The otsad Package:
Online Time-Series Anomaly Detectors

Alainie Iturrial?, Jacinto Carrasco?, Francisco Herrera?, Santi Charramendietal, and
Karmele Intxaustit

TK4-Ikerlan, Big Data Architectures Team, Paseo J.M? Arizmediarrieta, 2, 20500
Arrasate-Mondragon. Spain

2Department of Computer Science and Artificial Intelligence, University of Granada,
Granada, 18071, Spain

Abstract

Anomaly detection gives valuable information that can be used to solve malfunctions and prevent
future problems. Although this field has been widely studied, due to the continuous evolution of
technology, new challenges arise that require further improvement and evolution of anomaly detection
techniques. In this paper, we present the ostad package that implements six of the most recent
detection algorithms capable of dealing with various challenges, such as online and non-stationary
univariate time-series anomaly detection.

1 Introduction

Anomaly detection consists of the identification of patterns in the data that differ from expected
behavior and is a relevant task in many domains such as fault detection in the manufacturing industry,
intrusion detection in cybersecurity and fraud detection in banks. Anomaly detection is an extensive
field that has been studied for years. Chandola et al. [3], Hodge et al. [5] and Zhang et al. [10]
provide a comprehensive overview of anomaly detection techniques. In the classical literature anomaly
detection methods can be categorized into six families: classification-based, clustering-based, nearest
neighbours-based, statistics, information-theoretic based and spectral techniques.

Unlike classical techniques, techniques for anomaly detection in time series must be able to take
time (or the position of each observation) into account. In also, most of the existing statistical
techniques assume that the time-series is stationary. A time-series is said to be stationary when the
mean and variance remain constant over time, and it hasn’t got a trend or seasonal component.

Due to the evolution of new technologies, the amount of data is increasing and it is collected
faster. For this reason, detection techniques must face new challenges such as an increase in the
amount of data and online processing capacity. As opposed to classic techniques, online time-series
anomaly detection techniques do not have the complete data set to work with and time must be
taken into account. Another major challenge with the introduction of online time series processing
is that time-series can be stationary and non-stationary. As we already previously commented, most
statistical or predictive techniques assume that time-series are stationary, but in most real cases they
never are. Although there are techniques to make time-series stationary, it may be difficult to make
it stationary because in online processing the full data set is not available.

In recent years, most of the work has focused on the evolution of evolving prediction models
and sliding window-based techniques [4]. Evolving techniques are models in which parameters or
components are modified as new data arrives to capture normal data trends in a better way. On
the other hand, techniques based on sliding windows are commonly used to improve distance-based
techniques. The distance calculation is an expensive method and proportional to the number of
observations to be considered. The use of sliding windows allows reducing the set of observations to
be considered, but also maintaining the most recent subset of data.

Despite the detection of anomalies is a highly studied field, there is little theory and open source
software able to address these new challenges. For python, we have found a few algorithms in
GitHub of Numenta Anomaly Benchmark (NAB) [7] including Numenta HTM, CAD-OSE, KNN-
CAD, and others. For R, there are few CRAN packages to address the problem of time series
anomaly detection. The first and most popular is the tsoutliers package. There is also the qicharts
package that implements basic control chart algorithms. One of the main disadvantages of these

packages is that the implemented algorithms are not suitable to work online. In addition to the above,
there are few other packages available for online time-series anomaly detection: SmartSifter and
EnergyOnlineCPM. Moreover, we only found two CRAN packages able to address these challenges.
The general conclusion is that few algorithms and packages are available and ready to use for online
anomaly detection.

For all explained reasons, in this paper, we present a novel R package that includes up-to-date
and powerful anomaly detection algorithms for univariate time series. Named as ostad, it aims to
provide algorithms that cover different current needs such as online processing and the ability to
work in stationary and non-stationary environments. With this package, we intend to address both
evolving and sliding window-based techniques that are gaining strength, including algorithms of both.

The rest of the paper is organized as follows. The next section introduces the content of the
otsad package, while section 3 describes in detail how to use implemented detectors and reduce false
positives. Finally we conclude the paper with some conclusions and future lines for continuing the
work, section 4.

2 The otsad package

In this section we introduce the first package for R that develops a set of current and effective online
anomaly detectors for univariate time series. The otsad package implements six anomaly detection
algorithms along with other functionalities and contents that can be interesting in order to perform
the best results.

For an easier understanding of this section, we divided it into four subsections. In the first
subsection we described each implemented algorithms. A novel detector evaluation technique is
presented in section 2.2. Then, we introduce included datasets and the function to visualize the
results in section 2.3. Finally, section 2.4 describes a simple but effective technique for reducing false
positives.

2.1 Anomaly detection algorithms

This package implements and documents the set of detectors listed below. The first three algorithms
belong to evolving based techniques and the last three belong to the window-based ones. From a
stationary environment perspective, the first two algorithms can be use with stationary data, while
the other four are suitable for using with non-stationary data. Table 1 shows the most important
characteristics of each algorithm.

e PEWMA or Probabilistic reasoning for streaming anomaly detection [2]. This algorithm is a
probabilistic method of EWMA which dynamically adjusts the parameterization based on the
probability of the given observation. This method produces dynamic, data-driven anomaly
thresholds which are robust to abrupt transient changes, yet quickly adjust to long-term distri-
butional shifts.

e SD-EWMA or Shift-Detection based on EWMA [8]. This algorithm is a novel method for covari-
ate shift-detection tests using univariate time-series. It uses an exponentially weighted moving
average (EWMA) model based control chart to detect the covariate shift-point in stationary
time-series. SD-EWMA algorithm works in an online mode.

e TSSD-EWMA or Two-Stage Shift-Detection based on EWMA [8]. This algorithm is a novel
method for covariate shift-detection tests based on a two-stage structure for univariate time-
series. It uses an exponentially weighted moving average (EWMA) model based control chart
to detect the covariate shift-point in non-stationary time-series. The algorithm works in two
phases and processes the stream in an online mode. In the first phase, it applies SD-EWMA.
In the second phase, it checks the authenticity of the anomalies using the Kolmogorov-Simirnov
test to reduce false alarms.

e KNN-CAD or Conformal k-NN Anomaly Detector [1]. This algorithm is a model-free anomaly
detection method for univariate time-series which adapts itself to non-stationarity in the data
stream and provides probabilistic abnormality scores based on the conformal prediction paradigm.

e KNN-LDCD or KNN - Lazy Drifting Conformal Detector [6]. This algorithm is a variant of the
KNN-CAD algorithm. The differences between both rely on the dissimilarity measure calcula-
tion and conformity measure calculation methods. The KNN-CAD and KNN-LDCD algorithms
use both distance-based and statistical techniques to determine the degree of anomaly.

e CAD-OSE or Contertual Anomaly Detector [9]. This algorithm discretizes the search space and
creates contexts with aggrupations of observations. When a new instance arrives, the algorithm
searches in the previous storaged contexts if the instance has been seen and creates a new
context if it has not. The creation of new and storaged contexts determine if the instance is an
anomaly.

Online anomaly Features

detectors Stationarity Technique
PEWMA Stationary Evolving
SD-EWMA Stationary Evolving

TSSD-EWMA Non-stationary Evolving
KNN-CAD Non-stationary ~Window-based
KNN-LDCD Non-stationary Window-based
CAD-OSE Non-stationary Window-based

Table 1: Features of the algorithms

Each of these algorithms was implemented to work in two different scenarios. On the one hand,
classical processing used when the complete data set (train and test) is available. On the other hand,
the incremental (or online) processing used when complete dataset is not available. This approach
allows calculating the abnormality of new observation(s) with the parameters updated in the last run
performed.

2.2 Detector measurement technique

The otsad package implements the method used in NAB [7] to measure the detector. This method
considers the time elapsed until the anomalies are detected.

This metric uses time-windows to determine the label of the detected anomaly, i.e. True Positive
(TP), False Positive (FP), True Negative (TN), and False Negative (FN). To determine this label,
a window is centered on the real anomaly. The detected anomaly is labeled as TP when falls inside
the window and as FP when it falls outside. An FN label is considered when there are no detected
anomalies inside the window. TN labels are not considered. The window size is calculated as the
division between 10% of the number of observations and the number of real anomalies in the time
series. The package includes three functions to perform these tasks. On the one hand, GetWin-
dowLength and GetWindowsLimits get the size and the start and end limits of the window after
being focused on the real anomalies. On the other hand, GetLabels gets the TP, FP, TN and FN
labels.

This measurement technique also allows setting a weight for each of these labels. These weights
make possible to penalize FN and FP and reward early detections. In this way, the FN and FP will
get a negative score and the early detections will get a higher score than the late ones as is shown
in Figure 1. NAB [7] proposes to use the weights given in Table 2. There are three different profiles
Standard, Reward low FP rate and Reward low FN rate. Each one of these profiles penalizes more or
less the score of FP and FN. Finally, the total score is calculated as the sum of the scores assigned
to each detected anomaly and the cumulative scores of missed anomalies. This score is then scaled
using the Max-Min normalization as in Equation 1. The maximum value used is the score of a perfect
detector, i.e. one that detect all anomaly with maximum score. The minimum value is the score of
a null detector, i.e. one that does not detect any anomaly (and no FP). The final score is in the
interval (—o0, 100].

For these latest objectives, we have extended the package capabilities in three more functions.
First one is GetDetectorScore, that calculates the detector score without normalizing. The second
one is GetNullAndPerfectScores function to obtain the scores of the perfect and null detectors
for the dataset. The third one is the NormalizeScore function which allows normalizing detector
scores.

Scoregetector — SCOTEnulLl

Scorefinar = 100 (1)

This package incorporates an additional function to allow the user to reproduce the results of the
benchmarking. Named as GetNumTrainingValues, this function allows obtaining the number of
instances used as a training set in NAB [7]. The number of training set values is calculated as 15%
of 5000 and for smaller datasets of 5000 instances such as 15% of the dataset instances.

Scoreperfect — Scorenui

2.3 Data sets and function for displaying the results

Otsad includes 51 of the 58 labeled one-dimensional time-series from different fields available in
the NAB [7] repository. Each of the datasets included in otsad is composed of three columns: the
timestamp column, the value column and a third column called s.real.anomaly containing the labeled
truth anomalies.

Table 2: Label weights per profile

Label Profile

abe Standard Reward low FP rate Reward low FN
ATP 1.0 1.0 1.0
AFP -0.11 -0.22 -0.11
ATN 1.0 1.0 1.0
AFN -1.0 -1.0 -2.0

NAB Scoring Example
1.5F ' .

Scaled Sigmoid Value
=

| ignored

-1

Anomaly Window

Figure 1: Scoring example for a sample anomaly window, where the values represent the scaled sigmoid
function. The first point is an FP preceding the anomaly window (red dashed lines) and contributes -1.0
to the score. Within the window, we see two detections, and only count the earliest TP for the score.
There are two FPs after the window. The first is less detrimental because it is close to the window, and
the second yields -1.0 because it’s too far after the window to be associated with the true anomaly. TNs
make no score contributions. The scaled sigmoid values are multiplied by the relevant application profile
weight, the NAB score for this example would calculate as —1.0Arp +0.9999A7rp —0.8093Arp —1.0AFp.

I
|
|
|
|
|
|
|
|
I
I
I
-4 -2 0 2

Relative Position

With the standard application profile, this would result in a total score of 0.6909 [7]

Our package also includes a function called PlotDetections to display the detections results on
a chart. This function by default returns an interactive graph, but it also has a choice to get a ggplot
object and it could be edited.

2.4 False positive reduction technique

Some algorithms already included techniques to reduce false positives. These can be only applied to
the above algorithms. For this reason, we introduce and implement our own algorithm, ReduceAnoma-
lies, to reduce false positives, ensuring that it can be applied in all the algorithms. This algorithm is
inspired by the real-life situation where a time-lapse exists between an alarm is triggered and until
corrective action is taken. In other words, the minimum time lapse between the first and the second
alarm. Our algorithm’s uses the number of processed data points between two detected anomalies to
reduce the number of false positives. When the first anomaly x; is detected a new window of length w
is created, with x;41 as the starter point and x4, as the endpoint. For each newly detected anomaly,
its relative position compared to the window is evaluated. Detected anomalies inside the window are
excluded. If a detected anomaly is outside the window, it is then considered as a real anomaly and
new window is calculated in the same way as mentioned above.

3 Use example

In this section we explain how to use the package. Section 3.1 describes how to install the package.
In section 3.2 we show how to load the documentation. Then, section 3.3 includes some examples to
show how to use the package. Finally, section 3.4

3.1 Installation

The otsad package is available at GitHub repository, so it can be downloaded and installed directly
from the R command line by typing:

install.packages("devtools")
devtools: :install_github("alaineiturria/otsad")

To easily access all the package’s functions, it must be attached in the usual way:
library(otsad)

Special note:

CAD-OSE executes a python script so it is necessary to have python2 or python3 installed. In
addition, to get the same results in all operating systems it is necessary to have installed the hashlib
and bencode-python3 python libraries.

3.2 Documentation

Considering that this vignette provides the user with an overview of the otsad package, it is also
important to have access to the specific information of each of the available algorithms. This in-
formation can be checked in the documentation page corresponding to each algorithm. In all cases,
the documentation has the same structure, consisting of the following sections (see Figure 2 for an
example):

e A description section, which gives a brief description of what the algorithm consists of (like
those given in Section 2).
e A usage section, where an overview of the function with the available parameters is given.

e An arguments section, where each of the input parameters is described.

A details section, which provides the user with more details on the algorithm, conditions and
recommendations on the values that can be taken by each of the input parameters.

A wvalue section, where the output parameters of the function are described.

e A references section that points to the original contribution where the detector(s) was proposed,
where further details, motivations or contextualization can be found.

e An erxamples section, where one or more examples of the use of the functions are shown.

As usual in R, the documentation pages for each function can be loaded from the command line
with the commands ? or help:

?CpSdEwma
help(CpSdEwma)

In addition, a user manual is available in the github repository of the otsad package, which
contains the complete documentation of the package and its functions.

CpSaEwma [otaad] R Dozamantation

Classic Processing Shift-Detection based on EWMA (SD-EWMA).

Description

CpSaEuns cakulmes the anomakies of a dataset using classical processmg based on the S0.EWALA algerithm. This aigarthm is 2 novel
mathnd for covatiss shifldeection 1asts base on @ wa-stage SINICIUG [UNKANGEE Tme-2arien K works i 30 onln made a0 it =95 an
axpenantially weightod mong iaraga |EViTAN) mocal based comral chart fo dotoct the Covanat shil.paist 1 nan-slationsry bma-sonies. Ses
also OopSdEwma, the optimized and faster function of this function

Usage

CpSdEwmajtrain.daty, ceat.data, chreshold = 9,01, 1= 8)

Arguments

rain.gaca Mamerical vactor with the irsining set

test.data Hamerical vecior with he test set

theesnera Enorsmosthing constant

1 Centrel lit evtipias

Details

Train,deza and cesc.data must be numesical vectors without NAvalues chresnold must be a numesic valos between Dand 1t is
recommendad fo use low valuss such as 3 01 or 0 85 By defaut 001 i usoed Finaly, 1 is the parameter that detminas tha contiml imits By
detaull, 3 15 ubsd

Value

datazet conformed by the foliowing columins

1o amomaly 1T 1he vl ik el 0 o

ned Uppar contral kit
lei Lewer comral kmit
References

Raza H, Prasad, G, & Li ¥ {03 de 2015) EWMA mode| based shit detection methods for detecting covanate shits in non-staticnary
emimnments. Patiem Recognition. 48(3), 659669

Examples
4% Generate data

sat.seed {100}
R - 200

Figure 2: Extract from CpSdEwma detectors documentation page, showing the highlighted above aspects.

3.3 Examples

Here is an example of how to solve a simple problem using SD-EWMA algorithm. The data has been
generated as follows:

set.seed(100)

n <- 500

x <- sample(1:100, n, replace = TRUE)

x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200

x[320] <- 170

df <- data.frame(timestamp = 1:n, value = x)

We can visualize the time-series as in Figure 3 by typing:

plot(x = df$timestamp, y = df$value, type = "1",

main = "Time-Serie", col = "blue", xlab = "Time", ylab = "Value")
Time-Serie
o
3
o™
(=]
2
@
3J (=]
T S
T 2
o |
w
o 4
T T T T T T
0 100 200 300 400 500
Time

Figure 3: Our time-series visualization

The SD-EWMA algorithm is designed for stationary time-series. Therefore, we must first check
that the time-series is stationary. To do this, we can display the acf and pacf graphics (Figure 4) by:

forecast::Acf(ts(df$value), main = "ACF", lag = 20)
forecast: :Pacf (ts(df$value), main = "PACF", lag = 20)

We can observe that since almost all the lags are within the limits, the time-series is stationary.
In addition, we can use two statistical tests, adf test and kpss test. The tests also indicate that the
time-series is stationary.

library(tseries)
adf.test(df$value, alternative = 'stationary', k = 0)
kpss.test (df$value)

On the recommendation of the algorithm authors we set threshold to 0.01.One of the usual values
for the o multiplier 1 is usually 3. Next, we apply the SD-EWMA anomaly detector, as the example
is simple we use the classical processing algorithm. Note that the optimized algorithm could be used
in the same way. Finally, we separate the training and test sets, using the first five values for training
and the rest values for testing.

ACF

ACF
0.10 000 010
-

5 10 15 20
Lag
PACF
o
O A B
s 2 ‘ | [| | | ||
N | |]
o o R AL S
7 T T T T
5 10 15 20
Lag

Figure 4: ACF and PACF graphs

result <- CpSdEwma(data = df$value, n.train = 5, threshold = 0.01, 1 = 3)

This results are of data.frame type and have three columns: is.anomaly indicating whether or
not the test observation is anomalous and the columns ucl and Ilcl with the upper and lower control
limits, used to determine whether or not the observation is anomalous.

head(result, n = 15)

is.anomaly lcl ucl
1 0 74.0000000 74.0000
2 0 89.0000000 89.0000
3 0 78.0000000 78.0000
4 0 23.0000000 23.0000
5 0 86.0000000 86.0000
6 0 0.2998149 139.0313
7 0 0.6808881 138.7171
8 0 -8.3155413 134.5737
9 0 -8.8121491 133.4445
10 0 -7.7247629 133.8939
11 0 -4.6526720 137.8049
12 0 -12.4721436 133.7091
13 0 -19.2253248 129.7386
14 0 -18.8776837 129.3396
15 0 -19.8205462 127.8363

Finally, we can plot the results (Figure 5) by writing the following code:

res <- cbind(df, result)
PlotDetections(res, title = "KNN-CAD ANOMALY DETECTOR")

In Figure 5 we can see that the detector has detected well both abrupt transient anomalies and
distributional shift anomaly.

This example has used classical processing, but by using the incremental function we can simulate
online processing as follows:

Initialize parameters for the loop
last.res <- NULL

res <- NULL

nread <- 250

numlter <- n%/Y%nread

KNN-CAD ANOMALY DETECTOR

200

100

Value

0 100 200 300 400 500
Time

Figure 5: Sd-Ewma Anomaly detector results

iter <- seq(1l, nread * numlter, nread)

Calculate anomalzes
for(i in iter) {
read new data
newRow <- df[i:(i + nread - 1),]
calculate 1f 2t's an anomaly
last.res <- IpSdEwma (
data = newRow$value,
n.train = 5,
threshold = 0.01,
1=3,
last.res = last.res$last.res
)
prepare the result
if (Yis.null(last.res$result))q{
res <- rbind(res, cbind(newRow, last.res$result))
}
}

In the same way we can plot the results (Figure reffig:result2) by writing:

PlotDetections(res, title = "SD-EWMA ANOMALY DETECTOR")

SD-EWMA ANOMALY DETECTOR

200

100

Value

0 100 200 300 400 500
Time

Figure 6: Online Sd-Ewma Anomaly detector results
The use of the Contextual Anomaly detector is similar to the use of the previous algorithms. It is

important to note that if the bencode python module is not installed, this method will rise an error.
This can be prevented installing the bencode-pyhthon3 library with Python package manager pip.

cad.results <- ContextualAnomalyDetector (
df$value[1:250],
base.threshold = 0.75,
rest.period = 5,

200,

0

max.value

min.value

)

cad.results.online <- ContextualAnomalyDetector(
df$value[251:500],
python.object = cad.results$python.0Object

)

res <- cbind(df, rbind(cad.results$result, cad.results.online$result))
PlotDetections(res, title = "CONTEXTUAL ANOMALY DETECTOR")

CONTEXTUAL ANOMALY DETECTOR

200~ Scoge: 1
Score: 0.960§81697341513
150~
] Scage: 1
=]
=100~
>
50- I | I 1
0-
0 100 200 300 400 500

Time

Figure 7: Contextual Anomaly Detector results

Finally we show a complete example using a data set included in the package. For this example,
we used the Speed 7578 dataset included in the package which has five anomalies. We used the KNN
algorithm to try to find those anomalies.

Load the previously installed otsad package
library("otsad")

Load the dataset speed_7578, included in otsad
myData <- speed_7578

Initialize parameters
n <- nrow(myData)
n.train <- GetNumTrainingValues(n)

Calculate anomalies using KNN-CAD
result <- CpKnnCad(

data = myData$value,

n.train = n.train,

threshold = 1,

1= 18,

k = 27,

ncm.type = "ICAD",
reducefp = TRUE

Add results to dataset

10

75

Value

25

myData <- cbind(myData, result)

Once the algorithm is applied, we could show the results using the PlotDetections function. Since
the resulting graph is interactive, in Figure 8 we show a capture of it.

Plot Results
PlotDetections (myData, title = "KNN-CAD ANOMALY DETECTOR")

KNN-CAD ANOMALY DETECTOR a -

#-14 17000

sep. 10 sep. 12 sep. 14 sep. 16
Time

Figure 8: Anomalies detected in speed 7578 dataset by KNN CAD detector.

Next, we get the detector’s score.

Get detector score
score <- GetDetectorScore (myData)

See this results
data.frame(score[-1])

This function has an option to show the results on a chart by adding the following parameters,
see 9.

Get detector score
score <- GetDetectorScore (
myData,
print = TRUE,
title = "speed_7578 results using KNN-CAD detector"

Finally, we normalize the scores and show them.

Normalize Tesults
null.perfect <- GetNullAndPerfectScores (myData)

standar.score <- NormalizeScore(
score$standard,
perfect.score = null.perfect[1l, "perfect.score"],
null.score = null.perfect[1, "null.score"]

)

low_FP_rate.score <- NormalizeScore(
score$low_FP_rate,
perfect.score = null.perfect[2, "perfect.score"],

11

sep.

speed_7578 results using KNN-CAD detector

Label:
75- fn
fp
Q
3 50- tp
© d2$laket tp
= Standar Score: 0.71
25 Low_FP_rate Score: 0.71
Low_FN_rate Score: 0.71
timestamp: 2015-09-11 16:44:00
0 1 [1
sep. 10 sep. 12 sep. 14 sep. 16 sep. 18
Time
Figure 9: KNN-CAD detector measurement results for speed 7578 dataset.
null.score = null.perfect[2, "null.score"]
)
low_FN_rate.score <- NormalizeScore(
score$low_FN_rate,
perfect.score = null.perfect[3, "perfect.score"],
null.score = null.perfect[3, "null.score"]
)
Show normalized scores
cbind(standar.score, low_FP_rate.score, low_FN_rate.score)
3.4 Most useful functions
Functionality Description Offline Online
PEWMA CpPewma IpPewma
SD-EWMA CpSdEwma IpSdEwma
Detectors TSSD-EWMA CpTsSdEwma IpTsSdEwma
KNN-ICAD CpKnnCad(ncm.type = "ICAD") IpKnnCad(ncm.type = "ICAD")
KNN-LDCD CpKnnCad(ncm.type = "LDCD") IpKnnCad(ncm.type = "LDCD")
CAD-OSE Contextual AnomalyDetector Contextual AnomalyDetector
Get score GetDetectorScore -
NAB score

Normalize score: NormalizeScore
rinat re: GetNullAndPerfectScores)

False Positve

Reduction

False positive reduction = ReduceAnomalies ReduceAnomalies

Static or

Visualization PlotDetections -

interactive visualizations

4 Summary

In this paper, we present the otsad package for R. This package fully meets the demand for anomaly
detection algorithms over univariate time series in online environments. With this package we tackle
with the ability to work with stationary and non-stationary data. We also provide algorithms of the
two detection techniques (evolving and window based) that are gaining strength on research.

As a future job, we propose to maintain and add functionalities to our otsad package, i.e. provide
more sophisticated false positive reduction techniques and incorporate them into algorithms.

12

References

(1]

2]

(3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

E. Burnaev and V. Ishimtsev. Conformalized density- and distance-based anomaly detection in
time-series data. ArXiv e-prints, August 2016.

K. M. Carter and W. W. Streilein. Probabilistic reasoning for streaming anomaly detection. In
2012 IEEE Statistical Signal Processing Workshop (SSP), pages 377-380, Aug 2012.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM
Comput. Surv., 41(3):15:1-15:58, July 2009.

Manish Gupta, Jing Gao, Charu C. Aggarwal, and Jiawei Han. Outlier detection for temporal
data: A survey. IEEE Transactions on Knowledge and Data Engineering, 26(9):2250-2267, 9
2014.

Victoria Hodge and Jim Austin. A survey of outlier detection methodologies. Artif. Intell. Rev.,
22(2):85-126, October 2004.

V. Ishimtsev, I. Nazarov, A. Bernstein, and E. Burnaev. Conformal k-NN Anomaly Detector for
Univariate Data Streams. ArXiv e-prints, June 2017.

A. Lavin and S. Ahmad. Evaluating real-time anomaly detection algorithms — the numenta
anomaly benchmark. In 2015 IEEE 14th International Conference on Machine Learning and
Applications (ICMLA), pages 38—44, Dec 2015.

Haider Raza, Girijesh Prasad, and Yuhua Li. Ewma model based shift-detection methods for
detecting covariate shifts in non-stationary environments. Pattern Recogn., 48(3):659-669, March
2015.

Mikhail Smirnov. Contextual Anomaly Detector. Contribute to smirmik/CAD development by
creating an account on GitHub, September 2018.

Yang Zhang, N. Meratnia, and P. Havinga. Outlier detection techniques for wireless sensor
networks: A survey. Commun. Surveys Tuts., 12(2):159-170, April 2010.

13

