Type: | Package |
Title: | Estimate the Confidence Interval and Interpret Step by Step |
Version: | 0.1.1 |
URL: | https://github.com/cardiomoon/interpretCI, https://cardiomoon.github.io/interpretCI/ |
Description: | Estimate confidence intervals for mean, proportion, mean difference for unpaired and paired samples and proportion difference. Plot the confidence intervals. Generate documents explaining the statistical result step by step. |
License: | GPL-3 |
Encoding: | UTF-8 |
Imports: | dplyr, purrr, tidyr, rlang, ggplot2, scales, ggbeeswarm, patchwork, aplot, rstudioapi, rmarkdown, flextable, officer, english, RColorBrewer, moonBook |
Suggests: | knitr, PairedData, glue |
RoxygenNote: | 7.1.2 |
VignetteBuilder: | knitr |
NeedsCompilation: | no |
Packaged: | 2022-01-28 01:32:50 UTC; cardiomoon |
Author: | Keon-Woong Moon [aut, cre] |
Maintainer: | Keon-Woong Moon <cardiomoon@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2022-01-28 08:50:02 UTC |
Convert numeric to string with uppercase first letter
Description
Convert numeric to string with uppercase first letter
Usage
English(x, digits = 2)
Arguments
x |
A numeric |
digits |
integer indicating the number of decimal places |
Value
A string
Examples
English(40)
English(13.1)
Demographic data of 857 patients with ACS
Description
A dataset containing demographic data and laboratory data of 857 patients with acute coronary syndrome(ACS).
Usage
acs
Format
An object of class data.frame
with 857 rows and 17 columns.
Examples
interpretCI::acs
Draw normal distribution curve
Description
Draw normal distribution curve
Usage
draw_n(mean = 0, sd = 1, z = NULL, p = 0.05, alternative = "two.sided")
Arguments
mean |
vector of means |
sd |
vector of standard deviations |
z |
vector of quantiles |
p |
vector of probabilities |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". |
Value
A ggplot
Examples
draw_n()
draw_n(alternative="less")
draw_n(alternative="greater")
draw_n(z=-1.75)
draw_n(z=-1.75,alternative="greater")
draw_n(z=-1.75,alternative="less")
Draw t distribution curve
Description
Draw t distribution curve
Usage
draw_t(DF = 50, t = NULL, p = 0.05, alternative = "two.sided")
Arguments
DF |
numeric degree of freedom |
t |
numeric t value |
p |
numeric p value |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". |
Value
A ggplot
Examples
draw_t(DF=30)
draw_t(DF=20,t=2.5)
draw_t(DF=49,t=1.77)
draw_t(DF=49,p=0.005)
draw_t(DF=19,t=-0.894,alternative="less")
draw_t(DF=146,t=0.67,alternative="greater")
Convert numeric to string
Description
Convert numeric to string
Usage
english2(x, digits = 2)
Arguments
x |
A numeric |
digits |
integer indicating the number of decimal places |
Value
A character string
Examples
english2(45)
english2(12.34)
Draw estimation plot1
Description
Draw estimation plot1
Usage
estimationPlot1(x, palette = NULL)
Arguments
x |
An object of class meanCI |
palette |
The name of color palette from RColorBrewer package or NULL |
Value
A ggplot
Examples
x=meanCI(iris,Species,Sepal.Length)
estimationPlot1(x)
Interpret an object of meanCI
Description
Interpret an object of meanCI. Render appropriate rmarkdown file to html file and show RStudio viewer or browser.
Usage
interpret(x, viewer = "rstudio")
Arguments
x |
An object of class "meanCI" |
viewer |
Character One of c("rstudio","browser") |
Value
No return value, called for side effect
Examples
x=meanCI(mtcars$mpg)
x=meanCI(mtcars,mpg,mu=23)
x=meanCI(n=150,m=115,s=10,alpha=0.01)
x=meanCI(n=50,m=295,s=20,mu=300)
x= meanCI(n=20,m=108,s=10,mu=110,alpha=0.01,alternative="less")
x=meanCI(n1=500,n2=1000,m1=20,s1=3,m2=15,s2=2,alpha=0.01)
x=meanCI(n1=15,n2=20,m1=1000,s1=100,m2=950,s2=90,alpha=0.1)
x=meanCI(n1=30,n2=25,m1=78,s1=10,m2=85,s2=15,mu=0,alpha=0.10)
x=meanCI(n1=100,n2=100,m1=200,s1=40,m2=190,s2=20,mu=7,alpha=0.05,alternative="greater")
x1=c(95,89,76,92,91,53,67,88,75,85,90,85,87,85,85,68,81,84,71,46,75,80)
y1=c(90,85,73,90,90,53,68,90,78,89,95,83,83,83,82,65,79,83,60,47,77,83)
x=meanCI(x=x1,y=y1,paired=TRUE,alpha=0.1,mu=0)
x=propCI(n=1600,p=0.4,alpha=0.01)
x=propCI(n=100,p=0.73,P=0.8,alpha=0.01)
x=propCI(n=100,p=0.73,P=0.8,alpha=0.05,alternative="greater")
x=propCI(n1=100,n2=200,p1=0.38,p2=0.51,alpha=0.01)
x=propCI(n1=150,n2=100,p1=0.71,p2=0.63,P=0,alternative="greater")
## Not run:
interpret(x)
interpret(x,"browser")
## End(Not run)
Decide whether a vector can be treated as a numeric variable
Description
Decide whether a vector can be treated as a numeric variable
Usage
is.mynumeric(x, maxy.lev = 5)
Arguments
x |
A vector |
maxy.lev |
An integer indicating the maximum number of unique values of a numeric variable be treated as a categorical variable |
Value
logical
Examples
x=1:5
is.mynumeric(x)
x=1:13
is.mynumeric(x)
Whether the arg is provided in function call
Description
Whether the arg is provided in function call
Usage
isProvided(x, seek = "mu")
Arguments
x |
An object of class "meanCI" or function call or character string |
seek |
character. Default="mu" |
Value
logical
Examples
x=meanCI(mtcars,am,mpg)
isProvided(x)
Calculate confidence intervals of mean or difference between means
Description
Calculate confidence intervals of mean or difference between means
Usage
meanCI(x, ...)
Arguments
x |
An object of class data.frame or vector |
... |
Further arguments |
Value
An object of class "meanCI" which is a list containing at least the following components:
- data
A tibble containing raw data or a list of numeric vector
- result
A data.frame consist of summary statistics
- call
the matched call
- attr(*,"measure")
character. One of c("mean","unpaired","paired")
Examples
meanCI(mtcars$mpg)
meanCI(n=150,m=115,s=10,alpha=0.01)
meanCI(n=50,m=295,s=20,mu=300)
meanCI(n=20,m=108,s=10,mu=110,alpha=0.01,alternative="less")
meanCI(mtcars,am,mpg)
meanCI(n1=15,n2=20,m1=1000,s1=100,m2=950,s2=90,alpha=0.1)
meanCI(n1=500,n2=1000,m1=20,s1=3,m2=15,s2=2,alpha=0.01)
meanCI(n1=30,n2=25,m1=78,s1=10,m2=85,s2=15,alpha=0.10)
meanCI(n1=100,n2=100,m1=200,s1=40,m2=190,s2=20,mu=7,alpha=0.05,alternative="greater")
x=c(3.04,2.92,2.86,1.71,3.60,3.49,3.30,2.28,3.11,2.88,2.82,2.13,2.11,3.03,3.27,2.60,3.13)
y=c(2.56,3.47,2.65,2.77,3.26,3.00,2.70,3.20,3.39,3.00,3.19,2.58,2.98)
meanCI(x=x,y=y)
x=c(95,89,76,92,91,53,67,88,75,85,90,85,87,85,85,68,81,84,71,46,75,80)
y=c(90,85,73,90,90,53,68,90,78,89,95,83,83,83,82,65,79,83,60,47,77,83)
meanCI(x=x,y=y,paired=TRUE,alpha=0.1)
meanCI(10:30,1:15)
meanCI(acs,sex,age)
meanCI(iris$Sepal.Width,iris$Sepal.Length)
meanCI(iris$Sepal.Width,iris$Sepal.Length,paired=TRUE)
Calculate confidence intervals of mean or difference between means in a data.frame
Description
Calculate confidence intervals of mean or difference between means in a data.frame
Usage
## S3 method for class 'data.frame'
meanCI(x, ...)
meanCI_sub(data = data, x, y, group, paired = FALSE, idx = NULL, ...)
Arguments
x |
Name of a categorical or numeric column. If !missing(y), name of continuous variable |
... |
Further arguments to be passed to meanCI |
data |
A data.frame |
y |
Name of a numeric column |
group |
Name of categorical column |
paired |
logical |
idx |
A vector containing factors or strings in the x columns. These must be quoted (ie. surrounded by quotation marks). The first element will be the control group, so all differences will be computed for every other group and this first group. |
Value
An object of class "meanCI" which is a list containing at least the following components:
- data
A tibble containing raw data or a list of numeric vector
- result
A data.frame consists of summary statistics
- call
the matched call
- attr(*,"measure")
character. One of c("mean","unpaired","paired")
Methods (by generic)
-
meanCI
: S3 method for data.frame
Examples
meanCI(acs,age)
meanCI(acs,sex,age)
meanCI(acs,Dx,age)
acs %>% select(age) %>% meanCI()
acs %>% select(sex,age) %>% meanCI()
meanCI(iris,Species,Sepal.Length)
meanCI(iris,Sepal.Width,Sepal.Length,paired=TRUE)
meanCI(iris,Sepal.Length,Sepal.Width)
iris %>% select(starts_with("Petal")) %>% meanCI(paired=TRUE)
iris %>% meanCI(paired=TRUE)
meanCI(acs,sex,age,Dx,mu=10)
acs %>% select(sex,TC,TG,HDLC) %>% meanCI(group=sex)
acs %>% select(sex,TC,TG,HDLC) %>% meanCI(sex)
iris %>% select(Species,starts_with("Sepal")) %>% meanCI(Species)
iris %>% select(Species,starts_with("Sepal")) %>% meanCI(group=Species)
Calculate confidence intervals of mean or difference between means
Description
Calculate confidence intervals of mean or difference between means
Usage
## Default S3 method:
meanCI(x, ...)
meanCI2(
x,
y,
n,
m,
s,
n1,
n2,
m1,
m2,
s1,
s2,
mu = 0,
paired = FALSE,
var.equal = FALSE,
alpha = 0.05,
digits = 2,
alternative = "two.sided"
)
Arguments
x |
A vector |
... |
Further arguments to be passed to meanCI2 |
y |
A vector |
n , n1 , n2 |
integer sample(s) size |
m , m1 , m2 |
Numeric mean value of sample(s) |
s , s1 , s2 |
Numeric standard deviation of sample(s) |
mu |
numeric hypothesized true value of mean or mean difference |
paired |
logical If true, difference between paired sample calculated |
var.equal |
logical If true, pooled standard deviation is used |
alpha |
Numeric Confidence level |
digits |
integer indicating the number of decimal places |
alternative |
A character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". |
Value
An object of class "meanCI" which is a list containing at least the following components:
- data
A tibble containing raw data or a list of numeric vector
- result
A data.frame containing of summary statistics
- call
the matched call
- attr(*,"measure")
character. One of c("mean","unpaired","paired")
Methods (by generic)
-
meanCI
: Default S3 method
Prepare data to plot from an object of class meanCI
Description
Prepare data to plot from an object of class meanCI
Usage
meanCI2df(x)
Arguments
x |
An object of class meanCI |
Value
A data.frame
Examples
x=meanCI(acs,sex,age)
meanCI2df(x)
Extract data from an object of class meanCI
Description
Extract data from an object of class meanCI
Usage
meanCI2df1(x)
Arguments
x |
An object of class meanCI |
Value
A data.frame summarizing mean and confidence interval
Examples
x=meanCI(acs,sex,age)
meanCI2df1(x)
Draw meanCI plot for data with single vector
Description
Draw meanCI plot for data with single vector
Usage
meanCIplot1(x)
Arguments
x |
An object of class "meanCI" with attr(x,"measure")=="mean" |
Value
A ggplot
Examples
x=meanCI(mtcars,mpg)
meanCIplot1(x)
Draw a pair plot with an object of class meanCI
Description
Draw a pair plot with an object of class meanCI
Usage
pairPlot(x, palette = NULL)
Arguments
x |
An object of class "meanCI" with attr(x,"measure")=="paired" |
palette |
The name of color palette from RColorBrewer package or NULL |
Value
A ggplot
Examples
x=meanCI(iris,paired=TRUE)
pairPlot(x)
x=meanCI(iris,Petal.Width, Petal.Length,paired=TRUE)
pairPlot(x)
Draw a pair plot
Description
Draw a pair plot
Usage
pairPlot1(data, ref = NULL, palette = NULL)
Arguments
data |
a data.frame |
ref |
Numeric or NULL |
palette |
The name of color palette from RColorBrewer package or NULL |
Value
A ggplot
Examples
x=meanCI(mtcars,paired=TRUE)
pairPlot1(x$data)
pairPlot1(x$data,ref=c(1,4,6))
pairPlot1(x$data,ref=c(1,3))
Extract hexadecimal colors from a color palette
Description
Extract hexadecimal colors from a color palette
Usage
palette2colors(name, reverse = FALSE)
Arguments
name |
The name of color palette from RColorBrewer package |
reverse |
Whether or not reverse the order of colors |
Value
hexadecimal colors
Examples
palette2colors("Reds")
S3 method for an object of class "meanCI"
Description
S3 method for an object of class "meanCI"
Usage
## S3 method for class 'meanCI'
plot(x, ref = "control", side = NULL, palette = NULL, ...)
Arguments
x |
an object of class "meanCI" |
ref |
string One of c("test","control"). |
side |
logical or NULL If true draw side by side plot |
palette |
The name of color palette from RColorBrewer package or NULL |
... |
Further arguments to be passed |
Value
A ggplot or an object of class "plotCI" containing at least the following components: '
- p1
A ggplot
- p2
A ggplot
- side
logical
Examples
meanCI(mtcars,mpg) %>% plot()
meanCI(mtcars,am,mpg) %>% plot()
meanCI(iris,Sepal.Width) %>% plot()
meanCI(iris,Sepal.Width,Sepal.Length) %>% plot()
meanCI(iris,Sepal.Width,Sepal.Length,paired=TRUE) %>% plot(palette="Dark2")
meanCI(iris,Sepal.Width,Sepal.Length) %>% plot()
meanCI(iris,Species,Sepal.Width) %>% plot(side=TRUE)
meanCI(iris,Species,Sepal.Width,mu=0.5,alternative="less") %>% plot(ref="test")
meanCI(acs,age) %>% plot()
meanCI(acs,sex,age) %>% plot()
meanCI(acs,smoking,age) %>% plot(palette="Set1")
meanCI(acs,Dx,age) %>% plot()
meanCI(acs,Dx,age,sex,mu=0) %>% plot(palette="Dark2")
x=c(95,89,76,92,91,53,67,88,75,85,90,85,87,85,85,68,81,84,71,46,75,80)
y=c(90,85,73,90,90,53,68,90,78,89,95,83,83,83,82,65,79,83,60,47,77,83)
meanCI(x=x,y=y,paired=TRUE,alpha=0.1) %>% plot()
meanCI(10:30,1:15) %>% plot()
iris %>% meanCI() %>% plot(side=TRUE)
meanCI(n=150,m=115,s=10,alpha=0.01) %>% plot()
meanCI(n1=30,n2=25,m1=78,s1=10,m2=85,s2=15,alpha=0.10) %>% plot()
data(anscombe2,package="PairedData")
meanCI(anscombe2,idx=list(c("X1","Y1"),c("X4","Y4"),c("X3","Y3"),c("X2","Y2")),
paired=TRUE,mu=0) %>% plot()
x=meanCI(anscombe2,idx=list(c("X1","X2","X3","X4"),c("Y1","Y2","Y3","Y4")),paired=TRUE,mu=0)
plot(x)
longdf=tidyr::pivot_longer(anscombe2,cols=X1:Y4)
x=meanCI(longdf,name,value,idx=list(c("X1","X2","X3","X4"),c("Y1","Y2","Y3","Y4")),paired=TRUE,mu=0)
plot(x)
acs %>% select(sex,TC,TG,HDLC) %>% meanCI(group=sex) %>% plot()
acs %>% select(sex,TC,TG,HDLC) %>% meanCI(sex) %>% plot()
S3 method "print" for class "meanCI"
Description
S3 method "print" for class "meanCI"
Usage
## S3 method for class 'meanCI'
print(x, ...)
Arguments
x |
An object of class "meanCI" |
... |
Further arguments |
Value
No return value, called for side effect
S3 method for class plotCI
Description
S3 method for class plotCI
Usage
## S3 method for class 'plotCI'
print(x, ...)
Arguments
x |
An object of class plotCI |
... |
Further arguments |
Value
No return value, called for side effect
Calculate confidence intervals of proportion or difference between proportions
Description
Calculate confidence intervals of proportion or difference between proportions
Usage
propCI(
x,
y,
n,
p,
n1,
n2,
p1,
p2,
P = 0,
alpha = 0.05,
digits = 2,
alternative = "two.sided"
)
Arguments
x |
A vector |
y |
A vector |
n , n1 , n2 |
integer sample size |
p , p1 , p2 , P |
Numeric proportion |
alpha |
numeric confidence level |
digits |
integer indicating the number of decimal places |
alternative |
A character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". |
Value
A list containing at least the following components:
- data
A tibble containing raw data or a list of numeric vector
- result
A data.frame consists of summary statistics
- call
the matched call
- attr(*,"measure")
character. One of c("prop","propdiff")
#'@examples propCI(acs$sex) propCI(acs$sex,acs$DM) propCI(n=1600,p=0.4,alpha=0.01) propCI(n=100,p=0.73,P=0.8,alpha=0.01) propCI(n1=400,n2=300,p1=0.4,p2=0.3,alpha=0.1) propCI(n1=100,n2=200,p1=0.38,p2=0.51,alpha=0.01) propCI(n1=100,n2=200,p1=0.38,p2=0.51,alpha=0.01,alternative="less")
Calculate confidence intervals of proportion or difference between proportions in a data.frame
Description
Calculate confidence intervals of proportion or difference between proportions in a data.frame
Usage
propCI_sub(data, x, y = NULL)
Arguments
data |
A data.frame |
x |
Character Name of a categorical column |
y |
Character Optional. Name of another categorical column |
Value
A list containing at least the following components:
- data
A tibble containing raw data or a list of numeric vector
- result
A data.frame consists of summary statistics
- call
the matched call
- attr(*,"measure")
character. One of c("prop","propdiff")
Examples
propCI_sub(acs,"sex")
propCI_sub(acs,"sex","HBP")
Objects exported from other packages
Description
These objects are imported from other packages. Follow the links below to see their documentation.
Show html file in RStudio viewer or browser
Description
Show html file in RStudio viewer or browser
Usage
rstudio_viewer(file_name, file_path = NULL, viewer = "rstudio")
Arguments
file_name |
character file name |
file_path |
character file path |
viewer |
Character One of c("rstudio","browser") |
Value
No return value, called for side effect
Show t-value table
Description
Show t-value table
Usage
show_t_table(DF = 20, p = 0.05, alternative = "two.sided")
Arguments
DF |
Numeric degree of freedom |
p |
Numeric probability |
alternative |
Character One of c("two.sided","greater","less") |
Value
An object of class "flextable"
Examples
show_t_table()
Show z-value table
Description
Show z-value table
Usage
show_z_table(p = 0.05, alternative = "two.sided")
Arguments
p |
Numeric probability |
alternative |
Character One of c("two.sided","greater","less") |
Value
An object of class "flextable"
Examples
show_z_table()
show_z_table(p=0.01)
Draw textbox
Description
Draw textbox
Usage
textBox(
string,
color = "black",
lcolor = "red",
bg = "cornsilk",
lwd = 1,
width = 10,
bold = FALSE,
italic = FALSE,
fontsize = 11,
space = 1.5,
fontname
)
Arguments
string |
string |
color |
font color |
lcolor |
line color |
bg |
background color |
lwd |
numeric line width |
width |
numeric box width |
bold , italic |
logical |
fontsize |
numeric font size |
space |
space between lines |
fontname |
name of font |
Value
A flextable
Examples
string="Good Morning!"
textBox(string,italic=TRUE)