-exp(-beta*x))
}
set_n(1000)
x_data <- r_cdf(my_fun)
hist(x_data,breaks=seq(0,10,0.1))
Any
additional arguments used by the function, can be passed to
r_cdf(), and will be used in determining the number of
values to generate (just as in the other distribution functions
above)
r_cdf(my_fun,beta=1:10)
#> [1] 1.59363151 0.01710057 0.51777959 0.10563731 0.15656352 0.04890561
#> [7] 0.05313754 0.10311007 0.01916289 0.09977221Finally, purrr-style functions can be used for
r_cdf() to allow for even briefer function definitions.
These have been extended to allow for the use of additional named
arguments to be passed to these <lambda> functions.
Either .x or .t can be used for the random
variable.
set_n(20)
r_cdf(~1-exp(-.x),min=0)
#> [1] 1.00280643 0.51202178 3.15050483 0.38757920 0.16273856 1.37652755
#> [7] 0.41813254 1.14622712 1.26543641 0.01011491 0.65036416 1.35177970
#> [13] 1.25859380 0.30105710 1.45331025 0.22260547 1.71133876 0.12983680
#> [19] 0.41169524 0.26691556
r_cdf(~1-exp(-beta*.x),beta=1:10,min=0,n=10)
#> [1] 0.892275572 0.172501802 0.160342455 0.432735682 0.299936533 0.004011393
#> [7] 0.133234262 0.150531530 0.004047155 0.426167250Please note that the rando project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.