
moveHMM: an R package for the analysis of animal

movement data

Théo Michelot, Roland Langrock & Toby Patterson

May 8, 2023

Contents

1 Background 2

1.1 Introduction . 2

1.2 HMMs for animal movement . 2

2 Common challenges and other resources 4

2.1 Starting parameter values . 4

2.2 Choice of the number of states . 4

2.3 Noisy or irregular data . 4

3 Illustration of moveHMM workflow: elk movement analysis 5

3.1 Step 1: movement data preparation . 5

3.2 Step 2: model specification and model fitting . 8

3.3 Step 3: further inference and visualisation tools . 11

3.4 Dealing with one-dimensional data . 16

4 Package features 17

4.1 Model options . 18

4.2 Main functions . 21

1

1 Background

1.1 Introduction

The analysis of animal movement data has become increasingly important in terrestrial and marine ecology.

A substantial part of the literature on statistical modelling of animal movement data has focused on the

intuitive approach of decomposing movement time series into distinct behavioural modes (a.k.a. bouts,

states), via the use of so-called state-switching models. Some early references on this topic are Blackwell

(1997), Morales et al. (2004), and Jonsen et al. (2005). In cases where the position data are highly accurate

(e.g., from GPS), and regular in time, hidden Markov models (HMMs) can be used to efficiently classify

animal movement data into states. HMMs are increasingly popular in this field, due to their flexibility and

to the associated very efficient recursive algorithms available for conducting statistical inference (Patterson

et al., 2009; Langrock et al., 2012; McClintock et al., 2020).

moveHMM is an R package which implements HMMs and associated tools (state decoding, model selection,

model checking, etc.) tailored to animal movement modelling. Particular attention was paid to computa-

tional efficiency with the fitting algorithm implemented in C++. The computational speed makes it feasible

to very large data sets — e.g. tens of thousands of positions collected for each of a dozen individual ani-

mals — on standard desktop PCs. The package also allows users to incorporate covariate data into their

models, which is particularly useful when inferring the drivers of changes in behaviour. Our hope is that

the moveHMM package will provide users who collect movement data with an interface to sophisticated and

adequate methods for a statistical analysis of their data. The package is structured so as to allow the users

to prepare their data for analysis, fit a variety of HMMs to their data, and perform diagnostics on these

fitted models. The package is presented in Michelot et al. (2016), where its use is illustrated on simulated

movement data of wild haggises.

1.2 HMMs for animal movement

For full details of the HMM approach in the context of animal movement modelling, the user should refer

to the relevant primary publications (see, e.g., Patterson et al., 2009, Langrock et al., 2012, Zucchini et al.,

2016). Here, we briefly highlight the essential features of the HMM approach.

The standard HMM approach to model an individual animal’s movement considers bivariate time series

comprising the step length and the turning angle at each time point (see illustration in Figure 1). The

associated locations need to be sampled at equally spaced points in time (though missing data on an otherwise

regular grid can easily be handled) and are assumed to be observed with no or only negligible error. The

moveHMM package is restricted to such discrete time data and involves the assumption that the locations are

observed with zero, or at least negligible error.

At each time point, the parameters of the step length distribution (e.g., a gamma distribution) and the

parameters of the turning angle distribution (e.g., a von Mises distribution) are determined by an underlying

unobserved state. There are finitely many states which provide rough classifications of the movement (e.g.

more active vs. less active), often interpreted as proxies for the animal’s behavioural states (e.g. transiting

vs. foraging). The sequence of states is assumed to be generated by a Markov chain, usually with a tendency

of remaining in a state for some time before switching to another state. The corresponding state transition

2

(xt−1, yt−1)

(xt, yt)

(xt+1, yt+1)

(xt+2, yt+2)

lt−1

lt

lt+1

(xt−1, yt−1)

(xt, yt)

(xt+1, yt+1)

(xt+2, yt+2)

φt

φt+1

Figure 1: Illustration of step lengths and turning angles

probabilities, as well as the parameters characterising the state-dependent distributions, are model param-

eters to be estimated. The number of states (movement modes) is unknown and has to be specified by

the user. Typically with movement data one assumes a low number of states (say ≤ 4). For example, an

animal may be foraging (low speed, high rates of turning) and transiting (high speeds, low rates of turning).

Biologically interesting inference often involves modelling the state transition probabilities as functions of

environmental covariates.

For a given set of model parameters, the likelihood of the data can be calculated using a recursive algorithm

(the forward algorithm, cf. Patterson et al., 2017), which in a very effective way considers all possible state

sequences that might have given rise to the observed time series. This makes numerical maximization of

the (log-)likelihood, and hence maximum likelihood estimation, feasible in most cases. Having estimated

the model parameters (and examined useful diagnostics of model fit), the user can estimate the most likely

sequence of behavioural states. We encourage the user to consult a good primary text such as Zucchini et al.

(2016) to familiarize themselves with the technical details of hidden Markov models.

3

2 Common challenges and other resources

Here we briefly outline some common challenges for the analysis of animal movement data using hidden

Markov models, and provide references to resources that discuss them. For a 1-hour introduction to analysing

animal movement data with HMMs in R, see this webinar organised by the Ecological Forecasting Initiative.

2.1 Starting parameter values

Model fitting in moveHMM requires the numerical optimisation of the likelihood function, which measures

how plausible the observed data are given a set of parameter values. The optimiser requires initial parameter

values, from where to start exploring the parameter space (to find the optimum), which is done in fitHMM.

The choice of initial parameters should be based on exploratory data visualisation, and can be challenging

in many applications, especially for complex models (e.g., with many states). The moveHMM vignette “A

short guide to choosing initial parameter values for the estimation in moveHMM” discusses this challenge,

and offers some guidelines to help with the choice of starting values.

2.2 Choice of the number of states

In HMMs, the number of states needs to be chosen prior to analysis, rather than estimated as part of model

fitting. This choice can be difficult, in particular because standard model selection criteria (AIC, BIC) tend

to select very large numbers of states, which are difficult to interpret. AIC behaves this way because adding

states greatly increases the flexibility of the model to capture features in the data, but this usually comes

at the cost of interpretability and generalisability. Pohle et al. (2017) discussed this problem, and suggested

that the number of states should be generally be informed by biological expertise and model checking, rather

than by following model selection criteria.

2.3 Noisy or irregular data

Key assumptions of HMMs is that the data should be observed with negligible measurement error (to obtain

reliable step lengths and turning angles), and at regular time intervals (although missing values on a regular

grid can be dealt with). Small violations of these assumptions can be accommodated, e.g., GPS measurement

error may be treated as negligible is it is small compared to the scale of movement steps. However, in cases

with large errors and/or very irregular locations, the framework cannot be applied directly. One common

approach has been to first filter and regularise such data using another model, and then apply the HMM

approach to the output trajectories. The first step can for example be implemented with the state-space

models implemented in the R packages crawl (Johnson et al., 2008) and foieGras (Jonsen et al., 2020).

This approach has the crucial flaw of ignoring the uncertainty associated with the preprocessed track. An

alternative approach, suggested by McClintock (2017), is to generate many plausible tracks from a state-

space model, fit an HMM to each one of them, and then combine the results to obtain estimates that account

for the uncertainty in the filtering step. This approach is implemented in the package momentuHMM, which

extends moveHMM to more general HMMs (McClintock and Michelot, 2018).

4

https://www.youtube.com/watch?v=WELTpbB5BuU

3 Illustration of moveHMM workflow: elk movement analysis

Before we provide a detailed description of the various features of the moveHMM package in the subsequent

section, we illustrate a typical HMM-based analysis of movement data using the main functions of the

package, via an example. We use the data from Morales et al. (2004), collected on four elk in Canada.

3.1 Step 1: movement data preparation

The input data need to have the correct format for subsequent processing and analysis. The data need to

be provided as a data.frame, with two mandatory columns:

❼ Easting or longitude (default name: x)

❼ Northing or latitude (default name: y)

It is possible to have a column “ID”, which contains the identifiers of the observed animals. If no column

named “ID” is provided, all the observations will be considered to belong to a single animal. Additional

columns are considered as covariates. Note that, within this package, covariates need to have numerical

values (rather than e.g. character values).

3.1.1 Load and format the tracking data

The elk data considered in Morales et al. (2004) are loaded with the package, as the data frame elk data.

The data frame has four columns: “ID”, “Easting”, “Northing”, and “dist water”. The last one is the

distance of the animal to water, which for illustration purposes we want to include in the model as a

covariate.

head(elk_data)

ID Easting Northing dist_water temp

1 elk-115 769928 4992847 200.00 9.988370

2 elk-115 766875 4997444 600.52 16.469147

3 elk-115 765949 4998516 561.81 8.314971

4 elk-115 765938 4998276 550.00 27.762246

5 elk-115 766275 4998005 302.08 17.636062

6 elk-115 766368 4998051 213.60 8.436253

The easting and northing values are expressed in meters in the data, and we decide that we want to deal with

distances in kilometers for the step lengths. To achieve this, we transform the coordinates into kilometers.

elk_data$Easting <- elk_data$Easting/1000

elk_data$Northing <- elk_data$Northing/1000

As a result, this is what the data look like:

head(elk_data)

ID Easting Northing dist_water temp

1 elk-115 769.928 4992.847 200.00 9.988370

2 elk-115 766.875 4997.444 600.52 16.469147

5

3 elk-115 765.949 4998.516 561.81 8.314971

4 elk-115 765.938 4998.276 550.00 27.762246

5 elk-115 766.275 4998.005 302.08 17.636062

6 elk-115 766.368 4998.051 213.60 8.436253

3.1.2 Use prepData

The data are in the proper format, and can be processed using prepData to compute step lengths and angles.

We choose the arguments carefully:

❼ type specifies whether the coordinates are easting/northing (type="UTM") or longitude/latitude (type="LL")

values. The latter is the default, so we need to call the function with the argument type="UTM", to

indicate that UTM coordinates are provided.

❼ coordNames are the names of the coordinates in the input data frame. The default is “x” and “y”, so

we need to call the function with the argument coordNames=c("Easting","Northing").

The call to the function for these data is,

data <- prepData(elk_data,type="UTM",coordNames=c("Easting","Northing"))

The step lengths and turning angles are computed, and the returned object is a data frame.

head(data)

ID step angle x y dist_water temp

1 elk-115 5.5184434 NA 769.928 4992.847 200.00 9.988370

2 elk-115 1.4165663 0.1262112 766.875 4997.444 600.52 16.469147

3 elk-115 0.2397525 2.3832412 765.949 4998.516 561.81 8.314971

4 elk-115 0.4327600 0.9385238 765.938 4998.276 550.00 27.762246

5 elk-115 0.1037545 1.1375066 766.275 4998.005 302.08 17.636062

6 elk-115 12.4164659 -0.9687435 766.368 4998.051 213.60 8.436253

Note that the coordinates have been renamed “x” and “y”. This makes the processing of the data simpler.

If the data set contains covariates which have missing values, then those are imputed using the closest non-

missing value, by default the previous one if it is available. This is arbitrary and might not be appropriate

in all situations.

It is also possible to print summary information about the data, using the function summary, e.g.

summary(data)

Movement data for 4 tracks:

elk-115 -- 194 observations

elk-163 -- 159 observations

elk-287 -- 164 observations

elk-363 -- 218 observations

##

Covariate(s):

6

dist_water

Min. 25% Median Mean 75% Max.

0.0000 213.6000 477.6200 773.6457 1169.4950 3781.0400

##

temp

Min. 25% Median Mean 75% Max.

-9.064389 9.691136 14.547829 14.856313 20.377339 45.482213

3.1.3 Use plot.moveData

Once the data have been preprocessed, they can be plotted using the generic function plot. This displays

maps of the animals’ tracks, times series of the steps and angles, and histograms of the steps and angles. A

few plotting options are available. These are described in the documentation. To plot all animals’ tracks on

a single map, we call:

plot(data,compact=T)

The resulting map, and the steps and angles graphs for the first animal, are displayed in Figure 2 (we omit

the graphs for the three other animals, which are also displayed when using the above command).

700 750 800

4
9
0
0

4
9
5
0

5
0
0
0

x

y

0 50 100 150 200

0
2

4
6

8
1
0

1
2

1
4

time

s
te

p
 l
e
n
g
th

0 50 100 150 200

time

tu
rn

in
g
 a

n
g
le

 (
ra

d
ia

n
s
)

−
π

−
π

2
0

π
2

π

step length

F
re

q
u
e
n
c
y

0 5 10 15

0
5
0

1
0
0

1
5
0

turning angle (radians)

F
re

q
u
e
n
c
y

0
5

1
0

1
5

2
0

2
5

3
0

− π − π 2 0 π 2 π

Animal ID: elk−115

Figure 2: Map of the animals’ tracks (left) – each color represents an animal. Time series and histograms of the

step lengths and turning angles for one individual, “elk-115” (right).

The time series of step lengths is one way to check the data for outliers.

7

3.2 Step 2: model specification and model fitting

3.2.1 fitHMM

The function fitHMM is used to fit an HMM to the data. Its arguments are described in the documentation.

Here are a few choices we make:

❼ nbStates=2, i.e. we fit a 2-state HMM to the data;

❼ beta0=NULL and delta0=NULL, i.e. we use the default values for the initial values beta0 and delta0;

❼ formula=∼dist water, i.e. the transition probabilities are functions of the covariate “dist water”;

❼ stepDist="gamma", to model the step lengths with the gamma distribution (note that it is the default,

so we do not need to explicitely specify it);

❼ angleDist="vm", to model the turning angles with the von Mises distribution (default);

❼ angleMean=NULL, because we want to estimate the mean of the angle distribution (default);

❼ stationary=FALSE, as due to the covariates the process is not stationary (default).

We also need to specify initial values for the parameters of the state-dependent distributions, to be used by

the optimization function. Note that this choice is crucial, and that the algorithm might not find the global

optimum of the likelihood function if the initial parameters are poorly chosen. The initial parameters should

be specified in two vectors, stepPar0 (for the step distribution) and anglePar0 (for the angle distribution).

The necessary parameters of each distribution are detailed in Section 4.1.1.

Zero-inflation (as described in Section 4.1.2) must be included in the step length distribution if some steps

are of length exactly zero (which is the case for the elk data). To do so, another parameter is added to the

step distribution: its mass on zero.

Here, the initial values are chosen such that they correspond to the commonly observed pattern in two-state

HMMs for animal movement data, with state 1 involving relatively short steps and many turnings (hence

the choice of a small initial value for the mean of the gamma step length distribution and an initial value of

pi for the mean turning angle) and state 2 involving longer steps and fewer turnings (hence the choice of a

larger initial value for the mean of the gamma step length distribution and an initial value of 0 for the mean

turning angle).

For numerical stability, we decide to standardize the covariate values before fitting the model (explanations

in Section 3.2.2).

standardize covariate values

data$dist_water <-

(data$dist_water-mean(data$dist_water))/sd(data$dist_water)

initial parameters for gamma and von Mises distributions

mu0 <- c(0.1,1) # step mean (two parameters: one for each state)

sigma0 <- c(0.1,1) # step SD

zeromass0 <- c(0.1,0.05) # step zero-mass

stepPar0 <- c(mu0,sigma0,zeromass0)

8

angleMean0 <- c(pi,0) # angle mean

kappa0 <- c(1,1) # angle concentration

anglePar0 <- c(angleMean0,kappa0)

call to fitting function

m <- fitHMM(data=data,nbStates=2,stepPar0=stepPar0,

anglePar0=anglePar0,formula=~dist_water)

The returned object, m, is of the class moveHMM. It can be printed in order to obtain the maximum likelihood

estimates of all model parameters.

m

Value of the maximum log-likelihood: -1892.95

##

Step length parameters:

state 1 state 2

mean 0.355004560 3.363565e+00

sd 0.377971682 4.328807e+00

zero-mass 0.001975657 6.433220e-09

##

Turning angle parameters:

state 1 state 2

mean -2.9956557 0.1251057

concentration 0.5997421 0.2284823

##

Regression coeffs for the transition probabilities:

--

1 -> 2 2 -> 1

intercept -2.0505161 -0.6902015

dist_water -0.3598238 1.0778177

##

Initial distribution:

[1] 0.2483832 0.7516168

The argument knownStates of the function fitHMM makes it possible to set some values of the state process

to fixed values, prior to fitting the model. This can be useful e.g. when the animal’s behaviour is known for

some time points, but we discourage users to take advantage of this option to make the states match their

expectations (instead of letting the data speak for themselves).

3.2.2 Dealing with numerical instability

As mentioned above, the numerical maximization routine might not identify the global maximum of the

likelihood function, or even fail to converge altogether, for poorly chosen initial values of the parameters. In

9

such a case, the optimization routine nlm might produce an error such as:

Error in nlm(nLogLike, wpar, nbStates, bounds, parSize, data, stepDist, :

non-finite value supplied by 'nlm'

The best way to deal with such numerical problems is to test different sets of initial values, possibly chosen

randomly. By comparing the resulting estimates for the different initial values used, one usually obtains a

good feeling for any potential sensitivity of the numerical search to its chosen starting point. Note, however,

that in any case there will usually be no certainty that the global maximum of the likelihood, i.e. the

maximum likelihood estimate, has been identified.

During preliminary tests on the elk data, we noticed that, in this example, the numerical search is highly

sensitive to the choice of the initial parameters beta0. This is due to the high values of the covariate: a small

change in the associated regression coefficients can make a big difference in the likelihood function. In such

cases, it is advisable to standardize the covariate values before fitting the model, for example by calling:

data$dist_water <-

(data$dist_water-mean(data$dist_water))/sd(data$dist_water)

This allows for greater numerical stability, with the convergence of the fitting function depending less on the

choice of initial values. The value of the maximum log-likelihood is not affected by the standardization of

the covariate values, only the maximum likelihood estimate of beta is.

3.2.3 Confidence intervals

Confidence intervals for the model parameters can be computed with the function CI, passing as an argument

the object created by fitHMM. It is possible to give the significance level of the desired confidence interval as

an argument, e.g. 0.99 for 99% confidence intervals. By default, 95% confidence intervals are returned.

Below we show the 95% confidence intervals for the parameters of the 2-state model fitted to the elk data.

CI(m)✩stepPar corresponds to the bounds of the confidence intervals for the step parameters (CI(m)✩stepPar✩lower

and CI(m)✩stepPar✩upper). CI(m)✩anglePar and CI(m)✩beta are respectively the bounds of the confidence

intervals for the angle parameters and the regression coefficients of the transition probabilities.

CI(m)

$stepPar

$stepPar$lower

state 1 state 2

mean 0.2968064964 2.626198

sd 0.3056841408 3.453159

zero-mass 0.0002775592 NA

##

$stepPar$upper

state 1 state 2

mean 0.42461415 4.307965

sd 0.46735363 5.426500

zero-mass 0.01391803 NA

##

10

##

$anglePar

$anglePar$lower

state 1 state 2

mean -3.2356924 -1.27448139

concentration 0.4523926 0.05731343

##

$anglePar$upper

state 1 state 2

mean -2.7564427 1.7603468

concentration 0.7562522 0.5160586

##

##

$beta

$beta$lower

1 -> 2 2 -> 1

intercept -2.6269076 -1.5625543

dist_water -0.8582664 0.1687541

##

$beta$upper

1 -> 2 2 -> 1

intercept -1.4741247 0.1821512

dist_water 0.1386188 1.9868813

Note that a warning message is also output:

Warning message:

In CI(m) :

Some of the parameter estimates seem to lie close to

the boundaries of their parameter space. The associated

CIs are probably unreliable (or might not be computable).

Here, this message refers to the zero-inflation parameter in the second state. Its estimate is very close to zero,

the inferior boundary of its range (this parameter is in the interval [0,1]), and this causes the corresponding

confidence interval to be unreliable. The function can sometimes fail to compute such a confidence interval,

and returns NA instead, as in this example.

3.3 Step 3: further inference and visualisation tools

Various options are available for the class moveHMM, and here we explain how to use them in the elk example.

3.3.1 Plot the model

The fitted model can be plotted, using the generic function plot. A few graphical options are available and

listed in the documentation. Here, we call:

11

plot(m, plotCI=TRUE)

This outputs:

❼ an histogram of step lengths of all animals, with the fitted state-dependent densities,

❼ an histogram of turning angles of all animals, with the fitted state-dependent densities,

❼ plots of the transition probabilities as functions of the covariate considered,

❼ a map of each animal’s track, colored by states.

Figure 3 displays those plots, but showing only one of the plotted maps, namely the one corresponding to the

first animal, “elk-115”. The state-dependent densities are weighted by the relative frequency of each state

in the most probable state sequence (decoded with the Viterbi algorithm, see Section 3.3.2). For example,

if according to the most probable state sequence, one third of the observations is allocated to the first state,

and two thirds to the second state, the plots of the densities in the first state are weighted with a factor 1/3,

and in the second state with a factor 2/3.

The first state (in orange on the plots) corresponds to short steps, and angles centered around π, and the

second state (in blue on the plots) corresponds to longer steps, and angles centered around 0.

The plots of the transition probabilities as function of the covariate indicate that animals tend to switch

from the second state to the first state when they are far from water, whereas they stay in the second state

when closer to water.

3.3.2 State decoding

Two functions can be used to decode the state process.

Viterbi algorithm To globally decode the state process, the Viterbi algorithm is implemented in the

function viterbi. This function outputs the most likely sequence of states to have generated the observation,

under the fitted model. Below are the most probable states for the first 25 observations of the first individual:

states <- viterbi(m)

states[1:25]

[1] 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

State probabilities To get more accurate information on the state process, it is possible to compute the

state probabilities for each observation, using stateProbs. This returns a matrix with as many columns as

there are states in the model, and as many rows as there are observations (stacking all animals’ observations).

The elements of the matrix are defined as

stateProbs(m)[t,j] = Pr(St = j)

where {St} is the state process.

For example:

12

step length

D
e
n
s
it
y

0 5 10 15 20

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

state 1

state 2

total

turning angle

D
e
n
s
it
y

0
.0

0
.1

0
.2

0
.3

0
.4

−π − π 2 0 π 2 π

state 1

state 2

total

−1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

dist_water

1
 −

>
 1

−1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

dist_water

1
 −

>
 2

−1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

dist_water

2
 −

>
 1

−1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

dist_water

2
 −

>
 2

Transition probabilities

760 765 770 775

4
9
9
0

4
9
9
5

5
0
0
0

x

y
Animal ID: elk−115

Figure 3: Output of plot.moveHMM. Histogram of step lengths with fitted distributions (top-left), histogram of

turning angles with fitted distributions (top-right), transition probabilities as functions of “dist water” with 95%

confidence intervals (bottom-left), and map of decoded track for the first animal (bottom-right).

sp <- stateProbs(m)

head(sp)

[,1] [,2]

[1,] 6.485778e-06 0.9999935

[2,] 1.045166e-01 0.8954834

[3,] 6.443718e-01 0.3556282

[4,] 6.066088e-01 0.3933912

13

[5,] 4.606630e-01 0.5393370

[6,] 3.177910e-11 1.0000000

The state with highest probability according to stateProbs might not be the same as the state in the most

probable sequence returned by the Viterbi algorithm. This is because the Viterbi algorithm performs “global

decoding”, whereas the state probabilities are “local decoding”. For more details, see Zucchini et al. (2016).

The function plotStates can be used to visualize the results of viterbi and stateProbs. Figure 4 shows

the plots of the most likely state sequence decoded by the Viterbi algorithm, as well as both columns of the

matrix of state probabilities, for one individual, “elk-115”. It was obtained with the following command:

plotStates(m,animals="elk-115")

0 50 100 150 200

Animal ID: elk−115

S
ta

te

1
2

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Observation index

P
r(

S
ta

te
=

1
)

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Observation index

P
r(

S
ta

te
=

2
)

Figure 4: Decoded states sequence (top row), and state probabilities of observations (middle and bottom rows) for

elk-115

3.3.3 Stationary state probabilities

For a transition probability matrix Γ, the stationary distribution is the vector δ that solves the equation

δ = δΓ, subject to
∑N

i=1 δi = 1 (see Section 4.1.4 for more information). It reflects the long-term proportion

of time the model spends in each state.

When the transition probabilities are time-varying (i.e. functions of covariates), the stationary distribution

does not exist. However, for fixed values of the covariates, we can obtain one transition probability matrix,

and thus one stationary distribution. The function plotStationary does this over a grid of values of each

14

covariate, and plots the resulting stationary state probabilites. They can be interpreted as the long-term

probabilities of being in each state at different values of the covariate.

plotStationary(m, plotCI=TRUE)

−1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

dist_water

S
ta

ti
o
n
a
ry

 s
ta

te
 p

ro
b
a
b
ili

ti
e
s

state 1

state 2

Figure 5: Output of plotStationary. Stationary state probabilities, as functions of the distance to water, with 95%

confidence intervals.

3.3.4 Model selection with AIC

The generic method AIC is available to compare moveHMM models. For example, we now fit a 3-state HMM

to the data, and want to compare the AICs of the 2-state and 3-state models.

initial parameters

mu0 <- c(0.1,0.5,3)

sigma0 <- c(0.05,0.5,1)

zeromass0 <- c(0.05,0.0001,0.0001)

stepPar0 <- c(mu0,sigma0,zeromass0)

angleMean0 <- c(pi,pi,0)

kappa0 <- c(1,1,1)

anglePar0 <- c(angleMean0,kappa0)

fit the 3-state model

m3 <- fitHMM(data=data,nbStates=3,stepPar0=stepPar0,

anglePar0=anglePar0,formula=~dist_water)

15

And, to compare them:

AIC(m,m3)

Model AIC

1 m3 3672.520

2 m 3815.899

In terms of AIC, the 3-state model is favoured over the 2-state model in this example.

3.3.5 Model checking

The pseudo-residuals (a.k.a. quantile residuals) of the model can be computed with pseudoRes. These follow

a standard normal distribution if the fitted model is the true data-generating process. In other words, a

deviation from normality indicates a lack of fit. For more theoretical background on pseudo-residuals, see

Zucchini et al. (2016). The pseudo-residuals of the 2-state model fitted to the elk data are displayed in

Figure 6. They can be computed and plotted with the following commands.

compute the pseudo-residuals

pr <- pseudoRes(m)

time series, qq-plots, and ACF of the pseudo-residuals

plotPR(m)

If some steps are of length zero (i.e. if the step distribution is zero-inflated), the corresponding pseudo-

residuals are plotted as segments on the qq-plot. It is the case for the smallest step pseudo-residual located

in the bottom-left corner of the step qq-plot in Figure 6. The pseudo-residuals of discrete data are defined

as segments, and in this case, the segments start in −∞.

3.4 Dealing with one-dimensional data

It is sometimes of interest to model one-dimensional movement data, like e.g. dive data. This can be

done in moveHMM by setting all values of the second coordinate to zero in the data, and use the option

angleDist="none".

In the case where one-dimensional data are provided, the plotting functions for the data and for the model

will output plots of the first coordinate as a function of time, instead of a map of the track.

16

0 200 400 600

−
3

−
1

1
2

3

Steps pseudo−residuals

Observation index

S
te

p
s
 p

s
e

u
d

o
−

re
s
id

u
a

ls
0 200 400 600

−
3

−
1

1
3

Angles pseudo−residuals

Observation index

A
n

g
le

s
 p

s
e

u
d

o
−

re
s
id

u
a

ls

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

−3 −2 −1 0 1 2 3 4

−
3

−
1

0
1

2
3

4

Theoretical Quantiles
S

a
m

p
le

 Q
u

a
n

ti
le

s

0 5 10 15 20 25

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

0 5 10 15 20 25

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

Figure 6: Time series, qq-plots, and autocorrelation functions of the pseudo-residuals of the 2-state model.

4 Package features

In this section, we describe the global structure of the package, and then describe in more detail the main

functions required to fit an HMM to movement data.

The package is articulated in terms of two S3 classes: moveData and moveHMM. The first extends the native

R data frame, essentially gathering time series of the movement metrics of interest, namely the step lengths

and turning angles, as well as the covariate values. A moveHMM object is a fitted model, which stores in

particular the values of the MLE of the parameters.

To create a moveData object, the function prepData is called on the tracking data (track points coordinates).

Then, the function fitHMM is called on the moveData, and returns a moveHMM.

Both classes can be used through their methods (e.g. plot.moveData, AIC.moveHMM), and a variety of other

functions can be called on moveHMM objects. All functions are described in more detail in Section 4.2 and

their use is explained on an example in Section 3. Figure 7 illustrates the links between the main components

of the package.

17

Figure 7: Structure of the main components of the package. The blue boxes are S3 classes, and the green boxes are

functions. The arrows indicate input and output of data.

Note we will occasionally omit the class to which a method belongs, if the context makes it clear. Besides,

as illustrated in the example in Section 3, it is not necessary to specify the class when calling the R function

(e.g. calling plot on a moveHMM object automatically refers to plot.moveHMM).

4.1 Model options

4.1.1 Distributions

Here is the list of distributions included, with the names they have in the package.

❼ Step length: gamma (“gamma”), Weibull (“weibull”), exponential (“exp”) and log-normal (“lnorm”).

❼ Turning angle: von Mises (“vm”) and wrapped-Cauchy (“wrpcauchy”). It is also possible to specify

angleDist="none", if the angles are not modelled.

The parameters depend on the distribution used. The gamma distribution expects the mean and standard

deviation, and all other distributions expect the same parameters as the corresponding R density function,

i.e.

18

Distribution Parameters

gamma mean ∈ (0,+∞) standard deviation ∈ (0,+∞)

Weibull shape ∈ (0,+∞) scale ∈ (0,+∞)

log-normal location ∈ R scale ∈ (0,+∞)

exponential rate ∈ (0,+∞)

von Mises mean ∈ (−π, π] concentration ∈ (0,+∞)

wrapped Cauchy mean ∈ (−π, π] concentration ∈ (0, 1)

For the gamma distribution, the link between the mean/standard deviation (expected by fitHMM) and

shape/rate (expected by dgamma) is given by:

shape =
mean2

SD2 , rate =
mean

SD2

4.1.2 Zero-inflation

If some steps are exactly equal to zero, then strictly positive distributions such as the gamma are inadequate.

In such cases, zero-inflated distributions can be considered. A zero-inflated step length distribution simply

assumes that there is a probability z of observing a 0 and a probability of 1− z of observing a positive value

distributed according to a standard positive distribution (e.g. a gamma). Within the package moveHMM,

zero-inflation will automatically be included if there are zero steps. In that case the (state-dependent) values

z will be estimated, with the remaining positive distribution, weighted by 1 − z, specified as one of the

available standard step length distributions, listed in Section 4.1.1.

4.1.3 Covariates

In practice it is often of interest to model the state transition probabilities as functions of time-varying

covariates. This can be done by assuming the Markov chain to be time-varying, with transition probability

matrix Γ(t) =
(

γ
(t)
ij

)

, linking the transition probabilities to the covariate(s) via the multinomial logit link.

In the general case of N states,

γ
(t)
ij = Pr

(

St = j|St−1 = i
)

=
exp(ηij)

∑N

k=1 exp(ηik)
,

where

ηij =

β
(ij)
0 +

∑p

l=1 β
(ij)
l wlt if i 6= j,

0 otherwise,

for i, j = 1, . . . , N . Here {St} is the state process, wlt is the l-th covariate at time t and p is the number of

covariates considered. The β parameters directly affect the off-diagonal elements in Γ(t) — with an increase

in the linear predictor ηij resulting in an increase in γ
(t)
ij — and hence also the diagonal entries due to the

row constraints (with the entries in each row summing to one). Note in particular that we have to fix ηii = 0

for all i since otherwise the model would be overparameterized (not identifiable).

Within moveHMM, the β coefficients for the off-diagonal transition probabilities are stored in an (p+1)× (N ·

19

(N − 1)) matrix. For example, for a 3-state HMM with two covariates, the matrix beta is

β
(12)
0 β

(13)
0 β

(21)
0 β

(23)
0 β

(31)
0 β

(32)
0

β
(12)
1 β

(13)
1 β

(21)
1 β

(23)
1 β

(31)
1 β

(32)
1

β
(12)
2 β

(13)
2 β

(21)
2 β

(23)
2 β

(31)
2 β

(32)
2

Here the first row corresponds to the intercept terms and the other two rows to the slope coefficients as-

sociated with the two covariates. There are as many columns as there are off-diagonal entries in the 3 × 3

transition probability matrix, and that matrix is filled row-wise (i.e. column 1 in beta is linked to γ
(t)
12 ,

column 2 is linked to γ
(t)
13 , column 3 is linked to γ

(t)
21 , etc.).

In practice, many movement models involve only two states, in which case the above equations boil down to

Γ(t) =

1

1 + exp
(

β
(12)
0 +

∑p

l=1 β
(12)
l wlt

)

exp
(

β
(12)
0 +

∑p

l=1 β
(12)
l wlt

)

1 + exp
(

β
(12)
0 +

∑p

l=1 β
(12)
l wlt

)

exp
(

β
(21)
0 +

∑p

l=1 β
(21)
l wlt

)

1 + exp
(

β
(21)
0 +

∑p

l=1 β
(21)
l wlt

)

1

1 + exp
(

β
(21)
0 +

∑p

l=1 β
(21)
l wlt

)

=

1− logit−1
(

β
(12)
0 +

∑p

l=1 β
(12)
l wlt

)

logit−1
(

β
(12)
0 +

∑p

l=1 β
(12)
l wlt

)

logit−1
(

β
(21)
0 +

∑p

l=1 β
(21)
l wlt

)

1− logit−1
(

β
(21)
0 +

∑p

l=1 β
(21)
l wlt

)

The inverse logit link function is applied in order to map the real-valued predictor onto the interval [0, 1]

(with the above multinomial logit link representing a generalization of this approach to the case of N > 2

states). In the case of two states, the matrix β in moveHMM is structured as follows:

β
(12)
0 β

(21)
0

β
(12)
1 β

(21)
1

...
...

β
(12)
p β

(21)
p

.

4.1.4 Stationarity

The function fitHMM includes the option of fitting a stationary model (using the option stationary=TRUE,

with the default being stationary=FALSE). This is only possible if no covariates are incorporated into the

model. (Otherwise the transition probabilities will be time-dependent, such that the Markov chain is non-

homogeneous and in particular cannot be stationary.) When no covariates are considered and the option

stationary=TRUE is selected, then the initial state distribution of the Markov chain will automatically be

chosen as the stationary distribution (a.k.a. steady-state distribution) implied by the estimated transition

probability matrix (as opposed to being estimated when stationary=FALSE). This stationary distribution

is the vector δ that solves the equation δ = δΓ subject to
∑N

i=1 δi = 1. In practice, this solution almost

always exists.

20

4.2 Main functions

4.2.1 prepData

Tracking data usually consist of time series of either easting-northing coordinates or longitude-latitude values.

However, with the HMM approach the derived quantities step lengths and turning angles are modelled.

The function prepData computes the steps and angles from the coordinates. As input, this function takes

an R data frame with columns “x” (either easting or longitude) and “y” (either northing or latitude). If

the names of the coordinates columns are not “x” and “y”, then the argument coordNames should specify

them. If several animals were observed, there should also be a column “ID” which identifies the animal

being observed. If there is no “ID” column, all observations will be considered to be associated with a

single animal. All additional columns are considered as covariates. In addition to the data frame, prepData

takes an argument type, which can either be “LL” (longitude-latitude, the default) or “UTM”. The former

indicates that the coordinates are longitude-latitude values, and the latter that they are easting-northing

values.

To compute the step lengths, prepData calls the function spDistN1 from the package sp. The step lengths

are in the unit of the input if easting/northing are provided, and in kilometres if longitude/latitude are

provided.

prepData outputs a data frame, with the same columns as the input, plus columns “step” and “angle”. This

object is of the class moveData, and can be plotted using the generic function plot.

4.2.2 fitHMM

Using the function fitHMM, an HMM can be fitted to an object of class moveData, via numerical maximum

likelihood. The list of the arguments of fitHMM is detailed in the documentation. The maximum likelihood

estimation is carried out using the R function nlm.

This function outputs a list of information about the model. Most elements of that list are only meant to

be used by the moveHMM functions (see Sections 4.2.3 and 4.2.4), but a few can be informative per se:

❼ mle contains the estimates of the parameters of the model;

❼ mod contains the output of the optimization function nlm, including mod✩minimum (minimum of the

negative log-likelihood) and mod✩hessian, the Hessian of the negative log-likelihood function at its

minimum.

4.2.3 Generic methods

Methods (i.e. class functions) are available for both moveData and moveHMM objects, to operate on them. For

details on the options see the documentation, and for an example of their use, see Section 3.

❼ plot.moveData plots a few graphs to illustrate the data: a map of each animal’s track, time series of

the steps and angles, histograms of the steps and angles.

❼ summary.moveData outputs some summary information about a moveData object: the number of

animals, the number of observations for each animal, and quantiles of the covariate values.

21

❼ plot.moveHMM plots a few graphs to illustrate the fitted model: a map of each animal’s track, colored

by states, plots of the estimated density functions, plots of the transition probabilities as functions of

the covariates.

❼ print.moveHMM prints the value of the maximum log-likelihood, and the maximum likelihood estimates

of the parameters of the model.

❼ AIC.moveHMM returns the AIC of one or several fitted models.

4.2.4 Other operations in moveHMM

Other functions can be called on a moveHMM object, for further analysis.

❼ CI computes confidence intervals for the step length distribution parameters, for the turning angle

distribution parameters, and for the regression coefficients of the transition probabilities.

❼ pseudoRes computes the pseudo-residuals of the model. These can be used to assess the goodness

of fit. If the model is the true data-generating process, then the pseudo-residuals follow a standard

normal distribution (Zucchini et al., 2016).

❼ stateProbs computes the probabilities of the underlying Markov chain being in the different states,

at each observation, under the fitted model.

❼ viterbi computes the sequence of most probable states, under the fitted model, using the Viterbi

algorithm (Zucchini et al., 2016).

❼ plotStates plots the most probable state sequence (as decoded with viterbi), and the state proba-

bilities (as computed with stateProbs).

❼ plotPR plots time series, qq-plots, and the sample autocorrelation (ACF) functions of the pseudo-

residuals of the fitted model (Zucchini et al., 2016). The qq-plots can be used to visually assess whether

or not the pseudo-residuals are standard normally distributed. The points in the qq-plot will be close to

the straight line if the model fits the data well. If the sample ACFs display a residual autocorrelation,

then this is an indication that the model might not have captured all relevant correlation structure in

the data.

❼ plotStationary creates plots of the stationary state probabilities as functions of covariates, possibly

with confidence intervals.

4.2.5 simData

The function simData simulates movement data from an HMM, given its parameters. The returned object is

of the class moveData, and can be visualized using plot, or fitted using fitHMM. The arguments of simData

are detailed in the documentation.

It is possible to call simData on a fitted model directly, to simulate data from it. This can be used to assess

the fit, by checking that the simulated data display the same features as the real data.

22

References

Blackwell, P. (1997). Random diffusion models for animal movement. Ecological Modelling, 100(1-3):87–102.

Johnson, D. S., London, J. M., Lea, M.-A., and Durban, J. W. (2008). Continuous-time correlated random

walk model for animal telemetry data. Ecology, 89(5):1208–1215.

Jonsen, I. D., Flemming, J. M., and Myers, R. A. (2005). Robust state–space modeling of animal movement

data. Ecology, 86(11):2874–2880.

Jonsen, I. D., Patterson, T. A., Costa, D. P., Doherty, P. D., Godley, B. J., Grecian, W. J., Guinet, C.,

Hoenner, X., Kienle, S. S., Robinson, P. W., et al. (2020). A continuous-time state-space model for rapid

quality control of argos locations from animal-borne tags. Movement Ecology, 8(1):1–13.

Langrock, R., King, R., Matthiopoulos, J., Thomas, L., Fortin, D., and Morales, J. M. (2012). Flexible and

practical modeling of animal telemetry data: hidden Markov models and extensions. Ecology, 93(11):2336–

2342.

McClintock, B. T. (2017). Incorporating telemetry error into hidden Markov models of animal movement

using multiple imputation. Journal of Agricultural, Biological and Environmental Statistics, 22(3):249–269.

McClintock, B. T., Langrock, R., Gimenez, O., Cam, E., Borchers, D. L., Glennie, R., and Patterson, T. A.

(2020). Uncovering ecological state dynamics with hidden markov models. Ecology letters, 23(12):1878–

1903.

McClintock, B. T. and Michelot, T. (2018). momentuhmm: R package for generalized hidden Markov models

of animal movement. Methods in Ecology and Evolution, 9(6):1518–1530.

Michelot, T., Langrock, R., and Patterson, T. A. (2016). moveHMM: an R package for the statistical

modelling of animal movement data using hidden Markov models. Methods in Ecology and Evolution,

7(11):1308–1315.

Morales, J. M., Haydon, D. T., Frair, J., Holsinger, K. E., and Fryxell, J. M. (2004). Extracting more out

of relocation data: building movement models as mixtures of random walks. Ecology, 85(9):2436–2445.

Patterson, T. A., Basson, M., Bravington, M. V., and Gunn, J. S. (2009). Classifying movement behaviour in

relation to environmental conditions using hidden Markov models. Journal of Animal Ecology, 78(6):1113–

1123.

Patterson, T. A., Parton, A., Langrock, R., Blackwell, P. G., Thomas, L., and King, R. (2017). Statistical

modelling of individual animal movement: an overview of key methods and a discussion of practical

challenges. AStA Advances in Statistical Analysis, 101(4):399–438.

Pohle, J., Langrock, R., van Beest, F. M., and Schmidt, N. M. (2017). Selecting the number of states in

hidden Markov models: pragmatic solutions illustrated using animal movement. Journal of Agricultural,

Biological and Environmental Statistics, 22(3):270–293.

Zucchini, W., MacDonald, I. L., and Langrock, R. (2016). Hidden Markov models for time series: an

introduction using R, Second Edition. Chapman and Hall/CRC.

23

	Background
	Introduction
	HMMs for animal movement

	Common challenges and other resources
	Starting parameter values
	Choice of the number of states
	Noisy or irregular data

	Illustration of moveHMM workflow: elk movement analysis
	Step 1: movement data preparation
	Step 2: model specification and model fitting
	Step 3: further inference and visualisation tools
	Dealing with one-dimensional data

	Package features
	Model options
	Main functions

