Package ‘dsp’

August 19, 2025

Type Package

Title Dynamic Shrinkage Process and Change Point Detection

Version 1.2.0

Description Provides efficient Markov chain Monte Carlo (MCMC) algorithms for

dynamic shrinkage processes, which extend global-local shrinkage priors to

the time series setting by allowing shrinkage to depend on its own past.

These priors yield locally adaptive estimates, useful for time series and

regression functions with irregular features. The package includes full MCMC
implementations for trend filtering using dynamic shrinkage on signal differences,
producing locally constant or linear fits with adaptive credible bands.

Also included are models with static shrinkage and normal-inverse-

Gamma priors for comparison.

Additional tools cover dynamic regression with time-varying coefficients and

B-spline models with shrinkage on basis differences, allowing for flexible

curve-fitting with unequally spaced data. Some support for heteroscedastic errors,
outlier detection, and change point estimation.

Methods in this package are described in Kowal et al. (2019) <doi:10.1111/rssb.12325>,
Wu et al. (2024) <doi:10.1080/07350015.2024.2362269>, Schafer and Matteson (2024)
<doi:10.1080/00401706.2024.2407316>, and Cho and Matte-

son (2024) <doi:10.48550/arXiv.2408.11315>.

License GPL (>=3)
Depends R (>=4.1.0)
Imports coda, fda, graphics, grDevices, Matrix, MCMCpack, methods,

msm, pgdraw, Rcpp, ReppZiggurat, spam, progress, stats,
stochvol, BayesLogit, truncdist, mgcv, purrr, rlang, lifecycle,
glue

Suggests ggplot2, testthat (>= 3.0.0)

LinkingTo Rcpp, RcppArmadillo, ReppEigen
Encoding UTF-8

RoxygenNote 7.3.2

Config/testthat/edition 3

URL https://github.com/schafert/dsp

https://doi.org/10.1111/rssb.12325
https://doi.org/10.1080/07350015.2024.2362269
https://doi.org/10.1080/00401706.2024.2407316
https://doi.org/10.48550/arXiv.2408.11315
https://github.com/schafert/dsp

2 Contents

BugReports https://github.com/schafert/dsp/issues
NeedsCompilation yes

Author Daniel R. Kowal [aut, cph],
Haoxuan Wu [aut],
Toryn Schafer [aut, cre] (ORCID:
<https://orcid.org/0000-0001-5594-7697>),
Jason B. Cho [aut],
David S. Matteson [aut]

Maintainer Toryn Schafer <toryn27@gmail.com>
Repository CRAN
Date/Publication 2025-08-19 15:00:13 UTC

Contents
aADCO . . . e e e e e 4
btf . e 5
btfO . . e e 7
btf_bspline 9
btf_ bspline0 11
btf_reg e e 12
btf_sparse 14
build_Q 17
bulld_XtX e 17
computeDIC_ASV o e 18
credBands L e e 18
dsp_fit e e e e 19
dSp_SPEC o e e e 21
ergMean L e e e 22
it ASY . e e 22
fit_paramsASV . . . e e 24
fit_paramsASV_n e 24
generate_ly2hat 25
getARpXmat 26
getEffSize L e 26
GENONZETOS o o i e e e e e e 27
initCholReg_spam L 28
initChol_spam e e e e e 28
nitDHS e e e 29
initEvolO e e e e 29
initEvolParams e e e 30
NitSV . e 30
init_paramsASV . . . L e e e 31
init_paramsASV_n 31
invlogit . . .o 32
logit e e e 33

https://github.com/schafert/dsp/issues
https://orcid.org/0000-0001-5594-7697

Contents

Index

3
PlOtASp e e e e 34
predict.dsp e e e e 35
sampleART 36
sampleBTF e 37
sampleBTF_bspline 38
sampleBTF_reg e 39
sampleBTF_reg_backfit. 39
sampleBTF _sparse 40
sampleDSP 41
sampleEvol0 42
sampleEvolParams oL 43
sampleFastGaussian L 44
sampleLogVolMu 44
sampleLogVolMuO 45
sampleLogVols 46
sampleSVparams 47
sampleSVparamsO 47
sample_j_wrap e 48
sample_mat_C 48
simBaS 49
SIMRegression e 50
simRegression0 L 51
simUnivariate e e e 52
SPEC_ASP .+ . o e e e e e e 53
SUMMATY.ASP . .« v v o e e e e e e e e e e e e e e e e e e 53
tcreate_loc e 54
t_initEvolParams_noo 55
t_initEvolZeta_ps oL e 55
tAnitSV . e 56
t_sampleART . . . L 56
t sampleBTF 57
t_sampleEvolParams L 58
t_sampleEvolZeta_ps L 59
t sampleLogVolMu 59
t_sampleLogVols 60
tsampleR_mh 61
t_sampleSVparams L e e 62
uni.slice 63

4 abco

abco Adaptive Bayesian Changepoint with Outliers

Description

Run the MCMC sampler for ABCO with a penalty on first (D = 1), or second (D = 2) differences
of the conditional expectation. The penalty utilizes the dynamic horseshoe prior on the evolution
errors. Sampling is accomplished with a (parameter-expanded) Gibbs sampler, mostly relying on a
dynamic linear model representation.

Usage
abco(

Y,
D=1,
useAnom = TRUE,
obsSV = "const",
nsave = 1000,
nburn = 1000,
nskip = 4,

n

mcmc_params = list("mu”, "omega"”, "yhat", "evol_sigma_t2", "r", "zeta", "obs_sigma_t2",
"zeta_sigma_t2", "dhs_phi"”, "dhs_mean”, "h", "h_smooth"),
verbose = TRUE,

D_asv = 1,
evol_error_asv = "HS",
nugget_asv = TRUE
)
Arguments
y the T vector of time series observations
D degree of differencing (D=1, or D = 2)
useAnom logical; if TRUE, include an anomaly component in the observation equation
obsSV Options for modeling the error variance. It must be one of the following:
* const: Constant error variance for all time points.
* SV: Stochastic Volatility model.
* ASV: Adaptive Stochastic Volatility model.
nsave number of MCMC iterations to record
nburn number of MCMC iterations to discard (burnin)
nskip number of MCMC iterations to skip between saving iterations, i.e., save every
(nskip + 1)th draw
mcmc_params named list of parameters for which we store the MCMC output; must be one or

more of:

e "mu" (conditional mean)

btf 5

* "omega" (Dth difference of mu)

 "yhat" (posterior predictive distribution)

* "evol_sigma_t2" (evolution error variance)

* "obs_sigma_t2" (observation error variance)

* "zeta_sigma_t2" (outlier error variance)

» "dhs_phi" (DHS AR(1) coefficient)

¢ "dhs_mean" (DHS AR(1) unconditional mean)

* "h" (log variances or log of "obs_sigma_t2". Only used when obsSV =
"ASV")

* "h_smooth" (smooth estimate of log variances. Only used when obsSV =
"ASV" and nugget_asv = TRUE)

verbose logical; should R report extra information on progress?
D_asv integer; degree of differencing (0, 1, or 2) for the ASV model. Only used when
obsSV = "ASV".

evol_error_asv character; evolution error distribution for the ASV model. Must be one of the
five options used in evol_error. Only used when obsSV = "ASV".

nugget_asv logical; if TRUE, fits the nugget variant of the ASV model. Only used when
obsSV = "ASV".

Value

A named list of the nsave MCMC samples for the parameters named in mcmc_params

btf MCMC Sampler for Bayesian Trend Filtering

Description

Run the MCMC for Bayesian trend filtering with a penalty on zeroth (D = 0), first (D = 1), or second
(D = 2) differences of the conditional expectation. The penalty is determined by the prior on the
evolution errors, which include:

¢ the dynamic horseshoe prior CDHS’);

* the static horseshoe prior CHS’);

* the Bayesian lasso ("BL’);

* the normal stochastic volatility model ("SV’);

¢ the normal-inverse-gamma prior ("NIG’).

In each case, the evolution error is a scale mixture of Gaussians. Sampling is accomplished with a
(parameter-expanded) Gibbs sampler, mostly relying on a dynamic linear model representation.

btf

btf(
Y,
evol_error = "DHS",
D=2,
obsSV = "const",
nsave = 1000,
nburn = 1000,
nskip = 4,
mcmc_params = list("mu”, "yhat"”, "evol_sigma_t2", "obs_sigma_t2", "dhs_phi”,
"dhs_mean", "h", "h_smooth"),

computeDIC = TRUE,
verbose = TRUE,

D_asv =1,
evol_error_asv = "HS",
nugget_asv = TRUE
)
Arguments
y the T x 1 vector of time series observations

evol_error

the evolution error distribution; must be one of "'DHS’ (dynamic horseshoe prior;
the default), "HS’ (horseshoe prior), 'BL’ (Bayesian lasso), or "NIG’ (normal-
inverse-gamma prior)

D degree of differencing (D=0,D=1,0orD=2)
obsSV Options for modeling the error variance. It must be one of the following:

* const: Constant error variance for all time points.

* SV: Stochastic Volatility model.

* ASV: Adaptive Stochastic Volatility model.

for the observation error variance

nsave number of MCMC iterations to record
nburn number of MCMC iterations to discard (burnin)
nskip number of MCMC iterations to skip between saving iterations, i.e., save every

mcmc_params

(nskip + 1)th draw

named list of parameters for which we store the MCMC output; must be one or
more of:

e "mu" (conditional mean)

* "yhat" (posterior predictive distribution)

* "evol_sigma_t2" (evolution error variance)

* "obs_sigma_t2" (observation error variance)

e "dhs_phi" (DHS AR(1) coefficient)

e "dhs_mean" (DHS AR(1) unconditional mean)

* "h" (log variances or log of "obs_sigma_t2". Only used when obsSV =
HASVH)

btf0 7

* "h_smooth" (smooth estimate of log variances. Only used when obsSV =
"ASV" and nugget_asv = TRUE)

computeDIC logical; if TRUE, compute the deviance information criterion DIC and the effec-
tive number of parameters p_d

verbose logical; should R report extra information on progress?
D_asv integer; degree of differencing (0, 1, or 2) for the ASV model. Only used when
obsSV = "ASV".

evol_error_asv character; evolution error distribution for the ASV model. Must be one of the
five options used in evol_error. Only used when obsSV = "ASV".

nugget_asv logical; if TRUE, fits the nugget variant of the ASV model. Only used when
obsSV = "ASV".

Value

A named list of the nsave MCMC samples for the parameters named in mcmc_params

Note

The data y may contain NAs, which will be treated with a simple imputation scheme via an addi-
tional Gibbs sampling step. In general, rescaling y to have unit standard deviation is recommended
to avoid numerical issues.

btfo MCMC Sampler for Bayesian Trend Filtering: D = 0

Description

Run the MCMC for Bayesian trend filtering with a penalty on the conditional expectation. The
penalty is determined by the prior on the evolution errors, which include:

¢ the dynamic horseshoe prior CDHS’);

* the static horseshoe prior CHS’);

* the Bayesian lasso ("BL’);

* the normal stochastic volatility model ("SV’);

* the normal-inverse-gamma prior ("NIG’).

In each case, the evolution error is a scale mixture of Gaussians. Sampling is accomplished with a
(parameter-expanded) Gibbs sampler, mostly relying on a dynamic linear model representation.

btf0

btfo(
Y,
evol_error = "DHS",
obsSV = "const",
nsave = 1000,
nburn = 1000,
nskip = 4,
mcmc_params = list("mu”, "yhat"”, "evol_sigma_t2", "obs_sigma_t2", "dhs_phi”,
"dhs_mean", "h", "h_smooth"),

computeDIC = TRUE,
verbose = TRUE,

D_asv =1,
evol_error_asv = "HS",
nugget_asv = TRUE
)
Arguments
y the T x 1 vector of time series observations

evol_error

the evolution error distribution; must be one of 'DHS’ (dynamic horseshoe
prior), "HS’ (horseshoe prior), B’ (Bayesian lasso), or "NIG’ (normal-inverse-
gamma prior)

obsSV Options for modeling the error variance. It must be one of the following:
* const: Constant error variance for all time points.
* SV: Stochastic Volatility model.
* ASV: Adaptive Stochastic Volatility model.
nsave number of MCMC iterations to record
nburn number of MCMC iterations to discard (burnin)
nskip number of MCMC iterations to skip between saving iterations, i.e., save every

mcmc_params

computeDIC

(nskip + 1)th draw
named list of parameters for which we store the MCMC output; must be one or
more of:
¢ "mu" (conditional mean)
 "yhat" (posterior predictive distribution)
* "evol_sigma_t2" (evolution error variance)
* "obs_sigma_t2" (observation error variance)
e "dhs_phi" (DHS AR(1) coefficient)
¢ "dhs_mean" (DHS AR(1) unconditional mean)
* "h" (log variances or log of "obs_sigma_t2". Only used when obsSV =
"ASV")
* "h_smooth" (smooth estimate of log variances. Only used when obsSV =
"ASV" and nugget_asv = TRUE)

logical; if TRUE, compute the deviance information criterion DIC and the effec-
tive number of parameters p_d

btf_bspline 9

verbose logical; should R report extra information on progress?
D_asv integer; degree of differencing (0, 1, or 2) for the ASV model. Only used when
obsSV = "ASV".

evol_error_asv character; evolution error distribution for the ASV model. Must be one of the
five options used in evol_error. Only used when obsSV = "ASV".

nugget_asv logical; if TRUE, fits the nugget variant of the ASV model. Only used when
obsSV = "ASV".
Value

A named list of the nsave MCMC samples for the parameters named in mcmc_params

Note

The data y may contain NAs, which will be treated with a simple imputation scheme via an addi-
tional Gibbs sampling step. In general, rescaling y to have unit standard deviation is recommended
to avoid numerical issues.

btf_bspline MCMC Sampler for B-spline Bayesian Trend Filtering

Description

Run the MCMC for B-spline fitting with a Bayesian trend filtering model on the coefficients, i.e., a
penalty on zeroth (D=0), first (D=1), or second (D=2) differences of the B-spline basis coefficients.
The penalty is determined by the prior on the evolution errors, which include:

¢ the dynamic horseshoe prior CDHS’);

* the static horseshoe prior CHS’);

* the Bayesian lasso ("BL’);

* the normal stochastic volatility model ("SV’);
* the normal-inverse-gamma prior ("NIG’).

In each case, the evolution error is a scale mixture of Gaussians. Sampling is accomplished with a
(parameter-expanded) Gibbs sampler, mostly relying on a dynamic linear model representation.

Usage

btf_bspline(
Y,
times = NULL,
num_knots = NULL,
evol_error = "DHS",
D=2,
nsave = 1000,
nburn = 1000,

10 btf_bspline

nskip = 4,

mcmc_params = list("mu”, "yhat"”, "beta”, "evol_sigma_t2", "obs_sigma_t2", "dhs_phi”,
"dhs_mean"),

computeDIC = TRUE,

verbose = TRUE

)
Arguments
y the T x 1 vector of time series observations
times the T x 1 vector of observation points; if NULL, assume equally spaced
num_knots the number of knots; if NULL, use the default of max (20, min(ceiling(T/4),
150))
evol_error the evolution error distribution; must be one of 'DHS’ (dynamic horseshoe
prior), "HS’ (horseshoe prior), B’ (Bayesian lasso), or "NIG’ (normal-inverse-
gamma prior)
D degree of differencing (D=0,D=1,0or D=2)
nsave number of MCMC iterations to record
nburn number of MCMC iterations to discard (burin-in)
nskip number of MCMC iterations to skip between saving iterations, i.e., save every
(nskip + 1)th draw
mcmc_params named list of parameters for which we store the MCMC output; must be one or
more of:
e "mu" (conditional mean)
* "beta" (B-spline basis coefficients)
* "yhat" (posterior predictive distribution)
* "evol_sigma_t2" (evolution error variance)
* "obs_sigma_t2" (observation error variance)
» "dhs_phi" (DHS AR(1) coefficient)
¢ "dhs_mean" (DHS AR(1) unconditional mean)
computeDIC logical; if TRUE, compute the deviance information criterion DIC and the effec-
tive number of parameters p_d
verbose logical; should R report extra information on progress?
Value

A named list of the nsave MCMC samples for the parameters named in mcmc_params

Note

The data y may contain NAs, which will be treated with a simple imputation scheme via an addi-
tional Gibbs sampling step. In general, rescaling y to have unit standard deviation is recommended
to avoid numerical issues.

The primary advantages of btf_bspline over btf are

btf_bspline0

11

1. Unequally-spaced points are handled automatically and

2. Computations are linear in the number of basis coefficients, which may be substantially fewer
than the number of time points.

btf_bsplined

MCMC Sampler for B-spline Bayesian Trend Filtering: D = 0

Description

Run the MCMC for B-spline fitting with a penalty the B-spline basis coefficients. The penalty is
determined by the prior on the evolution errors, which include:

* the dynamic horseshoe prior CDHS’);

* the static horseshoe prior CHS);
* the Bayesian lasso ("BL’);

* the normal stochastic volatility model ("SV’);

* the normal-inverse-gamma prior (" NIG’).

In each case, the evolution error is a scale mixture of Gaussians. Sampling is accomplished with a
(parameter-expanded) Gibbs sampler, mostly relying on a dynamic linear model representation.

Usage
btf_bsplined(
Y,
times = NULL,
num_knots = NULL,
evol_error = "DHS",
nsave = 1000,
nburn = 1000,
nskip = 4,

mcmc_params = list("mu”, "yhat", "beta”, "evol_sigma_t2", "obs_sigma_t2", "dhs_phi”,

"dhs_mean"),
computeDIC = TRUE,
verbose = TRUE

)
Arguments
y the T x 1 vector of time series observations
times the T x 1 vector of observation points; if NULL, assume equally spaced
num_knots the number of knots; if NULL, use the default of max (20, min(ceiling(T/4),
150))
evol_error the evolution error distribution; must be one of 'DHS’ (dynamic horseshoe

prior), "HS’ (horseshoe prior), ’BL’ (Bayesian lasso), or "NIG’ (normal-inverse-

gamma prior)

12

nsave
nburn

nskip

mcmc_params

computeDIC

verbose

Value

btf_reg

number of MCMC iterations to record
number of MCMC iterations to discard (burin-in)

number of MCMC iterations to skip between saving iterations, i.e., save every
(nskip + 1)th draw

named list of parameters for which we store the MCMC output; must be one or
more of:

¢ "mu" (conditional mean)

* "beta" (B-spline basis coefficients)

 "yhat" (posterior predictive distribution)

* "evol_sigma_t2" (evolution error variance)

* "obs_sigma_t2" (observation error variance)

e "dhs_phi" (DHS AR(1) coefficient)

e "dhs_mean" (DHS AR(1) unconditional mean)

logical; if TRUE, compute the deviance information criterion DIC and the effec-
tive number of parameters p_d

logical; should R report extra information on progress?

A named list of the nsave MCMC samples for the parameters named in mcmc_params

Note

The data y may contain NAs, which will be treated with a simple imputation scheme via an addi-
tional Gibbs sampling step. In general, rescaling y to have unit standard deviation is recommended
to avoid numerical issues.

The primary advantages of btf_bspline over btf are

1. Unequally-spaced points are handled automatically and

2. Computations are linear in the number of basis coefficients, which may be substantially fewer
than the number of time points.

btf_reg

MCMC Sampler for Bayesian Trend Filtering: Regression

Description

Run the MCMC for Bayesian trend filtering regression with a penalty on first (D=1) or second
(D=2) differences of each dynamic regression coefficient. The penalty is determined by the prior
on the evolution errors, which include:

¢ the dynamic horseshoe prior CDHS’);

* the static horseshoe prior CHS’);
* the Bayesian lasso ("BL’);

btf_reg 13

* the normal stochastic volatility model ("SV’);

¢ the normal-inverse-gamma prior (' NIG’).

In each case, the evolution error is a scale mixture of Gaussians. Sampling is accomplished with a
(parameter-expanded) Gibbs sampler, mostly relying on a dynamic linear model representation.

Usage

btf_reg(
Y,
X = NULL,
evol_error = "DHS",
D=1,
obsSV = "const”,
nsave = 1000,
nburn = 1000,
nskip = 4,
mcmc_params = list("mu”, "yhat"”, "beta”, "evol_sigma_t2", "obs_sigma_t2", "dhs_phi”,

"dhs_mean", "h", "h_smooth"),

use_backfitting = FALSE,
computeDIC = TRUE,
verbose = TRUE,

D_asv =1,
evol_error_asv = "HS",
nugget_asv = TRUE
)
Arguments
y the T x 1 vector of time series observations
X the T x p matrix of time series predictors
evol_error the evolution error distribution; must be one of 'DHS’ (dynamic horseshoe
prior), "HS’ (horseshoe prior), ’BL’ (Bayesian lasso), or "NIG’ (normal-inverse-
gamma prior)
D degree of differencing (D =1or D =2)
obsSV Options for modeling the error variance. It must be one of the following:
* const: Constant error variance for all time points.
* SV: Stochastic Volatility model.
* ASV: Adaptive Stochastic Volatility model.
nsave number of MCMC iterations to record
nburn number of MCMC iterations to discard (burin-in)
nskip number of MCMC iterations to skip between saving iterations, i.e., save every
(nskip + 1)th draw
mcmc_params named list of parameters for which we store the MCMC output; must be one or

more of:

e "mu" (conditional mean)

14 btf_sparse

 "yhat" (posterior predictive distribution)

* "beta" (dynamic regression coefficients)

* "evol_sigma_t2" (evolution error variance)

* "obs_sigma_t2" (observation error variance)

e "dhs_phi" (DHS AR(1) coefficient)

e "dhs_mean" (DHS AR(1) unconditional mean)

* "h" (log variances or log of "obs_sigma_t2". Only used when obsSV =
"ASV")

* "h_smooth" (smooth estimate of log variances. Only used when obsSV =
"ASV" and nugget_asv = TRUE)

use_backfitting

logical; if TRUE, use backfitting to sample the predictors j=1,...,p (faster, but
usually less MCMC efficient)

computeDIC logical; if TRUE, compute the deviance information criterion DIC and the effec-
tive number of parameters p_d

verbose logical; should R report extra information on progress?

D_asv integer; degree of differencing (0, 1, or 2) for the ASV model. Only used when
obsSV = "ASV".

evol_error_asv character; evolution error distribution for the ASV model. Must be one of the
five options used in evol_error. Only used when obsSV = "ASV".

nugget_asv logical; if TRUE, fits the nugget variant of the ASV model. Only used when
obsSV = "ASV".

Value

A named list of the nsave MCMC samples for the parameters named in mcmc_params

Note

The data y may contain NAs, which will be treated with a simple imputation scheme via an addi-
tional Gibbs sampling step. In general, rescaling y to have unit standard deviation is recommended
to avoid numerical issues.

btf_sparse Run the MCMC for sparse Bayesian trend filtering

Description

Sparse Bayesian trend filtering has two penalties: (1) a penalty on the first (D = 1) or second (D =
2) differences of the conditional expectation and (2) a penalty on the conditional expectation, i.e.,
shrinkage to zero.

btf_sparse

Usage

btf_sparse(
Y,

15

evol_error = "DHS",
zero_error = "DHS",
D=2,
obsSV = "const",
nsave = 1000,
nburn = 1000,
nskip = 4,
mcmc_params = list("mu”, "yhat”, "evol_sigma_t2", "obs_sigma_t2", "zero_sigma_t2",
"dhs_phi”, "dhs_mean"”, "dhs_phi_zero"”, "dhs_mean_zero"”, "h", "h_smooth"),

computeDIC = TRUE,
verbose = TRUE,
D_asv = 1,
evol_error_asv = "HS",
nugget_asv = TRUE

)

Arguments
y the T x 1 vector of time series observations
evol_error the evolution error distribution; must be one of "DHS’ (dynamic horseshoe

zero_error

obsSV

nsave
nburn

nskip

mcmc_params

prior), "HS’ (horseshoe prior), 'BL’ (Bayesian lasso), or 'NIG’ (normal-inverse-
gamma prior)

the shrinkage-to-zero distribution; must be one of 'DHS’ (dynamic horseshoe
prior), "HS’ (horseshoe prior), ’BL’ (Bayesian lasso), or '"NIG’ (normal-inverse-
gamma prior)
degree of differencing (D=1, or D = 2)
Options for modeling the error variance. It must be one of the following:

* const: Constant error variance for all time points.

* SV: Stochastic Volatility model.

* ASV: Adaptive Stochastic Volatility model.
number of MCMC iterations to record

number of MCMC iterations to discard (burnin-in)

number of MCMC iterations to skip between saving iterations, i.e., save every
(nskip + 1)th draw

named list of parameters for which we store the MCMC output; must be one or
more of:

¢ "mu" (conditional mean)

* "yhat" (posterior predictive distribution)

* "evol_sigma_t2" (evolution error variance)

* "zero_sigma_t2" (shrink-to-zero error variance)

* "obs_sigma_t2" (observation error variance)

16 btf_sparse

 "dhs_phi" (DHS AR(1) coefficient for evolution error)
¢ "dhs_mean" (DHS AR(1) unconditional mean for evolution error)
 "dhs_phi_zero" (DHS AR(1) coefficient for shrink-to-zero error)

e "dhs_mean_zero" (DHS AR(1) unconditional mean for shrink-to-zero er-
ror)

* "h" (log variances or log of "obs_sigma_t2". Only used when obsSV =
IIASV II)

* "h_smooth" (smooth estimate of log variances. Only used when obsSV =
"ASV" and nugget_asv = TRUE)

computeDIC logical; if TRUE, compute the deviance information criterion DIC and the effec-
tive number of parameters p_d

verbose logical; should R report extra information on progress?
D_asv integer; degree of differencing (0, 1, or 2) for the ASV model. Only used when
obsSV = "ASV".

evol_error_asv character; evolution error distribution for the ASV model. Must be one of the
five options used in evol_error. Only used when obsSV = "ASV".

nugget_asv logical; if TRUE, fits the nugget variant of the ASV model. Only used when
obsSV = "ASV".

Details
Each penalty is determined by a prior, which include:
¢ the dynamic horseshoe prior CDHS’);
* the static horseshoe prior CHS’);
* the Bayesian lasso ("BL’);

* the normal stochastic volatility model ("SV’);

* the normal-inverse-gamma prior (NIG’).

In each case, the prior is a scale mixture of Gaussians. Sampling is accomplished with a (parameter-
expanded) Gibbs sampler, mostly relying on a dynamic linear model representation.

Value

A named list of the nsave MCMC samples for the parameters named in mcmc_params

Note

The data y may contain NAs, which will be treated with a simple imputation scheme via an addi-
tional Gibbs sampling step. In general, rescaling y to have unit standard deviation is recommended
to avoid numerical issues.

build_Q 17

build_Q Compute the quadratic term in Bayesian trend filtering

Description

Compute the quadratic term arising in the full conditional distribution of a Bayesian trend filtering
model with D = 1 or D = 2. This function exploits the known D-banded structure of Q to compute the
matrix directly, using objects in the Matrix package.

Usage
build_Q(obs_sigma_t2, evol_sigma_t2, D = 1)

Arguments

obs_sigma_t2 the T x 1 vector of observation error variances
evol_sigma_t2 the T x 1 vector of evolution error variances

D the degree of differencing (one or two)

Value

Banded T x T Matrix (object) Q

build_XtX Compute X’X

Description

Build the Tp x Tp matrix XtX using the Matrix() package

Usage
build_XtX(X)

Arguments

X T x p matrix of predictors

Value

Block diagonal Tp x Tp Matrix (object) where each p x p block is tcrossprod(matrix(X[t,]))

Note

X’X is a one-time computing cost. Special cases may have more efficient computing options, but
the Matrix representation is important for efficient computations within the sampler.

18 credBands

computeDIC_ASV Function for calculating DIC and Pb (Bayesian measures of model
complexity and fit by Spiegelhalter et al. 2002)

Description
Function for calculating DIC and Pb (Bayesian measures of model complexity and fit by Spiegel-
halter et al. 2002)

Usage

computeDIC_ASV(y, beta, post_sigma2, post_loglike)

Arguments
y the T x 1 vector of time series observations.
beta the known mean of the process. 0 by default.
post_sigma2 posterior samples of the variance, i.e. exp(h)

post_loglike log likelihood based on the posterior sample.

Value

a list containing DIC and p_d. Two options for estimating both DIC and p_d, which are both
included.

credBands Compute Simultaneous Credible Bands

Description

Compute (1-alpha)\

Usage

credBands(sampFuns, alpha = 0.05)

Arguments
sampFuns Nsims x m matrix of Nsims MCMC samples and m points along the curve
alpha confidence level

Value

m x 2 matrix of credible bands; the first column is the lower band, the second is the upper band

dsp_fit 19

Note

The input needs not be curves: the simultaneous credible "bands" may be computed for vectors. The
resulting credible intervals will provide joint coverage at the (1-alpha)% level across all components
of the vector.

dsp_fit

MCMC Sampler for Models with Dynamic Shrinkage Processes

Description

Wrapper function for fitting models with Dynamic Shrinkage Processes (DSP), including:

* Adaptive Bayesian Changepoint analysis and local Outlier (ABCO),

* Bayesian Trend Filter for Gaussian Data

* Time-varying Regression

* Bayesian Trend Filter with B-spline for irregularly spaced or functional time-series.

* Bayesian Smoothing for Count Data

Method for printing basic information about the MCMC sampling settings for the fitted model

Usage
dsp_fit(
y)
model_spec,
nsave = 1000,
nburn = 1000,
nskip =

computeDIC = TRUE,
verbose = TRUE,

)

S3 method for class 'dsp'
print(x, ...)
Arguments
y a numeric vector of the T x 1 vector of time series observations
model_spec a list containing model specification generated from dsp_spec().
nsave integer scalar (default = 1000); number of MCMC iterations to record
nburn integer scalar (default = 1000); number of MCMC iterations to discard (burn-in)
nskip integer scalar (default = 4); number of MCMC iterations to skip between saving

iterations, i.e., save every (nskip + 1)th draw

20

computeDIC

verbose

Details

dsp_fit

logical; if TRUE (default), compute the deviance information criterion DIC and
the effective number of parameters p_d

logical; should extra information on progress be printed to the console? Defaults
to FALSE

currently not used

object of class dsp from dsp_fit()

A brief summary of the settings used to fit the model including number of iterations, burn in, and

thinning rates.

Value

dsp_fit returns an object of class "dsp".

An object of class "dsp" is defined as a list containing at least the following components:

mcmc_output

DIC
mcpar

model_spec

Note

a list of the nsave MCMC samples for the parameters named in memc_params
Deviance Information Criterion
named vector of supplied nsave, nburn, and nskip

the object supplied for model_spec argument

The data y may contain NAs, which will be treated with a simple imputation scheme via an addi-
tional Gibbs sampling step. In general, rescaling y to have unit standard deviation is recommended
to avoid numerical issues when family is "gaussian".

Examples

set.seed(200)

signal = c(rep(@, 50), rep(10, 50))
noise = rep(1, 100)

noise_var =

rep(1, 100)

for (k in 2:100){
noise_var[k] = exp(@.9*%log(noise_var[k-1]) + rnorm(1, @, 0.5))

noisel[k]

y = signal
model_spec

+

rnorm(1, @, sqrt(noise_var[k])) }

noise
dsp_spec(family = "gaussian”, model = "changepoint”,
D = 1, useAnom = TRUE, obsSV = "SV")

mcmc_output = dsp_fit(y, model_spec = model_spec, nsave = 500, nburn = 500)

print(mcmc_output)

dsp_spec 21

dsp_spec Model Specification

Description

Method for creating dsp specification object prior to fitting.

Method for printing basic information about the model specification

Usage
dsp_spec(family, model, ...)

S3 method for class 'dsp_spec'
print(x, ...)

Arguments

family A character string specifying the model family. Must be one of:
 "gaussian": Gaussian family.
* "negbinom": Negative binomial family.

model A character string specifying the model type:

e family = "gaussian":

"changepoint": Change point detection with Adaptive Bayesian Change-
point analysis and local Outlier (ABCO),

— "smoothing": Bayesian smoothing,

— "regression": Time-varying regression,

— "bspline": Bayesian smoothing with B-spline for irregularly spaced or
functional time-series.

e family = "negbinom":
— "smoothing": Bayesian smoothing.
currently not used

X object of class dsp_spec from dsp_spec()

Value

A list containing the model specification.

Examples

model_spec <- dsp_spec(family = "gaussian”,
model = "changepoint")

print(model_spec)

22 fit ASV

ergMean Compute the ergodic (running) mean.

Description

Compute the ergodic (running) mean.

Usage

ergMean(x)

Arguments

X vector for which to compute the running mean

Value

A vector y with each element defined by y[i] = mean(x[1:1])

fit_ASV MCMC Sampler for Adaptive Stchoastic Volatility (ASV) model

Description
The penalty is determined by the prior on the evolution errors, which include:
¢ the dynamic horseshoe prior CDHS’);
* the static horseshoe prior CHS’);

* the Bayesian lasso ("BL’);

¢ the normal-inverse-gamma prior (' NIG”).

In each case, the evolution error is a scale mixture of Gaussians. Sampling is accomplished with a
(parameter-expanded) Gibbs sampler, mostly relying on a dynamic linear model representation.

Usage

fit_ASV(
Y,
beta = 0,
evol_error = "DHS",
D=1,
nsave = 1000,
nburn = 1000,
nskip = 4,

mcmc_params = list("h", "logy2hat”, "sigma2", "evol_sigma_t2", "dhs_phi"”, "dhs_mean"),

fit ASV

23

nugget = FALSE,
computeDIC = TRUE,
verbose = TRUE

Arguments

y
beta

evol_error

D
nsave
nburn

nskip

mcmc_params

nugget
computeDIC

verbose

Value

the T x 1 vector of time series observations.
the mean of the observed process y. If not provided, they are assumed to be 0.

the evolution error distribution; must be one of 'DHS’ (dynamic horseshoe
prior), "HS’ (horseshoe prior), B’ (Bayesian lasso), or 'NIG’ (normal-inverse-
gamma prior)

degree of differencing (D=1, or D = 2)
number of MCMC iterations to record
number of MCMC iterations to discard (burin-in)

number of MCMC iterations to skip between saving iterations, i.e., save every
(nskip + 1)th draw

named list of parameters for which we store the MCMC output; must be one or
more of:
* "h" (Log variance)

* "h_smooth" (smooth estimate of log variances. Only used when nugget_asv
= TRUE)

* "logy2hat" (posterior predictive distribution of log(y”2))
e "sigma2" (Variance, i.e. exp(h))

* "evol_sigma_t2" (evolution error variance)

» "dhs_phi" (DHS AR(1) coefficient)

e "dhs_mean" (DHS AR(1) unconditional mean)

logical; if TRUE, fits the nugget variant of the ASV model

logical; if TRUE, compute the deviance information criterion DIC and the effec-
tive number of parameters p_d

logical; should R report extra information on progress?

A named list of the nsave MCMC samples for the parameters named in mcmc_params

Note

The data y may contain NAs, which will be treated with a simple imputation scheme via an addi-
tional Gibbs sampling step. In general, rescaling y to have unit standard deviation is recommended
to avoid numerical issues.

24 fit_paramsASV_n

fit_paramsASV Helper function for Sampling parameters for ASV model

Description

Helper function for Sampling parameters for ASV model

Usage

fit_paramsASV(data, sParams, evol_error, D)

Arguments
data the T x 1 vector of time series observations.
sParams list from the previous run of fit_paramsASV function or init_paramsASV func-
tion
evol_error the evolution error distribution; must be one of "DHS’ (dynamic horseshoe
prior), "HS’ (horseshoe prior), "BL’ (Bayesian lasso), or "'NIG’ (normal-inverse-
gamma prior)
D degree of differencing (D=1, or D = 2)
Value

a list containing 4 sets of parameters
e s_p_error_term: matrix containing mean and the variance from 10-componenet gaussian mix-
ture (Omori et al. 2007)
* s_mu: a vector containing the posterior sample of log variance h,

* s_evolParams0: a list containing posterior samples of parameters associated with the variance
of first D observation of the log variance term, h.

* s_evolParams: a list containing posterior samples parameters associated with the variance of
D to the last observations of the log variance temr , h.

fit_paramsASV_n Helper function for Sampling parameters for ASV model with a nugget
Effect

Description

Helper function for Sampling parameters for ASV model with a nugget Effect

Usage

fit_paramsASV_n(data, sParams, evol_error, D)

generate_lyZ2hat 25

Arguments
data the T x 1 vector of time series observations.
sParams list from the previous run of fit_paramsASV function or init_paramsASV func-
tion
evol_error the evolution error distribution; must be one of 'DHS’ (dynamic horseshoe
prior), "HS’ (horseshoe prior), "BL’ (Bayesian lasso), or 'NIG’ (normal-inverse-
gamma prior)
D degree of differencing (D =1, or D =2)
Value

a list containing 4 sets of parameters
* s_p_error_term: matrix containing mean and the variance from 10-componenet gaussian mix-
ture (Omori et al. 2007)
* s_mu: a vector containing the posterior sample of log variance h,

* s_evolParams0: a list containing posterior samples of parameters associated with the variance
of first D observation of the log variance term, h.

* s_evolParams: a list containing posterior samples parameters associated with the variance of
D to the last observations of the log variance temr , h.

generate_ly2hat Posterior predictive sampler on the transformed y (log(y*2))

Description

Posterior predictive sampler on the transformed y (log(y*2))

Usage

generate_ly2hat(h, p_error_term)

Arguments

h the log varaince term h

p_error_term 2 dimensional data frame containing mean and the variance from the 10 com-
ponenet Gaussian mixture in Omori et al 2007 paper.

Value

a vector containing posterior predictive on log(y"2)

26 getEftSize

getARpXmat Compute the design matrix X for AR(p) model

Description

Compute the design matrix X for AR(p) model

Usage

getARpXmat(y, p = 1, include_intercept = FALSE)

Arguments
y (T x 1) vector of responses
p order of AR(p) model

include_intercept
logical; if TRUE, first column of X is ones

getEffSize Summarize of effective sample size

Description

Compute the summary statistics for the effective sample size (ESS) across posterior samples for
possibly many variables

Usage
getEffSize(postX)
Arguments
postX An array of arbitrary dimension (nsims x ... x ...), where nsims is the num-
ber of posterior samples
Value

Table of summary statistics using the function summary ().

getNonZeros 27

getNonZeros Compute Non-Zeros (Signals)

Description

Estimate the location of non-zeros (signals) implied by horseshoe-type thresholding.

Usage

getNonZeros(post_evol_sigma_t2, post_obs_sigma_t2 = NULL)

Arguments

post_evol_sigma_t2
the Nsims x T or Nsims x T x p matrix/array of posterior draws of the evolution
error variances.

post_obs_sigma_t2
the Nsims x 1 or Nsims x T matrix of posterior draws of the observation error
variances.

Details

Thresholding is based on kappal[t] > 1/2, where kappa = 1/(1 + evol_sigma_t2/obs_sigma_t2),
evol_sigma_t2 is the evolution error variance, and obs_sigma_t2 is the observation error variance.
In particular, the decision rule is based on the posterior mean of kappa.

Value

A vector (or matrix) of indices identifying the signals according to the horsehoe-type thresholding
rule.

Note

The thresholding rule depends on whether the prior variance for the state variable mu (i.e., evol_sigma_t2)

is scaled by the observation standard deviation, obs_sigma_t2. Explicitly, if mu[t] ~ N(0, evol __sigma_t2[t])
then the correct thresholding rule is based on kappa =1/(1 + evol_sigma_t2/obs_sigma_t2).

However, if mu[t] ~ N(O, evol_sigma_t2[t]*obs_sigma_t2[t]) then the correct thresholding

rule is based on kappa =1/(1 + evol_sigma_t2). The latter case may be implemented by omit-

ting the input for post_obs_sigma_t2 (or setting it to NULL).

28 initChol_spam

initCholReg_spam Compute initial Cholesky decomposition for TVP Regression

Description

Computes the Cholesky decomposition for the quadratic term in the (Gaussian) posterior of the
TVP regression coefficients. The sparsity pattern will not change during the MCMC, so we can
save computation time by computing this up front.

Usage

initCholReg_spam(obs_sigma_t2, evol_sigma_t2, XtX, D = 1)

Arguments

obs_sigma_t2 the T x 1 vector of observation error variances

evol_sigma_t2 the T x p matrix of evolution error variances

XtX the Tp x Tp matrix of X’X (one-time cost; see ?build_XtX)
D the degree of differencing (one or two)
initChol_spam Compute initial Cholesky decomposition for Bayesian Trend Filtering
Description

Computes the Cholesky decomposition for the quadratic term in the (Gaussian) posterior of the
Bayesian Trend Filtering coefficients. The sparsity pattern will not change during the MCMC, so
we can save computation time by computing this up front.

Usage

initChol_spam(nT, D = 1)

Arguments

nT number of time points

D degree of differencing (D=1 or D = 2)

initDHS 29

initDHS Initialize the evolution error variance parameters

Description

Compute initial values for evolution error variance parameters under the dynamic horseshoe prior

Usage
initDHS(omega)

Arguments

omega T x p matrix of evolution errors

Value

List of relevant components: the T x p evolution error SD sigma_wt, the T x p log-volatility ht,
the p x 1 log-vol unconditional mean(s) dhs_mean, the p x 1 log-vol AR(1) coefficient(s) dhs_phi,
the T x p log-vol innovation SD sigma_eta_t from the PG priors, the p x 1 initial log-vol SD
sigma_eta_0, and the mean of log-vol means dhs_mean® (relevant when p > 1)

initEvol®@ Initialize the parameters for the initial state variance

Description
The initial state SDs are assumed to follow half-Cauchy priors, C+(0,A), where the SDs may be
common or distinct among the states.

Usage
initEvol@(mu@, commonSD = TRUE)

Arguments

muo p x 1 vector of initial values (undifferenced)

commonSD logical; if TRUE, use common SDs (otherwise distinct)
Details

This function initializes the parameters for a PX-Gibbs sampler.

Value

List of relevant components: the p x 1 evolution error SD sigma_w@, the p x 1 parameter-expanded
RV’s px_sigma_w®, and the corresponding global scale parameters sigma_00@ and px_sigma_00
(ignore if commonSD)

30 nitSV

initEvolParams Initialize the evolution error variance parameters

Description

Compute initial values for evolution error variance parameters under the various options: dynamic
horseshoe prior DHS’), horseshoe prior ("HS”), Bayesian lasso ("BL’), normal stochastic volatility
(’SV?’), or normal-inverse-gamma prior ('NIG”).

Usage
initEvolParams(omega, evol_error = "DHS")
Arguments
omega T x p matrix of evolution errors
evol_error the evolution error distribution; must be one of 'DHS’ (dynamic horseshoe
prior), "HS’ (horseshoe prior), or 'NIG’ (normal-inverse-gamma prior)
Value

List of relevant components: sigma_wt, the T x p matrix of evolution standard deviations, and
additional parameters associated with the DHS and HS priors.

initsSv Initialize the stochastic volatility parameters

Description
Compute initial values for normal stochastic volatility parameters. The model assumes an AR(1)
for the log-volatility.

Usage

initSV(omega)

Arguments

omega T x p matrix of errors

Value

List of relevant components: sigma_wt, the T x p matrix of standard deviations, and additional
parameters (unconditional mean, AR(1) coefficient, and standard deviation).

init_paramsASV 31

init_paramsASV Helper function for initializing parameters for ASV model

Description

Helper function for initializing parameters for ASV model

Usage

init_paramsASV(data, evol_error, D)

Arguments
data the T x 1 vector of time series observations.
evol_error the evolution error distribution; must be one of 'DHS’ (dynamic horseshoe
prior), "HS’ (horseshoe prior), "BL’ (Bayesian lasso), or 'NIG’ (normal-inverse-
gamma prior)
D degree of differencing (D=1, or D = 2)
Value

a list containing 4 sets of parameters
* s_p_error_term: matrix containing mean and the variance from 10-componenet gaussian mix-
ture (Omori et al. 2007)
* s_mu: a vector containing the posterior sample of log variance h,

* s_evolParams0: a list containing posterior samples of parameters associated with the variance
of first D observation of the log variance term, h.

* s_evolParams: a list containing posterior samples parameters associated with the variance of
D to the last observations of the log variance temr , h.

init_paramsASV_n Helper function for initializing parameters for ASV model with a
nugget effect

Description

Helper function for initializing parameters for ASV model with a nugget effect

Usage

init_paramsASV_n(data, evol_error, D)

32 invlogit

Arguments
data the T x 1 vector of time series observations.
evol_error the evolution error distribution; must be one of 'DHS’ (dynamic horseshoe
prior), "HS’ (horseshoe prior), B’ (Bayesian lasso), or 'NIG’ (normal-inverse-
gamma prior)
D degree of differencing (D=1, or D = 2)
Value

a list containing 4 sets of parameters
* s_p_error_term: matrix containing mean and the variance from 10-componenet gaussian mix-
ture (Omori et al. 2007)
* s_mu: a vector containing the posterior sample of log variance h,

* s_evolParams0: a list containing posterior samples of parameters associated with the variance
of first D observation of the log variance term, h.

* s_evolParams: a list containing posterior samples parameters associated with the variance of
D to the last observations of the log variance temr , h.

invlogit Compute the inverse log-odds

Description

Compute the inverse log-odds

Usage

invlogit(x)

Arguments

X scalar or vector for which to compute the (componentwise) inverse log-odds

Value

A scalar or vector of values in (0,1)

logit

logit Compute the log-odds

Description

Compute the log-odds

Usage

logit(x)

Arguments

X scalar or vector in (0,1) for which to compute the (componentwise) log-odds

Value

A scalar or vector of log-odds

ncind Sample components from a discrete mixture of normals

Description

Sample Z from 1,2,....k, with P(Z=i) proportional to q_iN(mu_i,sig2_i).

Usage

ncind(y, mu, sig, q)

Arguments
y vector of data
mu vector of component means
sig vector of component standard deviations
q vector of component weights
Value

Sample from {1,....k}

34 plot.dsp

plot.dsp Plot the Bayesian trend filtering fitted values

Description

Plot the BTF posterior mean of the conditional expectation with posterior credible intervals (point-
wise and joint), the observed data, and true curves (if known)

Usage

S3 method for class 'dsp'

plot(x, type, true_values = NULL, t@1 = NULL, include_joint_bands = FALSE, ...)
Arguments

X an object of class ’dsp’ from dsp_fit()

type parameter name; must be included in xX$mcmc_output

true_values (defaults to NULL) the T x 1 vector of the true parameter

t01 the observation points; if NULL, assume T equally spaced points from O to 1

include_joint_bands
logical; if TRUE, compute simultaneous credible bands (only for zeta,omega,yhat,mu)

currently not being used

Details

The plotting behavior depends on the dimension of the posterior samples stored in x$memc_output[[type]]:

* 1D (scalar parameter): A density plot is generated using a histogram with overlaid kernel
density estimate. The posterior mean and 95% credible interval are annotated, along with the
true value if provided.

* 2D (vector-valued parameter over time): A time-series plot is created, showing the pos-
terior mean and 95% pointwise credible intervals. If include_joint_bands = TRUE and the
parameter is among "omega”, "mu”, "yhat"”, or "zeta", simultaneous credible bands are also
drawn. Optionally, ground truth values (if supplied via true_values) are overlaid as orange

dots.

* 3D (parameter array): A sequence of time-series plots is drawn, one for each slice of the
third dimension (e.g., different components of a multivariate function). Posterior mean, point-
wise intervals, joint bands (when applicable), and ground truth are visualized in the same style
as the 2D case. The function pauses after each plot, allowing the user to interactively inspect
each one. The x-axis values are given by t@1. If not provided, they default to evenly spaced
points in [0, 1]. For parameters with temporal differencing (e.g., "evol_sigma_t2"), initial
time points used for prior initialization are automatically excluded. If the model includes
change point detection (model = "changepoint”), and both omega and r are present in the
MCMC output, vertical lines are drawn at the estimated change point locations for plots of
"mu”, "yhat", or "omega".

predict.dsp 35

Value

No return value, called for side effects

Examples

set.seed(200)

signal = c(rep(@, 50), rep(10, 50))

noise = rep(1, 100)

noise_var = rep(1, 100)

for (k in 2:100){
noise_var[k] = exp(@.9*log(noise_var[k-1]) + rnorm(1, @, 0.5))
noise[k] = rnorm(1, @, sqrt(noise_var[kl)) }

y = signal + noise
model_spec = dsp_spec(family = "gaussian”, model = "changepoint”,
D = 1, useAnom = TRUE, obsSV = "SV")
mcmc_output = dsp_fit(y, model_spec = model_spec, nsave = 500, nburn = 500)
Estimated posterior mean vs ground truth

plot(mecmc_output, type = "mu”, true_values = signal)
Estimated innovation variance vs ground truth for illustration only
plot(memc_output, type = "obs_sigma_t2", true_values = noise”2)
predict.dsp Predict changepoints from the output of ABCO
Description

Predict changepoints from the output of ABCO

Usage
S3 method for class 'dsp'
predict(object, cp_thres = 0.5, cp_prop = FALSE, ...)
Arguments
object object of class dsp from dsp_fit()
cp_thres (default 0.5) cutoff proportion for percentage of posterior samples exceeding the

threshold needed to label a changepoint

cp_prop (default FALSE) logical flag determining if the posterior proportions of thresh-
old exceedance is to be returned.

currently unused

Details

The changepoint model uses a thresholding mechanism with a latent indicator variable. This func-
tion calculates the proportion of samples where the increment exceeds the threshold.

36 sampleAR1

Value

If cp_prop = FALSE, a numeric vector of indices that correspond to indices of the observed data. If
cp_prop = TRUE, a list containing:

- 'cp_t': anumeric vector of indices that correspond to indices of the observed data.
- 'cp_prop': a numeric vector of length (T - D) with the pointwise proportion of samples where the increm

If no proportions exceed cp_thres, then the vector will be a length O integer vector.

Examples

set.seed(200)

signal = c(rep(@, 50), rep(10, 50))

noise = rep(1, 100)

noise_var = rep(1, 100)

for (k in 2:100){
noise_var[k] = exp(@.9*log(noise_var[k-1]) + rnorm(1, @, 0.5))
noise[k] = rnorm(1, @, sqgrt(noise_var[k])) }

y = signal + noise
model_spec = dsp_spec(family = "gaussian”, model = "changepoint”,
D = 1, useAnom = TRUE)
mcmc_output = dsp_fit(y, model_spec = model_spec, nsave = 500, nburn = 500)
predict(mcmc_output)

sampleAR1 Sample the AR(1) coefficient(s)

Description

Compute one draw of the AR(1) coefficient in a model with Gaussian innovations and time-dependent
innovation variances. In particular, we use the sampler for the log-volatility AR(1) process with the
parameter-expanded Polya-Gamma sampler. The sampler also applies to a multivariate case with
independent components.

Usage

sampleAR1(h_yc, h_phi, h_sigma_eta_t, prior_dhs_phi = NULL)

Arguments
h_yc the T x p matrix of centered log-volatilities (i.e., the log-vols minus the uncon-
ditional means dhs_mean)
h_phi the p x 1 vector of previous AR(1) coefficient(s)

h_sigma_eta_t the T x p matrix of log-vol innovation standard deviations

prior_dhs_phi the parameters of the prior for the log-volatility AR(1) coefficient dhs_phi; ei-
ther NULL for uniform on [-1,1] or a 2-dimensional vector of (shapel, shape2)
for a Beta prior on [(dhs_phi +1)/2]

sampleBTF 37

Value

p x 1 vector of sampled AR(1) coefficient(s)

Note

For the standard AR(1) case, p = 1. However, the function applies more generally for sampling p >
1 independent AR(1) processes (jointly).

sampleBTF Sampler for first or second order random walk (RW) Gaussian dy-
namic linear model (DLM)

Description

Compute one draw of the T x 1 state variable mu in a DLM using back-band substitution meth-
ods. This model is equivalent to the Bayesian trend filtering (BTF) model, assuming appropriate
(shrinkage/sparsity) priors for the evolution errors.

Usage

sampleBTF (

Y,

obs_sigma_t2,
evol_sigma_t2,
D=1,

loc_obs = NULL,
chol® = NULL,
prior_mean = NULL

Arguments

y the T x 1 vector of time series observations
obs_sigma_t2 the T x 1 vector of observation error variances

evol_sigma_t2 the T x 1 vector of evolution error variances

D the degree of differencing (one or two)
loc_obs list of the row and column indices to fill in a band-sparse matrix
cholo (optional) the m x m matrix of initial Cholesky factorization; if NULL, use the
Matrix package for sampling, otherwise use the spam package
prior_mean optional (default is NULL); numeric T x 1 vector specifying the prior mean of
mu
Value

T x 1 vector of simulated states

38 sampleBTF_bspline

Note

Missing entries (NAs) are not permitted in y. Imputation schemes are available.

sampleBTF_bspline Sampler for first or second order random walk (RW) Gaussian dy-
namic linear model (DLM)

Description

Compute one draw of the p x 1 B-spline basis coefficients beta in a DLM using back-band sub-
stitution methods. The coefficients are penalized with a prior on the D=0, D=1, or D =2
differences. This model is equivalent to the Bayesian trend filtering (BTF) model applied to p x 1
vector of equally-spaced B-spline coefficients, with the basis matrix serving as a design matrix in
the observation equation.

Usage

sampleBTF_bspline(

Y,

X,

obs_sigma2,
evol_sigma_t2,
XtX_bands,

Xty = NULL,
D=1

Arguments

y the T x 1 vector of time series observations
X the T x p basis matrix
obs_sigma2 the scalar observation error variance

evol_sigma_t2 the p x 1 vector of evolution error variances

XtX_bands list with 4 vectors consisting of the 4-bands of XtX = crossprod(X) (one-time
cost)
Xty the p x 1 matrix crossprod(X,y), which is a one-time cost (assuming no missing
entries in y)
D the degree of differencing (zero, one, or two)
Value

p x 1 vector of simulated basis coefficients beta

Note

Missing entries (NAs) are not permitted in y. Imputation schemes are available.

sampleBTF reg 39

sampleBTF_reg Sampler for first or second order random walk (RW) Gaussian dy-
namic linear model (DLM)

Description

Compute one draw of the T x p state variable beta in a DLM using back-band substitution methods.
This model is equivalent to the Bayesian trend filtering (BTF) model applied to p dynamic regres-
sion coefficients corresponding to the design matrix X, assuming appropriate (shrinkage/sparsity)
priors for the evolution errors.

Usage
sampleBTF_reg(y, X, obs_sigma_t2, evol_sigma_t2, XtX, D = 1, chol@ = NULL)

Arguments
y the T x 1 vector of time series observations
X the T x p matrix of time series predictors

obs_sigma_t2 the T x 1 vector of observation error variances

evol_sigma_t2 the T x p matrix of evolution error variances

XtX the Tp x Tp matrix of X’X (one-time cost; see ?build_XtX)
D the degree of differencing (one or two)
chol@ (optional) the m x m matrix of initial Cholesky factorization; if NULL, use the

Matrix package for sampling, otherwise use the spam package

Value

T x p matrix of simulated dynamic regression coefficients beta

Note

Missing entries (NAs) are not permitted in y. Imputation schemes are available.

sampleBTF_reg_backfit (Backfitting) Sampler for first or second order random walk (RW)
Gaussian dynamic linear model (DLM)

Description

Compute one draw of the T x p state variable beta in a DLM using back-band substitution methods.
This model is equivalent to the Bayesian trend filtering (BTF) model applied to p dynamic regres-
sion coefficients corresponding to the design matrix X, assuming appropriate (shrinkage/sparsity)
priors for the evolution errors. The sampler here uses a backfitting method that draws each pre-
dictor j=1,...,p conditional on the other predictors (and coefficients), which leads to a faster 0(Tp)
algorithm. However, the MCMC may be less efficient.

40 sampleBTF _sparse

Usage

sampleBTF_reg_backfit(y, X, beta, obs_sigma_t2, evol_sigma_t2, D = 1)

Arguments
y the T x 1 vector of time series observations
X the T x p matrix of time series predictors
beta the T x p matrix of previous dynamic regression coefficients

obs_sigma_t2 the T x 1 vector of observation error variances
evol_sigma_t2 the T x p matrix of evolution error variances

D the degree of differencing (one or two)

Value

T x p matrix of simulated dynamic regression coefficients beta

Note

Missing entries (NAs) are not permitted in y. Imputation schemes are available.

sampleBTF_sparse Sampler for first or second order random walk (RW) Gaussian dy-
namic linear model (DLM) with additional shrinkage to zero

Description

Compute one draw of the T x 1 state variable mu in a DLM using back-band substitution meth-
ods. This model is equivalent to the Bayesian trend filtering (BTF) model, assuming appropriate
(shrinkage/sparsity) priors for the evolution errors, with an additional shrinkage-to-zero prior.

Usage

sampleBTF_sparse(
Y,
obs_sigma_t2,
evol_sigma_t2,
zero_sigma_t2,
D=1,
chole = NULL

sampleDSP

Arguments

y
obs_sigma_t2
evol_sigma_t2
zero_sigma_t2
D

chole

Value

41

the T x 1 vector of time series observations
the T x 1 vector of observation error variances
the T x 1 vector of evolution error variances
the T x 1 vector of shrink-to-zero variances
the degree of differencing (one or two)

(optional) the m x m matrix of initial Cholesky factorization; if NULL, use the
Matrix package for sampling, otherwise use the spam package

T x 1 vector of simulated states

Note

Missing entries (NAs) are not permitted in y. Imputation schemes are available.

sampleDSP

Sample the dynamic shrinkage process parameters

Description

Compute one draw for each of the parameters in the dynamic shrinkage process for the special case
in which the shrinkage parameter kappa ~ Beta(alpha, beta) with alpha = beta. The primary
example is the dynamic horseshoe process with alpha = beta =1/2.

Usage

sampleDSP(
omega,
evolParams,
sigma_e = 1,
loc = NULL,
prior_dhs_phi =
alphaPlusBeta

c(leo, 2),

1
i

Arguments

omega T x p matrix of evolution errors

evolParams list of parameters to be updated (see Value below)
sigma_e the observation error standard deviation; for (optional) scaling purposes

loc list of the row and column indices to fill in a band-sparse matrix

42 sampleEvol0

prior_dhs_phi the parameters of the prior for the log-volatility AR(1) coefficient dhs_phi; ei-
ther NULL for uniform on [-1,1] or a 2-dimensional vector of (shapel, shape2)
for a Beta prior on [(dhs_phi + 1) /2]

alphaPlusBeta For the symmetric prior kappa ~ Beta(alpha, beta) with alpha=beta, specify the
sum [alpha + beta]

Value

List of relevant components:

* the T x p evolution error standard deviations sigma_wt,

 the T x p log-volatility ht, the p x 1 log-vol unconditional mean(s) dhs_mean,

* the p x 1 log-vol AR(1) coefficient(s) dhs_phi,

* the T x p log-vol innovation standard deviations sigma_eta_t from the Polya-Gamma priors,
e the p x 1 initial log-vol SD sigma_eta_o,

* and the mean of log-vol means dhs_mean®@ (relevant when p > 1)

Note

The priors induced by prior_dhs_phi all imply a stationary (log-) volatility process.

sampleEvol@ Sample the parameters for the initial state variance

Description
The initial state SDs are assumed to follow half-Cauchy priors, C+(0,A), where the SDs may be
common or distinct among the states.

Usage
sampleEvol@(mu@, evolParams@, commonSD = FALSE, A = 1)

Arguments
muo p x 1 vector of initial values (undifferenced)
evolParamso list of relevant components (see below)
commonSD logical; if TRUE, use common SDs (otherwise distict)
A prior scale parameter from the half-Cauchy prior, C+(0,A)
Details

This function samples the parameters for a PX-Gibbs sampler.

Value

List of relevant components: the p x 1 evolution error SD sigma_w@ and the p x 1 parameter-
expanded RV’s px_sigma_we@

sampleEvolParams 43

sampleEvolParams Sampler evolution error variance parameters

Description
Compute one draw of evolution error variance parameters under the various options:

* dynamic horseshoe prior CDHS’);
* horseshoe prior CHS’);

* normal-inverse-gamma prior ('NIG’).

Usage
sampleEvolParams(
omega,
evolParams,
sigma_e = 1,
evol_error = "DHS",
loc = NULL
)
Arguments
omega T x p matrix of evolution errors
evolParams list of parameters pertaining to each evol_error type to be updated
sigma_e the observation error standard deviation; for (optional) scaling purposes
evol_error the evolution error distribution; must be one of "DHS’ (dynamic horseshoe
prior), "HS’ (horseshoe prior), or 'NIG’ (normal-inverse-gamma prior)
loc list of the row and column indices to fill in a band-sparse matrix
Value

List of relevant components in evolParams: sigma_wt, the T x p matrix of evolution standard
deviations, and additional parameters associated with the DHS and HS priors.

Note

The list evolParams is specific to each evol_error type, but in each case contains the evolution
error standard deviations sigma_wt.

To avoid scaling by the observation standard deviation sigma_e, simply use sigma_e =1 in the
functional call.

44 sampleLog VolMu

sampleFastGaussian Sample a Gaussian vector using the fast sampler of BHATTACHARYA
et al.

Description
Sample from N(mu, Sigma) where Sigma = solve(crossprod(Phi) + solve(D)) and mu = Sigma*crossprod(Phi,
alpha):

Usage

sampleFastGaussian(Phi, Ddiag, alpha)

Arguments
Phi n x p matrix (of predictors)
Ddiag p x 1 vector of diagonal components (of prior variance)
alpha n x 1 vector (of data, scaled by variance)

Value

Draw from N(mu, Sigma), which is p x 1, and is computed in 0(n*2*p)

Note

Assumes D is diagonal, but extensions are available

samplelLogVolMu Sample the AR(1) unconditional means

Description

Compute one draw of the unconditional means in an AR(1) model with Gaussian innovations and
time-dependent innovation variances. In particular, we use the sampler for the log-volatility AR(1)
process with the parameter-expanded Polya-Gamma sampler. The sampler also applies to a multi-
variate case with independent components.

Usage

sampleLogVolMu(h, h_mu, h_phi, h_sigma_eta_t, h_sigma_eta_0, h_log_scale = 0)

sampleLog VoIMu0 45

Arguments
h the T x p matrix of log-volatilities
h_mu the p x 1 vector of previous means
h_phi the p x 1 vector of AR(1) coefficient(s)

h_sigma_eta_t the T x p matrix of log-vol innovation standard deviations
h_sigma_eta_@ the standard deviations of initial log-vols
h_log_scale prior mean from scale mixture of Gaussian (Polya-Gamma) prior, e.g. log(sigma_e”2)

or dhs_mean0
Value
a list containing

e the sampled mean(s) dhs_mean and
* the sampled precision(s) dhs_mean_prec_j from the Polya-Gamma parameter expansion

samplelLogVolMu@ Sample the mean of AR(1) unconditional means

Description

Compute one draw of the mean of unconditional means in an AR(1) model with Gaussian inno-
vations and time-dependent innovation variances (for p > 1). More generally, the sampler applies
to the "mean" parameter (on the log-scale) for a Polya-Gamma parameter expanded hierarchical
model.

Usage

sampleLogVolMu@(h_mu, h_mu@, dhs_mean_prec_j, h_log_scale = 0)

Arguments
h_mu the p x 1 vector of means
h_mu@ the previous mean of unconditional means

dhs_mean_prec_j
the p x 1 vector of precisions (from the Polya-Gamma parameter expansion)
h_log_scale prior mean from scale mixture of Gaussian (Polya-Gamma) prior, e.g. log(sigma_e”2)

Value

The sampled mean parameter dhs_mean@

Note

This sampler is particularly for p > 1 and the setting in which we want hierarchical shrinkage effects,
e.g. predictor- and time-dependent shrinkage, predictor-dependent shrinkage, and global shrinkage,
with a natural hierarchical ordering.

46 sampleLogVols

samplelLogVols Sample the latent log-volatilities

Description

Compute one draw of the log-volatilities using a discrete mixture of Gaussians approximation to
the likelihood (see Omori, Chib, Shephard, and Nakajima, 2007) where the log-vols are assumed
to follow an AR(1) model with time-dependent innovation variances. More generally, the code
operates for p independent AR(1) log-vol processes to produce an efficient joint sampler in 0(Tp)
time.

Usage

sampleLogVols(
h_y,
h_prev,
h_mu,
h_phi,
h_sigma_eta_t,
h_sigma_eta_@,

loc = NULL
)
Arguments
h_y the T x p matrix of data, which follow independent SV models
h_prev the T x p matrix of the previous log-vols
h_mu the p x 1 vector of log-vol unconditional means
h_phi the p x 1 vector of log-vol AR(1) coefficients

h_sigma_eta_t the T x p matrix of log-vol innovation standard deviations
h_sigma_eta_@ the p x 1 vector of initial log-vol innovation standard deviations

loc list of the row and column indices to fill in a band-sparse matrix

Value

T x p matrix of simulated log-vols

Note

For Bayesian trend filtering, p = 1. More generally, the sampler allows for p > 1 but assumes (con-
temporaneous) independence across the log-vols for j=1,...,p.

sampleS Vparams 47

sampleSVparams Sampler for the stochastic volatility parameters

Description
Compute one draw of the normal stochastic volatility parameters. The model assumes an AR(1) for
the log-volatility.

Usage

sampleSVparams(omega, svParams)

Arguments
omega T x p matrix of errors
svParams list of parameters to be updated
Value

List of relevant components in svParams: sigma_wt, the T x p matrix of standard deviations, and
additional parameters associated with SV model.

sampleSVparams@ Sampler for the stochastic volatility parameters using same functions
as DHS prior

Description
Compute one draw of the normal stochastic volatility parameters. The model assumes an AR(1) for
the log-volatility.

Usage

sampleSVparams@(omega, svParams)

Arguments
omega T x p matrix of errors
svParams list of parameters to be updated
Value

List of relevant components in svParams: sigma_wt, the T x p matrix of standard deviations, and
additional parameters associated with SV model.

48 sample_mat_c

sample_j_wrap Sampling from 10-component Gaussian Mixture component described
in Omori et al. 2007

Description

Samples from the conditional posterior distribution of the log(x?) distribution by approximating it
with the mixture Gaussian distribution described in Omori et al. 2007.

Usage

sample_j_wrap(Td, obs = NULL)

Arguments

Td length of the vector

obs Td x 1 vector for the data.
Value

Dataframe containing the posterior samples: mean and variance for the mixture component.

Note

When the obs is not not specified, the components are samples from the prior distribution.

sample_mat_c Wrapper function for C++ call for sample mat, check pre-conditions
to prevent crash

Description

Wrapper function for C++ call for sample mat, check pre-conditions to prevent crash

Usage

sample_mat_c(row_ind, col_ind, mat_val, mat_l, num_inp, linht, rd, D)

simBaS 49

Arguments
row_ind list of the row indices to fill in the bandsparse matrix
col_ind list of the columns indices to fill in the bandsparse matrix
mat_val list of the values to fill in the bandsparse matrix
mat_1 dimension of the band-sparse matrix
num_inp number of non-zero elements in the bandsparse matrix
linht T-D vector of linear term in the sampler
rd T-D vector of standard normal noise samples
D the degree of differencing for changepoint
simBa$S Compute Simultaneous Band Scores (SimBasS)
Description

Compute simultaneous band scores (SimBaS) from Meyer et al. (2015, Biometrics). SimBaS uses
MC(MC) simulations of a function of interest to compute the minimum alpha such that the joint
credible bands at the alpha level do not include zero. This quantity is computed for each grid point
(or observation point) in the domain of the function.

Usage

simBaS(sampFuns)
Arguments

sampFuns Nsims x m matrix of Nsims MCMC samples and m points along the curve
Value

m x 1 vector of simBaS

Note

The input needs not be curves: the simBaS may be computed for vectors to achieve a multiplicity
adjustment.

The minimum of the returned value, PsimBaS_t, over the domain t is the Global Bayesian P-Value
(GBPV) for testing whether the function is zero everywhere.

50 simRegression

simRegression Simulate noisy observations from a dynamic regression model

Description

Simulates data from a time series regression with dynamic regression coefficients. The dynamic
regression coefficients are simulated as a Gaussian random walk, where jumps occur with a pre-
specified probability sparsity. The coefficients are initialized by a N(0,1) simulation.

Usage
simRegression(
nT = 200,
p = 20,
p_0 = 15,
sparsity = 0.05,
RSNR = 5,
arl = 0,
include_plot = FALSE
)
Arguments
nT number of time points
p number of predictors (total)
p_0 number of true zero regression terms
sparsity the probability of a jump (i.e., a change in the dynamic regression coefficient)
RSNR root-signal-to-noise ratio
arl the AR(1) coefficient for the predictors X; default is zero for iid N(0,1) predic-

tors

include_plot logical; if TRUE, include a plot of the simulated data and the true curve

Value
a list containing

¢ the simulated function y

* the simulated predictors X

* the simulated dynamic regression coefficients beta_true
* the true function mu_true

« the true observation standard deviation sigma_true

Note

The root-signal-to-noise ratio is defined as RSNR = (sd of true function)/(sd of noise).

simRegression0 51

simRegression@ Simulate noisy observations from a dynamic regression model

Description

Simulates data from a time series regression with dynamic regression coefficients. The dynamic
regression coefficients are selected using the options from the simUnivariate() function in the
wmtsa package.

Usage

simRegression@(
signalNames = c("bumps”, "blocks"),
nT = 200,
RSNR = 10,
p_0 =5,
include_intercept = TRUE,
scale_all = TRUE,
include_plot = TRUE,

arl =0
)
Arguments
signalNames vector of strings matching the "name" argument in the simUnivariate() func-
tion, e.g. "bumps" or "doppler"
nT number of points
RSNR root-signal-to-noise ratio
p_0 number of true zero regression terms to include

include_intercept
logical; if TRUE, the first column of X is 1’s

scale_all logical; if TRUE, scale all regression coefficients to [0,1]
include_plot logical; if TRUE, include a plot of the simulated data and the true curve

aril the AR(1) coefficient for the predictors X; default is zero for iid N(0,1) predic-
tors

Value
a list containing

e the simulated function y

¢ the simulated predictors X

* the simulated dynamic regression coefficients beta_true
* the true function mu_true

« the true observation standard deviation sigma_true

52 simUnivariate

Note

The number of predictors is p = length(signalNames) + p_0.

The root-signal-to-noise ratio is defined as RSNR = (sd of true function)/(sd of noise).

simUnivariate Generate univariate signals of different type

Description

Using code from the archived wmtsa package

Usage

simUnivariate(name, n = 1024, snr = Inf)

Arguments
name character string of name of the test wavelet signal to be generated; one of "dirac",
"kronecker", "heavisine", "bumps", "blocks", "doppler", "ramp", "cusp", "crease",
"sing", "hisine", "losine", "linchirp", "twochirp", "quadchirp”, "mishmashl",
"mishmash2", "mishmash3", "levelshift", "jumpsine", "gauss", "patches", "lin-
ear", "quadratic", "cubic";
n length of the series; defaults to 1024 points; increasing n infills the time series
snr desired signal-to-noise ratio; default Inf corresponds to 0 noise
Value

A numeric vector the same length as n.

Examples

nms <- c("blocks”, "linchirp”, "mishmash1”, "bumps")
z <- lapply(nms, simUnivariate)

spec_dsp 53

spec_dsp Compute the spectrum of an AR(p) model

Description

Compute the spectrum of an AR(p) model

Usage

spec_dsp(ar_coefs, sigma_e, n.freq = 500)

Arguments

ar_coefs (p x 1) vector of AR(p) coefficients

sigma_e observation standard deviation

n.freq number of frequencies at which to evaluate the spectrum
Value

A (n.freq x 2) matrix where the first column is the frequencies and the second column is the spectrum
evaluated at that frequency

summary.dsp Summarize DSP MCMC chains

Description

Summarize DSP MCMC chains

Usage
S3 method for class 'dsp'
summary(object, pars, probs = c(0.025, 0.25, 0.5, 0.75, 0.975), ...)
Arguments
object object of class dsp from dsp_fit()
pars parameter names specified for summaries; currently defaults to all parameters

named in object$memc_output

probs numeric vector of quantile()s requested for posterior summary of pars. De-
faults to ¢(0.025, 0.25, 0.50, 0.75, 0.975)

currently not being used

54 t create_loc

Value

Returns a named list of the same length as pars where within each element of the list is a numeric
matrix (vector parameters) or vector (scalar parameters). For matrices, each row is a time point (or
dimension) of the parameter and each column is a named summary. The names are accessible with
colnames. For vectors (scalar parameters), each element is a named summary.

Examples

set.seed(200)

signal = c(rep(@, 50), rep(10, 50))

noise = rep(1, 100)

noise_var = rep(1, 100)

for (k in 2:100){
noise_var[k] = exp(@.9*log(noise_var[k-1]1) + rnorm(1, @, 0.5))
noise[k] = rnorm(1, @, sqrt(noise_var[kl)) }

y = signal + noise
model_spec = dsp_spec(family = "gaussian”, model = "changepoint"”,
D = 1, useAnom = TRUE, obsSV = "SV")
mcmc_output = dsp_fit(y, model_spec = model_spec, nsave = 500, nburn = 500)

summary_fit <- summary(mcmc_output)
summary_fit$mul[, "mean”]
summary_fit$evol_sigma_t2[, "mean”]

t_create_loc Initializer for location indices for filling in band-sparse matrix

Description
Create row and column indices for locations of symmetric band-sparse matrix. Starts with the
locations of the diagonal, proceed with upper-diagonals, followed by lower-diagonals.

Usage

t_create_loc(len, D)

Arguments

len length of the diagonal of the band-sparse matrix

D number of super-diagonals to include for the band-sparse
Value

a list containing

¢ the row indices r and

* the column indices c

t_initEvolParams_no 55

t_initEvolParams_no Initialize the evolution error variance parameters

Description

Compute initial values for evolution error variance parameters under the dynamic horseshoe prior

Usage

t_initEvolParams_no(y, D, omega)

Arguments
y the T vector of time series observations
D degree of differencing (D=1, or D = 2)
omega T vector of evolution errors

Value

List of relevant components: sigma_wt, the T vector of evolution standard deviations, and additional
parameters associated with the DHS priors.

t_initEvolZeta_ps Initialize the anomaly component parameters

Description

Compute initial values for either a horseshoe prior or horseshoe+ prior for the anomaly component.

Usage

t_initEvolZeta_ps(zeta)

Arguments

zeta T vector of initial estimates.

Value

List of relevant components: sigma_wt, the T vector of standard deviations, and additional param-
eters for inverse gamma priors (shape and scale).

56 t_sampleAR1

t_initSV Initialize the stochastic volatility parameters

Description
Compute initial values for normal stochastic volatility parameters. The model assumes an AR(1)
for the log-volatility.

Usage

t_initSV(omega)

Arguments

omega T vector of errors

Value

List of relevant components: sigma_wt, the T vector of standard deviations, and additional param-
eters (unconditional mean, AR(1) coefficient, and standard deviation).

t_sampleAR1 Sample the TAR(1) coefficients

Description

Compute one draw of the TAR(1) coefficients in a model with Gaussian innovations and time-
dependent innovation variances. In particular, we use the sampler for the log-volatility TAR(1)
process with the parameter-expanded Polya-Gamma sampler. The sampler also applies to a multi-
variate case with independent components.

Usage
t_sampleAR1(h_yc, h_phi, h_phi2, h_sigma_eta_t, h_st, prior_dhs_phi = NULL)

Arguments

h_yc the T vector of centered log-volatilities (i.e., the log-vols minus the unconditional
means dhs_mean)

h_phi the 1 vector of previous AR(1) coefficient(s)

h_phi2 the 1 vector of previous penalty coefficient(s)

h_sigma_eta_t the T vector of log-vol innovation standard deviations

h_st the T vector of indicators on whether each time-step exceed the estimated thresh-
old

prior_dhs_phi the parameters of the prior for the log-volatility AR(1) coefficient dhs_phi; ei-
ther NULL for uniform on [-1,1] or a 2-dimensional vector of (shapel, shape2)
for a Beta prior on [(dhs_phi +1)/2]

t_sampleBTF 57

Value

2 vector of sampled TAR(1) coefficient(s)

t_sampleBTF Sampler for first or second order random walk (RW) Gaussian dy-
namic linear model (DLM)

Description
Compute one draw of the T state variable mu in a DLM using back-band substitution methods. This
model is equivalent to the Bayesian trend filtering (BTF) model, assuming appropriate (shrink-
age/sparsity) priors for the evolution errors.

Usage

t_sampleBTF(y, obs_sigma_t2, evol_sigma_t2, D = 1, loc_obs)

Arguments

y the T x 1 vector of time series observations
obs_sigma_t2 the T x 1 vector of observation error variances

evol_sigma_t2 the T x 1 vector of evolution error variances

D the degree of differencing (one or two)
loc_obs list of the row and column indices to fill in a band-sparse matrix
Value

T x 1 vector of simulated states

Note

Missing entries (NAs) are not permitted in y. Imputation schemes are available.

58

t_sampleEvolParams

t_sampleEvolParams Sample the thresholded dynamic shrinkage process parameters

Description

Compute one draw for each of the parameters in the thresholded dynamic shrinkage process for the
special case in which the shrinkage parameter kappa ~ Beta(alpha, beta) with alpha = beta =

1/2.

Usage

t_sampleEvolParams(

omega,
evolParams,
D=1,
sigma_e = 1,
lower_b,
upper_b,

loc,
prior_dhs_phi
alphaPlusBeta

Arguments
omega
evolParams
D
sigma_e
lower_b
upper_b
loc

prior_dhs_phi

alphaPlusBeta

Value

c(20, 1),

1
-

T vector of evolution errors

list of parameters to be updated (see Value below)

the degree of differencing (one or two)

the observation error standard deviation; for (optional) scaling purposes
the lower bound in the uniform prior of the threshold variable

the upper bound in the uniform prior of the threshold variable

list of the row and column indices to fill in a band-sparse matrix

the parameters of the prior for the log-volatility AR(1) coefficient dhs_phi; ei-
ther NULL for uniform on [-1,1] or a 2-dimensional vector of (shapel, shape2)
for a Beta prior on [(dhs_phi + 1)/2]

For the symmetric prior kappa ~ Beta(alpha, beta) with alpha=beta, specify the
sum [alpha + beta]

List of relevant components:

¢ the T evolution error standard deviations sigma_wt,

* the T log-volatility ht,

t_sampleEvolZeta_ps 59

¢ the 1 log-vol unconditional mean(s) dhs_mean,

* the 1 log-vol AR(1) coefficient(s) dhs_phi,

* the 1 log-vol correction coefficient(s) dhs_phi2,

* the T log-vol innovation standard deviations sigma_eta_t from the Polya-Gamma priors,
* the 1 initial log-vol SD sigma_eta_o,

* the 1 threshold parameter r

Note

The priors induced by prior_dhs_phi all imply a stationary (log-) volatility process.

t_sampleEvolZeta_ps Sampler for the anomaly component parameters

Description

Compute one draw of the anomaly component parameters.

Usage

t_sampleEvolZeta_ps(omega, evolParams)

Arguments

omega T vector of errors

evolParams list of parameters to be updated
Value

List of relevant components in evolParams: sigma_wt, the T vector of standard deviations, and
additional parameters for inverse gamma priors (shape and scale).

t_samplelLogVolMu Sample the TAR(1) unconditional means

Description

Compute one draw of the unconditional means in an TAR(1) model with Gaussian innovations
and time-dependent innovation variances. In particular, we use the sampler for the log-volatility
TAR(1) process with the parameter-expanded Polya-Gamma sampler. The sampler also applies to
a multivariate case with independent components.

60

Usage

t_sampleLogVols

t_samplelLogVolMu(

h7
h_mu,
h_phi,
h_phi2,

h_sigma_eta_t,
h_sigma_eta_@,

h_st,
h_log_scale

Arguments

h

h_mu

h_phi

h_phi2
h_sigma_eta_t
h_sigma_eta_0

h_st

h_log_scale

Value

0

the T vector of log-volatilities

the 1 vector of previous means

the 1 vector of AR(1) coefficient(s)

the 1 vector of previous penalty coefficient(s)

the T vector of log-vol innovation standard deviations
the standard deviations of initial log-vols

the T vector of indicators on whether each time-step exceed the estimated thresh-
old

prior mean from scale mixture of Gaussian (Polya-Gamma) prior, e.g. log(sigma_e"2)
or dhs_mean(

the sampled mean(s) dhs_mean

t_samplelLogVols

Sample the latent log-volatilities

Description

Compute one draw of the log-volatilities using a discrete mixture of Gaussians approximation to
the likelihood (see Omori, Chib, Shephard, and Nakajima, 2007) where the log-vols are assumed
to follow an TAR(1) model with time-dependent innovation variances. More generally, the code
operates for p independent TAR(1) log-vol processes to produce an efficient joint sampler in 0(Tp)

time.

t_sampleR_mh 61

Usage

t_samplelogVols(
h_y,
h_prev,
h_mu,
h_phi,
h_phi2,
h_sigma_eta_t,
h_sigma_eta_@,

h_st,
loc
)
Arguments
h_y the T vector of data, which follow independent SV models
h_prev the T vector of the previous log-vols
h_mu the 1 vector of log-vol unconditional means
h_phi the 1 vector of log-vol AR(1) coefficients
h_phi2 the 1 vector of previous penalty coefficient(s)

h_sigma_eta_t the T vector of log-vol innovation standard deviations

h_sigma_eta_@ the 1 vector of initial log-vol innovation standard deviations

h_st the T vector of indicators on whether each time-step exceed the estimated thresh-
old
loc list of the row and column indices to fill in the band-sparse matrix in the sampler
Value

T x p vector of simulated log-vols

Note
For Bayesian trend filtering, p = 1. More generally, the sampler allows for p > 1 but assumes (con-
temporaneous) independence across the log-vols for j=1,...,p.
t_sampleR_mh Sample the threshold parameter
Description

Compute one draw of the threshold parameter in th TAR(1) model with Gaussian innovations and
time-dependent innovation variances. The sampler utilizes metropolis hasting to draw from uniform
prior.

62 t_sampleSVparams

Usage

t_sampleR_mh(
h_yc,
h_phi,
h_phi2,
h_sigma_eta_t,
h_sigma_eta_o,
h_st,
h_r,
lower_b,
upper_b,
omega,
D

Arguments

h_yc the T vector of centered log-volatilities (i.e., the log-vols minus the unconditional
means dhs_mean)

h_phi the 1 vector of previous AR(1) coefficient(s)
h_phi2 the 1 vector of previous penalty coefficient(s)
h_sigma_eta_t the T vector of log-vol innovation standard deviations

h_sigma_eta_@ the 1 vector of initial log-vol innovation standard deviations

h_st the T vector of indicators on whether each time-step exceed the estimated thresh-
old
h_r 1 the previous draw of the threshold parameter
lower_b the lower bound in the uniform prior of the threshold variable
upper_b the upper bound in the uniform prior of the threshold variable
omega T vector of evolution errors
D the degree of differencing (one or two)
Value

the sampled threshold value r

t_sampleSVparams Sampler for the stochastic volatility parameters

Description

Compute one draw of the normal stochastic volatility parameters. The model assumes an AR(1) for
the log-volatility.

uni.slice 63

Usage

t_sampleSVparams(omega, svParams)

Arguments

omega T vector of errors

svParams list of parameters to be updated
Value

List of relevant components in svParams: sigma_wt, the T vector of standard deviations, and addi-
tional parameters associated with SV model.

uni.slice Univariate Slice Sampler from Neal (2008)

Description

Compute a draw from a univariate distribution using the code provided by Radford M. Neal. The
documentation below is also reproduced from Neal (2008).

Usage
uni.slice(x@, g, w =1, m = Inf, lower = -Inf, upper = +Inf, gx@ = NULL)

Arguments
X0 Initial point
g Function returning the log of the probability density (plus constant)
w Size of the steps for creating interval (default 1)
m Limit on steps (default infinite)
lower Lower bound on support of the distribution (default -Inf)
upper Upper bound on support of the distribution (default +Inf)
gx0 Value of g(x0), if known (default is not known)
Value

The point sampled, with its log density attached as an attribute.

Note

The log density function may return -Inf for points outside the support of the distribution. If a lower
and/or upper bound is specified for the support, the log density function will not be called outside
such limits.

Index

abco, 4

btf,5

btfoe, 7
btf_bspline, 9
btf_bsplineo, 11
btf_reg, 12
btf_sparse, 14
build_Q, 17
build_XtX, 17

computeDIC_ASY, 18
credBands, 18

dsp_fit, 19
dsp_fit(), 20, 34, 35, 53
dsp_spec, 21
dsp_spec(), 19, 21

ergMean, 22

fit_ASV, 22
fit_paramsASv, 24
fit_paramsASV_n, 24

generate_ly2hat, 25
getARpXmat, 26
getEffSize, 26
getNonZeros, 27

init_paramsASV, 31
init_paramsASV_n, 31
initChol_spam, 28
initCholReg_spam, 28
initDHS, 29
initEvolo, 29
initEvolParams, 30
initSy, 30
invlogit, 32

logit, 33

64

ncind, 33

plot.dsp, 34
predict.dsp, 35
print.dsp (dsp_fit), 19

print.dsp_spec (dsp_spec), 21

quantile(), 53

sample_j_wrap, 48
sample_mat_c, 48
sampleAR1, 36
sampleBTF, 37
sampleBTF_bspline, 38
sampleBTF_reg, 39

sampleBTF_reg_backfit, 39

sampleBTF_sparse, 40
sampleDSP, 41
sampleEvolo, 42
sampleEvolParams, 43
sampleFastGaussian, 44
samplelogVolMu, 44
samplelLogVolMuo, 45
samplelLogVols, 46
sampleSVparams, 47
sampleSVparamso, 47
simBas, 49
simRegression, 50
simRegression®, 51
simUnivariate, 52
spec_dsp, 53
summary.dsp, 53

t_create_loc, 54
t_initEvolParams_no, 55
t_initEvolZeta_ps, 55
t_initSyV, 56
t_sampleAR1, 56
t_sampleBTF, 57
t_sampleEvolParams, 58

INDEX

t_sampleEvolZeta_ps, 59
t_samplelLogVolMu, 59
t_samplelogVols, 60
t_sampleR_mh, 61
t_sampleSVparams, 62

uni.slice, 63

65

	abco
	btf
	btf0
	btf_bspline
	btf_bspline0
	btf_reg
	btf_sparse
	build_Q
	build_XtX
	computeDIC_ASV
	credBands
	dsp_fit
	dsp_spec
	ergMean
	fit_ASV
	fit_paramsASV
	fit_paramsASV_n
	generate_ly2hat
	getARpXmat
	getEffSize
	getNonZeros
	initCholReg_spam
	initChol_spam
	initDHS
	initEvol0
	initEvolParams
	initSV
	init_paramsASV
	init_paramsASV_n
	invlogit
	logit
	ncind
	plot.dsp
	predict.dsp
	sampleAR1
	sampleBTF
	sampleBTF_bspline
	sampleBTF_reg
	sampleBTF_reg_backfit
	sampleBTF_sparse
	sampleDSP
	sampleEvol0
	sampleEvolParams
	sampleFastGaussian
	sampleLogVolMu
	sampleLogVolMu0
	sampleLogVols
	sampleSVparams
	sampleSVparams0
	sample_j_wrap
	sample_mat_c
	simBaS
	simRegression
	simRegression0
	simUnivariate
	spec_dsp
	summary.dsp
	t_create_loc
	t_initEvolParams_no
	t_initEvolZeta_ps
	t_initSV
	t_sampleAR1
	t_sampleBTF
	t_sampleEvolParams
	t_sampleEvolZeta_ps
	t_sampleLogVolMu
	t_sampleLogVols
	t_sampleR_mh
	t_sampleSVparams
	uni.slice
	Index

