Type: Package
Title: Hydraulic Engineering Tools
Version: 1.0.0
Description: The 'hydReng' package provides a set of functions for hydraulic engineering tasks and natural hazard assessments. It includes basic hydraulics (wetted area, wetted perimeter, flow, flow velocity, flow depth, and maximum flow) for open channels with arbitrary geometry under uniform flow conditions. For structures such as circular pipes, weirs, and gates, the package includes calculations for pressure flow, backwater depth, and overflow over a weir crest. Additionally, it provides formulas for calculating bedload transport. The formulas used can be found in standard literature on hydraulics, such as Bollrich (2019, ISBN:978-3-410-29169-5) or Hager (2011, ISBN:978-3-642-77430-0).
License: GPL-3
Encoding: UTF-8
RoxygenNote: 7.3.3
URL: https://github.com/NiccoloGalatioto/hydReng
BugReports: https://github.com/NiccoloGalatioto/hydReng/issues
Suggests: testthat (≥ 3.0.0)
Imports: methods
NeedsCompilation: no
Packaged: 2025-11-16 16:45:03 UTC; niccg
Author: Galatioto Niccolo [cre, aut], Bühlmann Marius [aut], HOLINGER AG [cph, fnd]
Maintainer: Galatioto Niccolo <niccolo.galatioto@gmail.com>
Repository: CRAN
Date/Publication: 2025-11-16 17:00:02 UTC

CSarbitrary Class

Description

Defines a cross-section class with arbitrary geometry for hydraulic calculations. For single open channels only, avoid geometries with multiple channels.

Slots

x

A numeric vector of x-coordinates [m].

z

A numeric vector of z-coordinates [m].

xb_l

x-coordinate of the left bank bottom [m].

xb_r

x-coordinate of the right bank bottom [m].

kSt_B

Roughness of the channel bed [m^(1/3)/s].

kSt_l

Roughness of the left bank [m^(1/3)/s].

kSt_r

Roughness of the right bank [m^(1/3)/s].

Examples

# Define sample cross-section data
x <- c(0, 4, 9, 13)
z <- c(2, 0, 0, 2)
cs <- new("CSarbitrary", x = x, z = z, xb_l = 4, xb_r = 9,
          kSt_B = 35, kSt_l = 45, kSt_r = 45)

CScircle Class

Description

Defines a cross-section class with circular geometry for hydraulic calculations.

Slots

Di

Diameter of the pipe [m].

kSt

Roughness of the pipe according to Strickler [m^(1/3)/s].

ks

Roughness of the pipe according to Prandtl-Coolebrook-White [mm] (SIA 190)

Examples

csC <- CScircle(Di = 1, kSt = 75)
csC <- CScircle(Di = 1, ks = 1.5)

Bedload Transport Capacity (Meyer-Peter Müller)

Description

Calculates the bedload transport capacity using the formula by Meyer-Peter Müller. The formula is valid for bed slopes less than 0.005.

Usage

bedload_MPM(dm, J, Rs, B, f_kSt = 0.85, t_crit = 0.047, rho_s = 2650, s = 2.65)

Arguments

dm

Median grain size [m].

J

Bottom slope [-].

Rs

Hydraulic radius [m].

B

Bottom width [m].

f_kSt

Friction factor = (k_StS / k_Str)^(3/2) (default: 0.85).

t_crit

Critical shear stress [-] (default: 0.047).

rho_s

Density of bedload material [kg/m3] (default: 2650).

s

Relative solid density [-] (default: 2.65).

Value

Returns the bedload transport rate [kg/s].

References

Bezzola, G.R. (2012). Vorlesungsmanuskript Flussbau. ETH Zürich, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie VAW.

Examples

bedload_MPM(dm = 0.1, J = 0.01, Rs = 1.5, B = 20)
bedload_MPM(dm = 0.1, J = 0.01, Rs = 1.5, B = 20, t_crit = 0.06)


Bedload Transport Capacity (Smart and Jaeggi)

Description

Calculates the bedload transport capacity based on the formula by Smart and Jaeggi (1983). This formula is recommended for slopes between 0.005 and 0.2.

Usage

bedload_SJ(d30, dm, d90, J, Rs, um, B, t_crit = 0.05, rho_s = 2650,
s_value = 2.65)

Arguments

d30

Grain size distribution parameter [m].

dm

Median grain size [m].

d90

Grain size distribution parameter [m].

J

Bottom slope [-].

Rs

Hydraulic radius [m].

um

Mean flow velocity [m/s].

B

Bottom width [m].

t_crit

Critical shear stress [-] (default: 0.05).

rho_s

Density of bedload material [kg/m3] (default: 2650).

s_value

Relative solid density [-] (default: 2.65).

Value

bedload_SJ returns the bedload transport rate [kg/s]

References

Smart, G. M., & Jäggi, M. N. R. (1983). Sediment transport in steilen Gerinnen. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich, 64, Zürich.

Examples

d30 <- 0.05
dm <- 0.1
d90 <- 0.2
J <- 0.03
Rs <- 1
um <- 2
B <- 3

bedload_SJ(d30 = 0.05, dm = 0.10, d90 = 0.2, J = 0.03, Rs = 1, um = 2, B = 5)


Calculate dimensions of rip rap block size

Description

Calculates the dimensions and mass of a rip rap block based on slope geometry, water table levels, and material properties.

Usage

block_size(h, h_z, J, gamma, psi, geo = NULL, S = 1.15, Theta_c = 0.047,
  s = 2.65, ret = "all")

Arguments

h

Numeric. Global maximum water table level above riverbed [m].

h_z

Numeric. Local water table level above the regarded block [m].

J

Numeric. Bottom slope [-].

gamma

Numeric or NULL. Angle of bank slope [degrees]. Use NULL if specifying geo.

psi

Numeric. Inner friction angle [degrees]. Values between 50 and 55 are recommended (Bezzola 2012).

geo

Numeric vector of length 2 or NULL. Slope geometry as a triangle: c(vertical length, horizontal length) [-]. If given, gamma is ignored.

S

Numeric. Safety factor, default is 1.15 [-].

Theta_c

Numeric. Shear stress parameter, default is 0.047 [-].

s

Numeric. Relative density of blocks, default is 2.65 [-].

ret

Character. Result to return: "all" (default), "D", or "b".

Value

If ret = "all", returns a list with:

D

Diameter of block [m]

m

Mass of block [kg]

a

a-axis length [m]

b

b-axis length [m]

c

c-axis length [m]

Otherwise returns the requested single value:

References

Bezzola (2012). Flussbau, Vorlesungsmanuskript, ETH Zuerich

Examples

# Calculate block size at bottom of slope with given slope angle
block_size(h = 5, h_z = 5, J = 0.0015, gamma = 33.69, psi = 50)

# Calculate block size with slope geometries 2:3
block_size(h = 5, h_z = 5, J = 0.0015, gamma = NULL, psi = 50, geo = c(2, 3))

# Calculate block size at middle of slope with slope geometries 2:3
block_size(h = 5, h_z = 2.5, J = 0.0015, gamma = NULL, psi = 50, geo = c(2, 3))

Equivalent Hydraulic Diameter

Description

Calculates the equivalent hydraulic diameter of a rectangular cross-section given its width and height.

Usage

d_aequiv(b, h)

Arguments

b

Width of the rectangle [m].

h

Height of the rectangle [m].

Value

The equivalent hydraulic diameter [m].

Examples

d_aequiv(b = 2, h = 1)

Calculate grain size distribution of a filter layer

Description

Tool to calculate the range of the grain size distribution of a filter layer.

Usage

filterlayer(
  d15B,
  d50B,
  d15U,
  d50U,
  d85U,
  dmax = 400,
  plot = TRUE,
  fuller = FALSE
)

Arguments

d15B

Numeric. d15 of block [mm].

d50B

Numeric. d50 of block [mm].

d15U

Numeric. d15 of soil [mm].

d50U

Numeric. d50 of soil [mm].

d85U

Numeric. d85 of soil [mm].

dmax

Numeric. Maximum grain diameter of filter layer [mm].

plot

Logical. If TRUE, the results are plotted (default is TRUE).

fuller

Logical. If TRUE, adds curves of Fuller distributions with exponents 0.5 < q < 1.5 to the plot. For an ideal grain size distribution, q is estimated as 0.5 (default is FALSE).

Value

A list with the following components:

d15min

Minimum d15 of filter layer [mm].

d15max

Maximum d15 of filter layer [mm].

d50min

Minimum d50 of filter layer [mm].

d50max

Maximum d50 of filter layer [mm].

d85min

Minimum d85 of filter layer [mm].

Examples

# Calculate range of the grain size distribution
filterlayer(1000, 1500, 5, 10, 20, 400)

# Calculate range of the grain size distribution and add Fuller curves
filterlayer(1000, 1500, 5, 10, 20, 400, fuller = TRUE)


Flow

Description

Calculates the discharge of a CSarbitrary or CScircle object for a given flow depth and bottom slope under uniform flow conditions.

Usage

flow(object, h, J, method = "Strickler", ret = "all", plot = FALSE)

Arguments

object

A CSarbitrary or CScircle object.

h

Flow depth [m].

J

Bottom slope [-].

method

Method to calculate the roughness. Allowed are "Strickler" (equal roughness) "Einstein" (mean roughness) and "Prandtl-Coolebrook-White".

ret

Defines the result returned by the function.

plot

Logical; if 'TRUE', plots the results.

Value

A list containing the following hydraulic variables:

Q

Discharge [m3/s].

v

Flow velocity [m/s].

kSt_m

Mean roughness [m^(1/3)/s] (if method = "Einstein").

A

Wetted area [m^2].

Examples

# Example for CSarbitrary object
x <- c(0, 4, 9, 13)
z <- c(2, 0, 0, 2)
cs <- CSarbitrary(
  x = x, z = z, xb_l = 4, xb_r = 9,
  kSt_B = 35, kSt_l = 45, kSt_r = 45
)
flow(cs, h = 2, J = 0.0001, method = "Einstein", ret = "Q")
flow(cs, h = 2, J = 0.0001, method = "Einstein", plot = TRUE)

# Example for CScircle object
csC <- CScircle(Di = 0.7, ks = 1.5, kSt = 75)
flow(csC, h = 0.46, J = 0.004)
flow(csC, h = 0.46, J = 0.004, method = "Prandtl-Coolebrook-White", plot = TRUE)

Flow Depth

Description

Calculates the flow depth of a CSarbitrary or CScircle object for a given discharge and bottom slope under uniform flow conditions.

Usage

flow_depth(object, Q, J, method = "Strickler", ret = "all", plot = FALSE)

Arguments

object

A CSarbitrary or CScircle object.

Q

Discharge [m3/s].

J

Bottom slope [-].

method

Method to calculate the roughness. Allowed are "Strickler" (equal roughness) "Einstein" (mean roughness) and "Prandtl-Coolebrook-White".

ret

Defines the result returned by the function.

plot

Logical; if 'TRUE', plots the results.

Value

A list containing the following hydraulic variables:

h

Flow depth [m].

v

Flow velocity [m/s].

Fr

Froude number [-].

kSt_m

Mean roughness [m^(1/3)/s] (if method = "Einstein").

A

Wetted area [m^2].

P

Wetted perimeter [m].

Examples

# Example for CSarbitrary object
x <- c(0, 4, 9, 13)
z <- c(2, 0, 0, 2)
cs <- CSarbitrary(
  x = x, z = z, xb_l = 4, xb_r = 9,
  kSt_B = 35, kSt_l = 45, kSt_r = 45
)
flow_depth(cs, Q = 8.677, J = 0.0001, method = "Einstein", ret = "h")
flow_depth(cs, Q = 8.677, J = 0.0001, method = "Einstein", plot = TRUE)

# Example for CScircle object
csC <- CScircle(Di = 0.7, ks = 1.5, kSt = 75)
flow_depth(csC, Q = 0.46, J = 0.004)
flow_depth(csC, Q = 0.46, J = 0.004, method = "Prandtl-Coolebrook-White", plot = TRUE)


Water Depth Upstream Of Gate

Description

Calculates the upstream water depth for a gate based on given discharge and gate parameters.

Usage

flow_depth_gate(a, Q, B, alpha, h2 = NULL, ret = "h0")

Arguments

a

Gate opening height [m].

Q

Discharge [m3/s].

B

Gate width [m].

alpha

Gate angle from horizontal [degrees].

h2

Optional. Downstream water depth [m]. Default is NULL (free flow).

ret

Specifies the return value. "h0" for depth only or "all" for all intermediate results.

Value

A list containing the following hydraulic variables:

h0

Upstream water depth [m].

psi

Contraction coefficient [-].

mu

Discharge coefficient [-].

v

Flow velocity [m/s].

Examples

flow_depth_gate(a = 0.5, Q = 2.5, B = 2.0, alpha = 90)
flow_depth_gate(a = 0.5, Q = 2.5, B = 2.0, alpha = 90, h2 = 0.8)
flow_depth_gate(a = 0.5, Q = 2.5, B = 2.0, alpha = 90, h2 = 0.8, ret = "all")

Flow Depth At Weir Crest

Description

Calculates the height difference between the upstream water level and the weir crest.

Usage

flow_depth_weir(B, Q, w = Inf, mu = 0.73)

Arguments

B

Width of the weir [m].

Q

Flow rate [m3/s].

w

Height of the weir crest (upstream) [m]. If w = Inf, the upstream velocity is considered 0.

mu

Discharge coefficient [-]. Default is 0.73.

Value

A list with the following components:

h

Flow depth over the weir [m].

v

Flow velocity [m/s].

Examples

flow_depth_weir(B = 3, Q = 5)
flow_depth_weir(B = 3, Q = 5, w = 1)

Discharge At Underflow Gate

Description

Calculates the discharge through a gate under free or submerged conditions.

Usage

flow_gate(a, h0, B, alpha, h2 = NULL, ret = "Q")

Arguments

a

Gate opening height [m].

h0

Upstream water depth [m].

B

Gate width [m].

alpha

Gate angle from horizontal [degrees].

h2

Optional. Downstream water depth [m]. Default is NULL (free flow).

ret

Specifies the return value. "Q" for discharge only or "all" for all intermediate results.

Value

A list containing the following hydraulic variables:

Q

Flow [m3/s].

psi

Contraction coefficient [-].

mu

Discharge coefficient [-].

v

Flow velocity [m/s].

chi

Coefficient for submerged flow [-].

Examples

flow_gate(a = 0.5, h0 = 1.0, B = 2.0, alpha = 90)
flow_gate(a = 0.5, h0 = 1.0, B = 2.0, alpha = 90, h2 = 0.8)
flow_gate(a = 0.5, h0 = 1.0, B = 2.0, alpha = 90, h2 = 0.8, ret = "all")

Maximum Flow

Description

Calculates the maximum discharge of a CSarbitrary or CScircle object for a given bottom slope under uniform flow conditions.

Usage

flow_max(object, J, method = "Strickler", ret = "all", plot = FALSE)

Arguments

object

A CSarbitrary or CScircle object.

J

Bottom slope [-].

method

Method to calculate the roughness. Allowed are "Strickler" (equal roughness) "Einstein" (mean roughness) and "Prandtl-Coolebrook-White".

ret

Defines the result returned by the function.

plot

Logical; if TRUE, plots the results.

Value

A list containing the following hydraulic variables:

Qmax

Maximum discharge [m3/s].

hmax

Maximum flow depth [m].

v

Flow velocity [m/s].

kSt_m

Mean roughness [m^(1/3)/s] (if method = "Einstein").

A

Wetted area [m2].

Examples

# Example for CSarbitrary object
x <- c(0, 4, 9, 13)
z <- c(2, 0, 0, 2)
cs <- CSarbitrary(
  x = x, z = z, xb_l = 4, xb_r = 9,
  kSt_B = 35, kSt_l = 45, kSt_r = 45
)
flow_max(cs, J=0.0001, method="Einstein",ret="Qmax")
flow_max(cs, J=0.0001, method="Einstein",plot=TRUE)

# Example for CScircle object
csC <- CScircle(Di = 0.7, ks = 1.5, kSt = 75)
flow_max(csC, J=0.004)
flow_max(csC, J = 0.004, method = "Prandtl-Coolebrook-White", plot = TRUE)

Maximum Flow Including Freeboard

Description

Calculates the maximum discharge of a CSarbitrary object including a freebord for a given bottom slope under uniform flow conditions.

Usage

flow_max_freeboard(object, J, type = "KOHS", sigma_wz = 0, fw = TRUE, fv = FALSE, ft = 0,
fe = NULL, fe_min = 0, fe_max = Inf, method = "Strickler",
ret = "all", plot = FALSE)

Arguments

object

A CSarbitrary object.

J

Bottom slope [-].

type

Type of freeboard calculation. Defaults to "KOHS".

sigma_wz

Uncertainty in bed elevation (morphodynamics) [m].

fw

Logical; considers freeboard due to uncertainty in water elevation. If TRUE, calculates according to KOHS; if FALSE, sets fw = 0.

fv

Logical; considers freeboard due to waves. If 'TRUE', calculates according to KOHS; if FALSE, sets fv = 0.

ft

Freeboard due to driftwood based on KOHS (2013) [m].

fe

Fixed freeboard value to override calculations [m].

fe_min

Minimum freeboard [m].

fe_max

Maximum freeboard [m].

method

Method to calculate the roughness. Allowed are "Strickler" (equal roughness) and "Einstein" (mean roughness).

ret

Definition of the result returned by the function ("all", "Qmax", "hmax", "fe", or "v").

plot

Logical; whether to plot the results.

Value

Depending on ret, returns flow, water level, velocity, or all details.

References

KOHS (2013). Freibord bei Hochwasserschutzprojekten und Gefahrenbeurteilungen - Empfehlungen der Kommission Hochwasserschutz KOHS. Wasser Energie Luft 105(1): 43-53.

Examples

# Cross section
x <- c(-0.85, 3, 15, 18.85)
z <- c(3.85, 0, 0, 3.85)
cs<- CSarbitrary(x = x, z = z, xb_l = 3, xb_r = 15,
                                      kSt_B = 45)

# Channel
flow_max_freeboard(cs, sigma_wz = 0.3, fv = FALSE, J = 2.2 * 10^-2)
# Dam
flow_max_freeboard(cs, sigma_wz = 0.3, fv = TRUE, J = 2.2 * 10^-2)
# Bridge
flow_max_freeboard(cs, sigma_wz = 0.3, fv = TRUE, ft = 0.5,
           J = 2.2 * 10^-2)

# Sensitivity analysis for slope
J <- seq(1, 3, 0.1) * 10^-2
Q <- sapply(J, function(J) {
  flow_max_freeboard(cs, sigma_wz = 0.3, fv = TRUE, ft = 0.5,
             J = J)$Qmax
})
plot(J, Q, type = "l")

Flow Velocity

Description

Calculates the flow velocity of a CSarbitrary or CScircle object for a given water level and bottom slope under uniform flow conditions.

Usage

flow_velocity(object, h, J, method = "Strickler",nu = 1.14e-6,...)

Arguments

object

A CSarbitrary or CScircle object.

h

Flow depth [m].

J

Bottom slope [-].

method

Method to calculate the roughness. Allowed are "Strickler" (equal roughness) "Einstein" (mean roughness) and "Prandtl-Coolebrook-White".

nu

Kinematic viscosity [m2/s]. Only for CScircle objects

...

Additional arguments.

Value

Flow velocity [m/s]

Examples


# Example for CSarbitrary object
x <- c(0, 4, 9, 13)
z <- c(2, 0, 0, 2)
cs <- CSarbitrary(x = x, z = z, xb_l = 4, xb_r = 9, kSt_B = 35,
                  kSt_l = 45, kSt_r = 45)
flow_velocity(cs, h = 1,J = 0.01, method = "Einstein")

# Example for CScircle object
csC <- CScircle(Di = 0.7,ks = 1.5, kSt = 75)
flow_velocity(csC, h = 0.46, J = 0.004)
flow_velocity(csC, h = 0.46, J = 0.004, method = "Prandtl-Coolebrook-White")


Flow Over Weir Crest

Description

Calculates the flow over a weir crest based on upstream water level.

Usage

flow_weir(B, h, w = Inf, mu = 0.73)

Arguments

B

Width of the weir [m].

h

Height difference between the upstream water level and the weir crest [m].

w

Height of the weir crest (upstream) [m]. If w = Inf, the upstream velocity is considered 0.

mu

Discharge coefficient [-]. Default is 0.73.

Value

A list with the following components:

Q

Flow over the weir [m3/s].

v

Flow velocity [m/s].

Examples

flow_weir(B = 3, h = 1.2)
flow_weir(B = 3, h = 1.2, w = 1)

Freeboard Calculation

Description

Calculates the required freeboard based on the KOHS (2013) recommendations.

Usage

freeboard(v, h, sigma_wz = 0, fw = TRUE, fv = FALSE, ft = 0, min = 0,
  max = Inf, fe_fixed = 0)

Arguments

v

Flow velocity [m/s].

h

Flow depth [m].

sigma_wz

Uncertainty in bed elevation (morphodynamics) [m].

fw

Logical; considers freeboard due to uncertainty in water elevation. If 'TRUE', calculates according to KOHS; if 'FALSE', sets 'fw = 0'.

fv

Logical; considers freeboard due to waves. If 'TRUE', calculates according to KOHS; if 'FALSE', sets 'fv = 0'.

ft

Freeboard due to driftwood based on KOHS (2013) [m].

min

Minimum allowable freeboard [m].

max

Maximum allowable freeboard [m].

fe_fixed

Fixed freeboard value to override calculations [m].

Value

A numeric value of the calculated freeboard [m].

References

KOHS (2013). Freibord bei Hochwasserschutzprojekten und Gefahrenbeurteilungen - Empfehlungen der Kommission Hochwasserschutz KOHS. Wasser Energie Luft 105(1): 43-53.

Examples

freeboard(h = 1.36, sigma_wz = 0.3, fv = FALSE, ft = 0) # Channel example.
freeboard(v = 4.56, h = 1.36, sigma_wz = 0.3, fv = TRUE, ft = 0) # Dam.
freeboard(v = 4.56, h = 1.36, sigma_wz = 0.3, fv = TRUE, ft = 0.5) # Bridge.

Froude Number

Description

Calculates the froude number of a CSarbitrary or CScircle object for a given water level and velocity under uniform flow conditions.

Usage

froude_number(object, v, h)

Arguments

object

A CSarbitrary or CScircle object.

v

Flow velocity [m/s].

h

Flow depth [m].

Value

Froude number [-]

Examples


# Example for CSarbitrary object
x <- c(0, 4, 9, 13)
z <- c(2, 0, 0, 2)
cs <- CSarbitrary(x = x, z = z, xb_l = 4, xb_r = 9, kSt_B = 35,
                  kSt_l = 45, kSt_r = 45)
froude_number(cs,h=1, v = 2.5)

# Example for CScircle object
csC <- CScircle(Di = 0.7,ks = 1.5, kSt = 75)
froude_number(csC, h = 0.46, v = 2.5)


Mean Roughness

Description

Calculates the mean roughness of a CSarbitrary object for a given set of water levels, based on Einstein (1934).

Usage

mean_roughness(object, h)

Arguments

object

A CSarbitrary object.

h

A numeric vector of water levels [m].

Value

A numeric vector representing the mean roughness for the given water levels.

Examples

# Example usage:
x <- c(0, 4, 9, 13)
z <- c(2, 0, 0, 2)
cs <- CSarbitrary(x = x, z = z, xb_l = 4, xb_r = 9, kSt_B = 35,
                  kSt_l = 45, kSt_r = 45)
h_levels <- c(1, 2)  # water levels
mean_roughness(cs, h_levels)

Partial Filling Flow Diagram

Description

Function to generate a plot of partial-filling diagram of circular pipe with discharge and flow velocity

Usage

par_fill(object,J,method="Strickler")

Arguments

object

A CScircle object.

J

Bottom slope [-].

method

Method to calculate the roughness. Allowed are "Strickler" (equal roughness) and "Prandtl-Coolebrook-White".

Value

Plots of a partial filling diagram of a circular pipe with discharge and flow velocity

Examples

csC <- CScircle(Di = 0.7, ks = 1.5, kSt = 75)
par_fill(csC,J=0.04)

Flow Under Pressure (Bernoulli)

Description

Calculates the flow in a pipe or a rectangle under pressure (Bernoulli). The outlet is not submerged, e.g., the exit loss equals 0.

Usage

pressflow(z0, z1, h0, Di=NULL, h = NULL, b = NULL, L, ks=NULL, kst,
  xi_e = 0.5, nu = 1.14e-6, calc_lam = "kst")

Arguments

z0

Absolute height of upper gate – upstream of the inlet [m.a.s.l].

z1

Absolute height of the pipe/rectangle vertical middle axis at lower gate [m.a.s.l].

h0

Water depth upstream of the gate – upstream of the inlet [m].

Di

Diameter of pipe [m]. If Di is specified, h and b must be NULL.

h

Height of rectangle [m]. If h is specified, Di must be NULL.

b

Width of rectangle [m]. If b is specified, Di must be NULL.

L

Length of pipe [m].

ks

Equivalent sand roughness [m].

kst

Roughness [m^(1/3)/s].

xi_e

Entrance loss [-]. Default = 0.5.

nu

Kinematic viscosity [m2/s]. Default = 1.14e-6.

calc_lam

Defines if lambda should be calculated with ks or kst.

Value

Pressflow returns the flow under pressure:

Q

Discharge [m^3/s].

v

Flow velocity [m/s].

Examples

# Calculate flow in a pipe under pressure with ks value
pressflow(z0 = 415, z1 = 413, h0 = 3, L = 20, Di = 1, ks = 0.01,
  calc_lam = "ks")

# Calculate flow in rectangle under pressure with kst value
pressflow(z0 = 415, z1 = 413, h0 = 3, L = 20, b = 2, h = 1, kst = 60,
  calc_lam = "kst")


Backwater Height Upstream A Inlet Under Pressure (Bernoulli)

Description

Calculates the backwater height upstream of an inlet (pipe or rectangle) under pressure (Bernoulli). The outlet is not submerged, e.g., the exit loss equals 0.

Usage

pressflow_depth(
  z0, z1, Q, Di = NULL, h = NULL, b = NULL, L, ks = NULL, kst,
  xi_e = 0.5, nu = 1.14e-6, calc_lam = "kst"
)

Arguments

z0

Absolute height of upper gate – upstream of the inlet [m.a.s.l].

z1

Absolute height of the pipe/rectangle vertical middle axis at lower gate [m.a.s.l].

Q

Flow [m^3/s].

Di

Diameter of pipe [m]. If Di is specified, h and b must be NULL.

h

Height of rectangle [m]. If h is specified, Di must be NULL.

b

Width of rectangle [m]. If b is specified, Di must be NULL.

L

Length of pipe [m].

ks

Equivalent sand roughness [m].

kst

Roughness [m^(1/3)/s].

xi_e

Entrance loss [-]. Default = 0.5.

nu

Kinematic viscosity [m^2/s]. Default = 1.14e-6.

calc_lam

Defines if lambda should be calculated with ks or kst.

Value

Returns the backwater height upstream the inlet:

h0

Water depth upstream the inlet [m].

v

Flow velocity [m/s].

Examples

# Flow in a pipe under pressure with ks value
pressflow_depth(z0 = 415, z1 = 413, Q = 5.18, L = 20, Di = 1,
                ks = 0.01, calc_lam = "ks")

# Flow in a rectangle under pressure with kst value
pressflow_depth(z0 = 415, z1 = 413, Q = 13.7, L = 20, b = 2, h = 1,
                kst = 60, calc_lam = "kst")


Backwater Height Upstream A Inlet Under Pressure (Bernoulli)

Description

Calculates the backwater height upstream of an inlet (pipe or rectangle) under pressure (Bernoulli). The outlet is submerged; hence, an exit loss (xi_a) has to be specified.

Usage

pressflow_depth_sub(
  z0, z1, Q, h1, v1, Di = NULL, h = NULL, b = NULL, L, ks = NULL, kst, xi_a,
  xi_e = 0.5, nu = 1.14e-6, calc_lam = "kst"
)

Arguments

z0

Absolute height of upper gate – upstream of the inlet [m.a.s.l].

z1

Absolute height of the pipe/rectangle vertical middle axis at lower gate [m.a.s.l].

Q

Flow [m^3/s].

h1

Water depth downstream the outlet [m].

v1

Velocity downstream the outlet [m/s].

Di

Diameter of pipe [m]. If Di is specified, h and b must be NULL.

h

Height of rectangle [m]. If h is specified, Di must be NULL.

b

Width of rectangle [m]. If b is specified, Di must be NULL.

L

Length of pipe [m].

ks

Equivalent sand roughness [m].

kst

Roughness [m^(1/3)/s].

xi_a

Exit loss, according to Borda-Carnot formula (1 - A1/A2)^2 [-].

xi_e

Entrance loss [-]. Default = 0.5.

nu

Kinematic viscosity [m^2/s]. Default = 1.14e-6.

calc_lam

Defines if lambda should be calculated with ks or kst.

Value

Returns the backwater height upstream the inlet:

h0

Water depth upstream the inlet [m].

v

Flow velocity [m/s].

Examples

# Flow in a pipe under pressure with ks value
pressflow_depth_sub(z0=415,z1=413,Q=5.18,h1=2,v1=4,L=20,Di=1,ks=0.01,
calc_lam="ks",xi_a=0.5)

# Flow in a rectangle under pressure with kst value
pressflow_depth_sub(z0=415,z1=413,Q=13.7,h1=2,v1=4,L=20,b=2,h=1,kst=60,
calc_lam="kst",xi_a=0.5)


Scour depth in a curve

Description

Calculate scour depth formed in a curve.

Usage

scour_curve(A,v,Fr,h,J,r,rm,d84,d16,dm=NULL,psi=NULL,method="Peter")

Arguments

A

wetted area upstream the curve [m2]

v

flow velocity upstream the curve [m/s]

Fr

Froude number upstream the curve [-]

h

flow depth in the middle of the river upstream the curve [m]

J

bottom slope [-]

r

curve radius from center to the outer bank bottom [m]

rm

curve radius from center to the middle of the river [m]

d84

d84 of grain size distribution [mm]

d16

d16 of grain size distribution [mm]

dm

d50 of grain size distribution [mm]

psi

inner friction angle[°]. Values between 20° and 25° are recommended for flat rivers (J~0.0003). For steeper rivers (0.0035 < J < 0.007), values between 35° and 40° are recomended (Bezzola 2012).

method

method to calculate scour depth. valid values are "Peter", "Bridge" or "Kikkawa"

Value

T0

water table at maximal scour depth [m]

S

difference between bed elevation at the middle of the river upstream the curve and the maximal scour depth [m]

val

if val = T, the criterion for method "Peter" is fullfilled

References

Bezzola (2012). Vorlesungsmanuskript Flussbau. ETH Zürich.

Examples

## calculate scour depth accordint to Peter

# Define parameter
A <- 135.5
Fr <- 0.52
h <- 3.31
J <- 0.0022
r <- 500
rm <- 530
d16 <- 50
d84 <- 200

scour_curve(
  A = A, Fr = Fr, h = h, J = J, rm = rm, r = r,
  d16 = d16, d84 = d84
)

## calculate scour depth accordint to Bridge

# Define parameter
h <- 3.31
r <- 500
rm <- 530
psi <- 20

scour_curve(h = h, rm = rm, r = r, method = "Bridge", psi = psi)

## calculate scour depth according to Kikkawa

# Define parameter
v <- 2.7
h <- 3.31
J <- 0.0022
r <- 500
rm <- 470
dm <- 80

scour_curve(
  v = v, h = h, J = J, rm = rm, r = r,
  dm = dm, method = "Kikkawa"
)


Scour depth formed by a groyne

Description

Calculate scour depth formed by a groyne

Usage

scour_groyne(v,Fr,B,h,J,L,d16,dm,d84,Ks,delta,Kb=NULL,l=NULL, fs=0,
method="Froehlich",bedload=FALSE)

Arguments

v

flow velocity upstream the groyne [m/s]

Fr

Froude number upstream the groyne [-]

B

sole width [m]

h

flow depth upstream the groyne [m]

J

bottom slope [-]

L

length of the groyne (perpendicular to the river) [m]

d16

d16 of grain size distribution [mm]

dm

d50 of grain size distribution [mm]

d84

d84 of grain size distribution [mm]

Ks

shape value according to "Froehlich". values between 0.55 and 1 are recomended.[-]

delta

horizontal angle of the groyne in respect to the river [°]

Kb

shape value according to "Hoffmanns" [-]

l

length of the groyne (parallel to the river)[m]

fs

safety factor [-]

method

method to calculate scour depth. valid values are "Froehlich"

bedload

Consider bedload transportation if bedload =TRUE

Value

T0

water table at maximal scour depth [m]

S

difference between bed elevation at the middle of the river and the maximal scour depth [m]

References

Bezzola (2012). Vorlesungsmanuskript Flussbau. ETH Zürich.

Examples

## calculate scour depth accordint to Froehlich without bedload

v <- 2.7
Fr <- 0.52
h <- 3.31
J <- 0.0022
L <- 5
d16 <- 50
dm <- 80
d84 <- 200
Ks <- 0.82
delta <- 60

scour_groyne(
  v = v, Fr = Fr, h = h, J = J, L = L,
  d16 = d16, dm = dm, d84 = d84,
  Ks = Ks, delta = delta
)

## calculate scour depth accordint to Froehlich with bedload

v <- 2.7
Fr <- 0.52
h <- 3.31
J <- 0.0022
L <- 5
Ks <- 0.82
delta <- 60

scour_groyne(
  v = v, Fr = Fr, h = h, J = J, L = L,
  d16 = d16, dm = dm, d84 = d84,
  Ks = Ks, delta = delta, bedload = TRUE
)


Scour depth and length (horizontal jet)

Description

Calculate scour depth and position (length) formed by horizontal jet

Usage

scour_horz(Q,B,h,h_u,d90,W=NULL,a=NULL,mu=NULL,l0=NULL,
method="Eggenberger")

Arguments

Q

flow [m3/s]

B

channel width [m]

h

difference between upstream and downstream water table [m]

h_u

downstream water table [m]

d90

d90 of grain size distribution [mm]

W

shape value. For free waved jet w = 15.4 and for covered waved jet w = 10.35. If the parameters a and mu are known, W is calculated in the function and must not be specified

a

gate opeing height [m]

mu

contraction value. Values between 0.6 (orthogonal gates) and 0.8 (inclined gates) are recommended [-]

l0

length of fix sole protection downstream the gate [m] (for method Shalash)

method

method to calculate scour depth. valid values are "Eggenberger" or "Shalash". Independet of the chosen method, the position of the scour is calculated according to "Eggenberger".

Value

T0

water table at maximal scour depth [m]

S

maximal scour depth [m]

l1

horizontal distance of maximal scour depth to overfall crest [m]

l2

total horizontal distance of scour depth from overfall crest [m]

References

Bezzola (2012). Vorlesungsmanuskript Flussbau. ETH Zürich.

Examples

## calculate scour depth accordint to Eggenberger returing all results
scour_horz(Q = 4, B = 1, h = 5, h_u = 1.76, d90 = 150, a = 1, mu = 0.6)

## calculate scour depth accordint to Eggenberger with given W value
scour_horz(Q = 4, B = 1, h = 5, h_u = 1.76, d90 = 150, W = 15.4)

## calculate scour depth accordint to Shalash with l0=5
scour_horz(
  Q = 4, B = 1, h = 5, h_u = 1.76, d90 = 150,
  method = "Shalash", l0 = 5, a = 1
)


Scour depth and length (vertical jet)

Description

Calculate scour depth and position (length) formed by vertical jet

Usage

scour_vert(
  Q, B, h, h_u, d90, d95, ful_ov, method = "Kolatus", bedload = FALSE
)

Arguments

Q

flow [m3/s]

B

width of the overfall section [m]

h

difference between upstream and downstream water table [m]

h_u

downstream water table [m]

d90

d90 of grain size distribution [mm]

d95

d95 of grain size distribution [mm]

ful_ov

defines if the overfall is complete or incomplete. TRUE and FALSE are valid values [logical]

method

method to calculate scour depth. valid values are "Kolatus" or "Tschopp". Independent of the chosen method, the position of the scour is calculated according to "Kolatus" and the scour depth considering bedload is calculated according to "Tschopp".

bedload

Consider bedload transportation. If bedload = TRUE, the scour depth "TG" and "SG" are calculated additionally which consider bedload transport.

Value

T0

water table at maximal scour depth [m]

S

maximal scour depth [m]

TG

water table at maximal scour depth considering bedload transport [m]

SG

maximal scour depth considering bedload transport [m]

l1

horizontal distance of maximal scour depth to overfall crest [m]

l2

total horizontal distance of scour depth from overfall crest [m]

References

Bezzola (2012). Vorlesungsmanuskript Flussbau. ETH Zürich.

Examples

## calculate scour depth according to Kolatus returning all results
scour_vert(
  Q = 4, B = 1, h = 3, h_u = 1.76, d90 = 150, d95 = 200, ful_ov = TRUE
)

## calculate scour depth according to Tschopp
scour_vert(
  Q = 4, B = 1, h = 3, h_u = 1.76, d90 = 150, d95 = 200,
  method = "Tschopp", ful_ov = TRUE
)$S

## calculate scour depth according to Tschopp considering bedload transport
scour_vert(
  Q = 4, B = 1, h = 3, h_u = 1.76, d90 = 150, d95 = 200,
  method = "Tschopp", bedload = TRUE, ful_ov = TRUE
)$SG


Shear stress, shear velocity, and dimensionless shear stress

Description

Calculates shear stress, shear velocity, and dimensionless shear stress based on water depth, slope, and grain size.

Usage

shear_str(h0, J, dm = NULL, h = NULL, rho = 1000)

Arguments

h0

Numeric. Total water depth [m].

J

Numeric. Bottom slope [-].

dm

Numeric or NULL. Median grain size (d50) of sediment [mm].

h

Numeric or NULL. Local water depth at the point of interest [m]. If NULL, considered equal to h0.

rho

Numeric. Density of water [kg/m3], default is 1000.

Value

A named list with components:

tau

Shear stress [N/m2].

U

Shear velocity [m/s].

tau_st

Dimensionless shear stress [-], if dm is provided, otherwise NA.

References

Bezzola (2012). Flussbau, Vorlesungsmanuskript, ETH Zuerich

Examples

# Calculate shear stress at bank bottom
shear_str(h0 = 3.31, J = 0.0022)$tau

# Calculate shear stress at bank middle
shear_str(h0 = 3.31, J = 0.0022, h = 1.6)$tau

# Calculate dimensionless shear stress
shear_str(h0 = 3.31, J = 0.0022, dm = 100)$tau_st

Wetted Area

Description

Calculates the wetted area of a CSarbitrary or CScircle object for given water levels.

Usage

wetted_area(object, h, ret = "A")

Arguments

object

An object of class CSarbitrary or CScircle.

h

A numeric vector of water levels (m). For CScircle, only a single numeric value is allowed.

ret

A character string. If 'A', returns total wetted area. If 'Aii', returns wetted area by segment.

Value

A numeric vector or matrix of wetted areas based on the 'ret' argument.

Examples

# Example for CSarbitrary object
x <- c(0, 4, 9, 13)
z <- c(2, 0, 0, 2)
cs <- CSarbitrary(x = x, z = z, xb_l = 4, xb_r = 9, kSt_B = 35,
                  kSt_l = 45, kSt_r = 45)

# Calculate total wetted area at water levels 1 m and 2 m
h <- c(1, 2)
wetted_area(cs, h, ret = "A")

# Calculate wetted area for each segment at the same water levels
wetted_area(cs, h, ret = "Aii")

# Example for CScircle object
csC <- CScircle(Di = 1, kSt = 75)

# Calculate total wetted area at water level 1 m
h <- 1
wetted_area(csC, h)

Wetted Perimeter

Description

Calculates the wetted perimeter of a CSarbitrary or CScircle object for given water levels.

Usage

wetted_perimeter(object, h, ret = "P")

Arguments

object

An object of class CSarbitrary or CScircle.

h

A numeric vector of water levels (m). For CScircle, only a single numeric value is allowed.

ret

A character string. If 'P', returns total wetted perimeter. If 'Pii', returns wetted perimeter by segment.

Value

A numeric vector or matrix of wetted perimeter based on the 'ret' argument.

Examples

# Example for CSarbitrary object
x <- c(0, 4, 9, 13)
z <- c(2, 0, 0, 2)
cs <- CSarbitrary(x = x, z = z, xb_l = 4, xb_r = 9, kSt_B = 35,
                  kSt_l = 45, kSt_r = 45)

# Calculate total wetted perimeter at water levels 1 m and 2 m
h <- c(1, 2)
wetted_perimeter(cs, h, ret = "P")

# Calculate wetted perimeter for each segment at the same water levels
wetted_perimeter(cs, h, ret = "Pii")

# Example for CScircle object
csC <- CScircle(Di = 1, kSt = 75)

# Calculate total wetted perimeter at water level 1 m
h <- 1
wetted_perimeter(csC, h)

Superelevation of water table in curve

Description

Calculates the superelevation of the water table in a river curve.

Usage

wt_sup(w, rm, v, S = 1.5)

Arguments

w

Numeric. Horizontal sole width [m].

rm

Numeric. Curve radius from center to the middle of the river [m].

v

Numeric. Flow velocity [m/s].

S

Numeric. Safety factor, default is 1.5.

Value

Numeric. The difference between mean water level and superelevation [m].

References

Bezzola (2012). Flussbau, Vorlesungsmanuskript, ETH Zuerich

Examples

# Calculate superelevation
wt_sup(w = 30, rm = 200, v = 5)